Mandelic acid catalyzed one-pot pseudo three-component synthesis of various trisubstituted methane derivatives at room temperature

Bubun Banerjee ${ }^{1,4 *}$, Arvind Singh ${ }^{1}$, Aditi Sharma ${ }^{1}$, Anu Priya ${ }^{1}$, Manmeet Kaur ${ }^{1}$, Gurpreet Kaur ${ }^{1}$, Vivek Kumar Gupta, ${ }^{2}$ and Vikas Jaitak ${ }^{3}$
${ }^{1}$ Assistant Professor, Department of Chemistry, Akal University, Talwandi Sabo, Bathinda, Punjab-151302, India
${ }^{2}$ Post-Graduate Department of Physics, University of Jammu, Jammu Tawi-180 006, India
${ }^{3}$ Department of Pharmaceutical Sciences and Natural Products School of Health Sciences, Central University of Punjab, Bathinda, Punjab-151401, India
${ }^{4}$ Visiting Researcher, Eternal University, Baru Sahib, Himachal Pradesh - 173101, India Email: banerjeebubun@gmail.com

Received 09-28-2022
Accepted Manuscript 11-03-2022
Published on line 11-15-2022

Abstract

A simple, mild, eco-friendly, general and convenient approach has been developed for the synthesis of various trisubstituted methane derivatives via one-pot pseudo three-component reactions between one equivalent of aromatic aldehydes and two equivalents of 6-amino-uracils or dimedone respectively using a catalytic amount of mandelic acid as a low cost, commercially available, efficient organo-catalyst in aqueous ethanol at room temperature.

Keywords: 6-Amino-uracil, dimedone, mandelic acid, organocatalysis, room temperature

Introduction

The uracil skeleton is very common in naturally occurring bioactive compounds (Figure 1). ${ }^{1}$ Many drug molecules consist of uracil as an important building block (Figure 2). ${ }^{2}$ Recently, in 2021, Awad et al. [2] have synthesized some uracil nucleosides which showed better anti-herpes simplex virus 1 (anti-HSV-1) efficacy than the potent anti-viral drug acyclovir. Due to its affection to replicate the bacterial chromosome, uracil skeleton in many occasion showed significant efficacies to treat infectious diseases. ${ }^{3}$ Figure 3 represents some uracil derivatives with potent anti-cancer efficacies. ${ }^{4}$ 5-Fluorouracil is a well-known drug, which is widely used for the treatment of solid tumors like colon or breast cancer. ${ }^{4}$ Kezin et al. ${ }^{5}$ synthesized a series of 5 -substituted uracils derivatives which reported to possess a wide spectrum of biological activities. Among other uracil derivatives, 6 -amino substituted uracils have been extensively used to prepare various biological active heterocyclic scaffolds (Figure 4). ${ }^{6}$

As an anti-neoplastic agent, uracil itself has been used in combination with tegafur (a chemotherapeutic prodrug of 5 -fluorouracil) to treat various cancers, including breast, prostate, and liver cancer. ${ }^{7}$ Very recently, Ramesh et al. ${ }^{8}$ synthesized a series of bis-uracil substituted aryl methylene derivatives. In vitro study of the synthesized compounds in HIV p24 assay revealed that five compounds, shown in Figure 5, possess promising HIV-1 capsid protein inhibitory efficacy. On the other hand, bis-dimedone substituted aryl/alkyl methylene derivatives are also found to possess significant anti-oxidant and lipoxygenase inhibitory activities (Figure 6). ${ }^{9}$

After noticing the biological efficacy of both bis-uracil/dimedone substituted aryl methylene derivatives, we were motivated to synthesize such derivatives under greener conditions. In the literature, we found a few methods are available for the synthesis of 5,5'-(arylmethylene)bis(6-amino-pyrimidine$2,4(1 H, 3 H)$-diones) via one-pot pseudo three-component reactions between two equivalents of either N, N -dimethyl-6-aminouracil or 1-methyl-6-aminouracil and one equivalent of aldehydes (Table 1; entries 1-7). ${ }^{10-16}$ Whereas, 2,2'-(arylmethylene)bis(3-hydroxy-5,5-dimethylcyclohex-2-enone) derivatives were synthesized from the reactions of two equivalents of dimedone and one equivalent of aldehydes involving homogeneous as well as heterogeneous catalyst under diverse reaction conditions (Table 2). ${ }^{17-35}$

