Supplementary Material

New efficient synthesis of bis-1,2,4-oxadiazole derivatives

via subsequent Staudinger/aza-Wittig reaction

Hai Xie*, Qingqing Hu, Lu Li, Xiuting Qin, Yali Zhang, and Haiqing Wang

College of Chemistry and Chemical Engineering, Shanxi Datong University, Datong, 037009, People's Republic of China Email: <u>xiehai10@126.com</u>

Table of Contents

Crystal data, structure refinement and ORTEP diagram for compound 4a	S2
Copies of ¹ H and ¹³ C NMR spectrum of compound 2 , and 4	S4

Table Crystal data and structure refinement for compound 4a.

Identification code	4a
Empirical formula	C16 H10 N4 O2
Formula weight	290.28
Temperature	298(2) K
Wavelength	0.71073 A
Crystal system, space group	Monoclinic, P2(1)/c
Unit cell dimensions	a = 8.6846(8) A alpha = 90 deg.
	b = 5.5361(5) A beta = 90.409(2) deg.
	c = 13.9324(12) A gamma = 90 deg.
Volume	669.84(10) A^3
Z, Calculated density	2, 1.439 Mg/m^3
Absorption coefficient	0.100 mm^-1
F(000)	300
Crystal size	0.35 x 0.23 x 0.10 mm
Theta range for data collection	2.35 to 25.00 deg.
Limiting indices	-10<=h<=9, -6<=k<=6, -12<=l<=16
Reflections collected / unique	3183 / 1180 [R(int) = 0.0438]
Completeness to theta = 25.00	98.7 %
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	0.9901 and 0.9660
Refinement method	Full-matrix least-squares on F^2
Data / restraints / parameters	1180/0/100
Goodness-of-fit on F^2	1.034
Final R indices [I>2sigma(I)]	R1 = 0.0536, wR2 = 0.1283
R indices (all data)	R1 = 0.0687, wR2 = 0.1377
Largest diff. peak and hole	0.187 and -0.214

Figure 1. ORTEP diagram of the crystal structure of 6n (30% thermal ellipsoids).

¹³C NMR (125 MHz, CDCl₃) spectra of compound **2a**:

IR of compound **2a**:

¹H NMR (500 MHz, DMSO) spectra of compound **2b**: ^{1001B 10} $f_{1}^{4}f_{2}^{6}f_$

¹³C NMR (125 MHz, DMSO) spectra of compound **2b**:

IR of compound **2b**:

¹H NMR (500 MHz, CDCl₃) spectra of compound **2c**:

IR of compound **2c**:

¹H NMR (500 MHz, CDCl₃) spectra of compound **2d**:

¹³C NMR (125 MHz, DMSO) spectra of compound **2d**:

IR of compound 2d:

¹H NMR (500 MHz, DMSO) spectra of compound **2e**:

HODIE 10.017 1.7.7.7.4.8 10.018 10	-3.34 2.51 2.50 2.50	-0.00
--	-------------------------------	-------

¹³C NMR (125 MHz, CDCl₃) spectra of compound **2e**:

IR of compound **2e**:

IR of compound 2f:

¹H NMR (500 MHz, DMSO) spectra of compound **2g**:

IR of compound **2g**:

¹³C NMR (125 MHz, CDCl₃) spectra of compound **2h**:

IR of compound 2h:

¹H NMR (500 MHz, CDCl₃) spectra of compound **2i**:

-

IR of compound 2i:

¹H NMR (500 MHz, CDCl₃) spectra of compound **2j**:

IR of compound 2j:

¹H NMR (500 MHz, CDCl₃) spectra of compound **4a**:

¹³C NMR (125 MHz, CDCl₃) spectra of compound **4a**:

IR of compound 4a:

¹H NMR (500 MHz, DMSO) spectra of compound **4b**:

IR of compound 4b:

¹H NMR (500 MHz, CDCl₃) spectra of compound **4c**:

IR of compound **4c**:

¹H NMR (500 MHz, CDCl₃) spectra of compound **4d**:

¹³C NMR (125 MHz, CDCl₃) spectra of compound **4d**:

IR of compound 4d:

¹H NMR (500 MHz, CDCl₃) spectra of compound **4e**:

IR of compound 4e:

¹H NMR (500 MHz, CDCl₃) spectra of compound **4f**:

¹³C NMR (125 MHz, CDCl₃) spectra of compound **4f**:

IR of compound 4f:

¹H NMR (500 MHz, DMSO) spectra of compound **4g**:

IR of compound **4g**:

¹H NMR (500 MHz, CDCl₃) spectra of compound **4h**:

IR of compound 4h:

¹H NMR (500 MHz, CDCl₃) spectra of compound **4i**:

¹³C NMR (125 MHz, CDCl₃) spectra of compound **4i**:

IR of compound 4i:


```
IR of compound 4j:
```


¹H NMR (500 MHz, CDCl₃) spectra of compound **4k**:

IR of compound 4k:

