Supplementary Material

Synthesis of new anthraquinone compounds and evaluation of their considerable xanthine oxidase inhibitory activities

Ufuk Parladı^a, Ülkü Yılmaz ^{b*}, Samir Abbas Ali Noma^c, Burhan Ateş^a, and Hasan Küçükbay^a

^aDepartment of Chemistry, Faculty of Science and Arts, İnönü University, Malatya 44280, Turkey

^bDepartment of Engineering Basic Sciences, Faculty of Engineering and Natural Sciences, Malatya Turgut Özal University, Malatya 44210, Turkey ^cDepartment of Chemistry, Faculty of Arts and Science, Bursa Uludağ University, Bursa 16059, Turkey E-mail: ulku.yilmaz@ozal.edu.tr

Table of Contents

Spectra of compounds (¹H, ¹³C NMR and IR)S2

Figure 1. ¹H-NMR of compound 1 (DMSO-d₆, 400 MHz)

Figure 2. ¹³C-NMR of compound **1** (DMSO-d₆, 100 MHz)

Figure 3. IR of compound 1

Figure 4. ¹H-NMR of compound 2 (DMSO-d₆, 400 MHz)

Figure 5. ¹3C-NMR of compound 2 (DMSO-d₆, 100 MHz)

Figure 6. IR of compound 2

Figure 7. ¹H-NMR of compound 3 (CDCl₃, 400 MHz)

Figure 8. ¹³C-NMR of compound 3 (CDCl₃, 100 MHz)

Figure 9. IR of compound 3

Figure 10. ¹H-NMR of compound 4 (CDCl₃, 400 MHz)

Figure 11. ¹³C-NMR of compound 4 (CDCl₃, 100 MHz)

Figure 12. IR of compound 4

Figure 13. ¹H-NMR of compound 5 (CDCl₃, 400 MHz)

Figure 14. ¹³C-NMR of compound 5 (CDCl₃, 100 MHz)

Figure 16. ¹H-NMR of compound 6 (CDCl₃, 400 MHz)

Figure 17. ¹³C-NMR of compound 6 (CDCl₃, 100 MHz)

Figure 18. IR of compound 6

Figure 19. ¹H-NMR of compound 7 (CDCl₃, 400 MHz)

Figure 20. ¹³C-NMR of compound 7 (CDCl₃, 100 MHz)

Figure 21. IR of compound 7

Figure 22. ¹H-NMR of compound 8 (DMSO-d₆, 400 MHz)

Figure 23. ¹³C-NMR of compound 8 (DMSO-d₆, 400 MHz)

Figure 24. IR of compound 8

Figure 25. ¹H-NMR of compound 9 (DMSO-d₆, 400 MHz)

Figure 26. ¹³C-NMR of compound 9 (DMSO-d₆, 400 MHz)

Figure 28. ¹H-NMR of compound 10 (DMSO-d₆, 400 MHz)

Figure 29. ¹³C-NMR of compound 10 (DMSO-d₆, 400 MHz)

Figure 30. IR of compound 10

Figure 31. ¹H-NMR of compound 11 (CDCl₃, 400 MHz)

Figure 32. ¹³C-NMR of compound 11 (CDCl₃, 100 MHz)

Figure 33. IR of compound 11