Though these reported protocols definitely have some merits but many of them are suffering in terms of green chemistry perspectives such as use of metal containing catalysts, toxic organic solvents, ionic liquids, high heating conditions, long reaction times etc. Moreover, in some cases, microwave or ultrasound irradiation was required additionally. Besides, all these reported methods are focused only on a particular scaffold i.e., either synthesis of 5,5'-(arylmethylene)bis(6-amino-pyrimidine-2,4(1H,3H)-diones) or 2,2'(arylmethylene) bis(3-hydroxy-5,5-dimethylcyclohex-2-enone) derivatives. These drawbacks motivated us to rethink and design a mild, efficient, high yielding and common method for the synthesis of both the scaffolds by using a non-toxic organocatalyst at room temperature.

III; Pacidamycin, antibiotics

V; Sansanmycin A, antibiotics

VI; Sansanmycin B, antibiotics

Figure 1. Glimpse of bioactive naturally occurring compounds bearing uracil moiety.

VII; Sofosbuvir; anti-hepatitis

X; Netivudin; anti-viral

VIII; Brivudine; anti-viral

XI; Idoxuridine; anti-viral

IX; Sorivudine; anti-viral

XII; Zidovudine; anti-HIV

Figure 2. Glimpse of commercially available drug molecules bearing uracil moiety.

XIII

XV

XIV

XVI

XVII

XVIII

Figure 3. Some uracil derivatives with potent anti-cancer efficacies.

Figure 4. Glimpse of bioactive synthetic heterocyclic compounds synthesized from 6-aminouracil as one of the important starting component.

Figure 5. Bisuracil substituted aryl methylene derivatives with promising HIV-1 capsid protein inhibitors.

XXXIV; Lipoxygenase inhibitor

XXXV; Lipoxygenase inhibitor

XXXVI; Lipoxygenase inhibitor

XXXVII; Lipoxygenase inhibitor, Antioxidant

Figure 6. Biologically active bis-dimedone substituted aryl/alkyl methylene derivatives.
Under these environmentally conscious days, metal-free organocatalysts have gained significant attention due to their environmental friendliness. ${ }^{36-45}$ Recently, our research group has explored the catalytic efficacies of mandelic acid for various organic transformations. ${ }^{46-50}$ In this communication we wish to report another simple and efficient mandelic acid catalyzed protocol for the synthesis of a series of structurally diverse tri-substituted methane derivatives viz., 5,5'-(arylmethylene)bis(6-amino-pyrimidine-2,4(1H,3H)diones) and 2,2'-(arylmethylene)bis(3-hydroxy-5,5-dimethylcyclohex-2-enones) in aqueous ethanol at room temperature (Scheme 1).

Table 1. Reported protocols for the synthesis of 5,5'-(arylmethylene)bis(6-amino-1,3-dimethylpyrimidine-2,4(1H,3H)-diones)

Entry	Catalyst (amount)	Solvent	Temp.	Time	Yield (\%) ${ }^{\text {REF }}$
1	$\mathrm{CAN}(10 \mathrm{~mol} \%)$	$\mathrm{EtOH}: \mathrm{H}_{2} \mathrm{O}$	RT	2 h	89^{10}
2	$\mathrm{NH}_{2} \mathrm{SO}_{3} \mathrm{H}(20 \mathrm{~mol} \%)$	$\mathrm{EtOH}: \mathrm{H}_{2} \mathrm{O}$	RT	3 h	87^{11}
3	-	$\mathrm{EtOH} / \mathrm{Neat}$	$80^{\circ} \mathrm{C} / \mathrm{MW}$	$5 \mathrm{~h} / 3 \mathrm{~min}$	$70 / 90^{12}$
4	-	$\mathrm{MeOH} / \mathrm{AcOH}$	RT	-	75^{13}
5	$[b m i m] B r(1.3 \mathrm{~g})$	-	$100{ }^{\circ} \mathrm{C}$	1 h	87^{14}
6	-	$\mathrm{H}_{2} \mathrm{O}$	RT	7 h	75^{15}
7	$[T M E D A]\left[\mathrm{HSO}_{4}\right]_{2}(25 \mathrm{~mol} \%)$	Neat	$120^{\circ} \mathrm{C}$	20 min	92^{16}
8	Mandelic acid (20 mol \%)	$\mathrm{EtOH}: \mathrm{H}_{2} \mathrm{O}$	RT	3 h	$91^{\text {this work }}$

$[$ TMEDA $]\left[\mathrm{HSO}_{4}\right]_{2}=N, N, N^{\prime}, N^{\prime}-$ Tetramethylethylenediaminium bisulfate

Table 2. Reported protocols for the synthesis of 2,2'-(arylmethylene)bis(3-hydroxy-5,5-dimethylcyclohex-2enones) under various reaction conditions

CTMAB = cetyltrimethyl ammonium bromide; $\mathrm{PPA}-\mathrm{SiO}_{2}=$ polyphosphoric acid supported on silica; $\mathrm{Zr}(\mathrm{DP})_{2}=$ Zirconium dodecylphosphonate, $\mathrm{THF}=$ Tetrahydrofuran, $\mathrm{C} / \mathrm{TiO}_{2}-\mathrm{SO}_{3} \mathrm{H}=$ sulfonated carbon/nano-titania, $\mathrm{ChCl}=$ Choline chloride, $\mathrm{Fe} / \mathrm{NaY}=\mathrm{Nano} \mathrm{Fe/NaY} \mathrm{zeolite} ,\mathrm{Pd}(0)-\mathrm{EDA} / \mathrm{SC}-2=$ $\operatorname{Pd}(0)$ nanoparticles onto ethylene diamine functionalized silicacellulose. alsolated yields; ${ }^{\text {b }} 4$ nitrobenzaldehyde was used instead of benzaldehyde.

Scheme 1. Mandelic acid-catalyzed synthesis of 5,5'-(arylmethylene)bis(6-amino-pyrimidine-2,4(1H,3H)diones) and 2,2'-(arylmethylene)bis(3-hydroxy-5,5-dimethylcyclohex-2-enones) at room temperature.

Results and Discussion

To optimize the reaction condition, we carried out a series of trial reactions between N, N-dimethyl- 6 aminouracil ($1,1 \mathrm{mmol}$) and freshly distilled benzaldehyde (0.5 mmol) under various reaction conditions at ambient temperature. At first, we carried out the reaction under catalyst as well solvent-free conditions which produced only trace amount of the desired product even after 6 hours of stirring at room temperature (Table 3 , entry 1). Using water a solvent, less than 20% yield was observed after 6 hours under catalyst-free conditions at room temperature (Table 3, entry 2). After getting these poor results under catalyst-free conditions we realized that a suitable catalyst is required to promote this reaction. And thus, in continuation of our strong interest with mandelic acid as catalyst, we wanted to evaluate whether mandelic acid can catalyze this reaction or not. Interestingly, when we employed $20 \mathrm{~mol} \%$ mandelic acid as catalyst under solvent-free conditions, we observed increase in the yield (59\%) of the desired product i.e., 5,5'-(phenylmethylene)bis(6-amino-1,3-dimethylpyrimidine-2,4(1H,3H)-dione) (3a) after six hours (Table 3, entry 3). Using the same amount of catalyst in water, we obtained 3a with 53% yield after six hours (Table 3, entry 4). The same reaction in acetonitrile (Table 3, entry 5) or methanol (Table 3, entry 6) as solvent afforded 62\% or 59% yields respectively after 6 hours. Slight better yield (88%) was obtained in ethanol though it took six hours (Table 3, entry 7). Interestingly, when we used aqueous-ethanol ($1: 1 \mathrm{v} / \mathrm{v}$) as solvent with the same amount of catalyst, to our surprise, the same reactions afforded 91% yield of the compound 3 a within just 3 hours. From these preliminary studies it was established that aqueous-ethanol may be the best suitable solvent to carry out this reaction. We then standardized the amount of required catalyst by maintaining other parameters remain fixed. More than 20% less product (70%) was isolated using $15 \mathrm{~mol} \%$ of mandelic acid (Table 3, entry 9). After 6 hours of stirring, the same reaction yielded 82% (Table 3, entry 10) and 54\% (Table 3, entry 11) of the desired product with $15 \mathrm{~mol} \%$ and $10 \mathrm{~mol} \%$ mandelic acid as catalyst respectively. On the other hand, no significant improvement in the yield was observed even after increasing the catalyst amount to $25 \mathrm{~mol} \%$ (Table 3, entry 12). From these results, $20 \mathrm{~mol} \%$ mandelic acids came out as an optimum catalyst for this transformation in aqueous ethanol at room temperature. We were also interested to check the catalytic efficiency of other few naturally occurring organocatalysts. The same amount of other organocatalysts viz.,
itaconic acid (Table 3, entry 13), palmitic acid (Table 3, entry 14) and shikimic acid (Table 3, entry 15) as catalyst afforded lesser yields (49-66\%) in aqueous-ethanol at room temperature after three hours of stirring.

Therefore, it was optimized that a catalytic amount of mandelic acid ($20 \mathrm{~mol} \%$) is sufficient for the efficient synthesis of 5,5'-(phenylmethylene)bis(6-amino-1,3-dimethylpyrimidine-2,4(1H,3H)-dione) (3a) from the one-pot pseudo three-component reactions between two equivalents of N, N-dimethyl-6-aminouracil (1) and one equivalent of benzaldehyde (2a) in aqueous ethanol at room temperature (Table 3, entry 8). To check the generality of our developed protocol, we were keen to synthesize a series of other derivatives of 5,5'-(arylmethylene)bis(6-amino-1,3-dimethylpyrimidine-2, $4(1 H, 3 H)$-diones) under the same optimized reaction conditions. It is our delight to mention that we were successful to synthesize four other derivatives of 5,5'-(arylmethylene)bis(6-amino-1,3-dimethylpyrimidine-2,4(1H,3H)-diones) (3b-3e) with excellent yields (89-97\%) from the reactions of N, N-dimethyl-6-aminouracil ($\mathbf{1} ; \mathbf{1} \mathbf{m m o l}$) and various substituted benzaldehydes ($\mathbf{2 b} \mathbf{- 2 e}$; 0.5 mmol) (Table 4, entries 2-5). Aldehydes with both electron withdrawing as well as donating substituent underwent smoothly and afforded the desired products with excellent yields. Instead of N, N-dimethyl-6aminouracil (1), 1-methyl-6-aminouracil (1a) is also reacted smoothly with benzaldehyde (2a) and 4fluorobenzaldehyde (2d) under the same optimized reaction conditions and afforded the desired products ($3 \mathrm{f}, 3 \mathrm{~g}$) with excellent yields ($85-90 \%$).
To extend the scope of our developed protocol, we then planned to carry out the reactions between two equivalents of dimedone ($4,1 \mathrm{mmol}$) instead of 6 -aminouracils (1) and one equivalent of substituted benzaldehydes ($\mathbf{2 a}, \mathbf{2 c}, \mathbf{2 f}-\mathrm{h}, 0.5 \mathrm{mmol}$) under the same reaction conditions which afforded the corresponding 2,2'-(arylmethylene)bis(3-hydroxy-5,5-dimethylcyclohex-2-enones) (5a-5e) with excellent yields (90-94\%) within 4.5 hours (Table 5, entries 1-5). Proposed mechanism for the synthesis of aryl-substituted bis(6-aminouracil-5-yl)methane derivatives ($\mathbf{3 a}-\mathbf{3 g}$) is shown in Figure 2.

All the synthesized compound were obtained pure just by simple filtration and washing the crude products subsequently with ethanol. No column chromatographic purification was required.

We were successful to synthesize 2,2'-(phenylmethylene)bis(3-hydroxy-5,5-dimethylcyclohex-2-enone) (5 a; $1.54 \mathrm{~g}, 84 \%$) in gram scale within 4 hours from the reactions of 10 mmol dimedone ($4 ; 1.40 \mathrm{~g}$) and freshly distilled 5 mmol benzaldehyde ($2 \mathrm{a} ; 0.53 \mathrm{~g}$) using $20 \mathrm{~mol} \%$ mandelic acid (0.15 g) in aqueous ethanol (20 ml) at room temperature. During filtration, the filtrate containing the dissolved catalyst was collected and recycled further for the same gram scale reaction without adding any catalyst which afforded the targeted compound $5 a$ in 71% yield (1.30 g). All the synthesized compounds were well characterized by the detail physical as well as spectroscopic analyses of ${ }^{1} \mathrm{H}$ NMR, ${ }^{13} \mathrm{C}$ NMR and HRMS. It is also note worthy to mention that we were able to form single crystal of two derivatives i.e., compounds 3d and 5a. ORTEP view of the compound 3d is shown in Figure 3. Figure 4 shows the packing view of molecules down a-axis within the unit cell of compound 3d. From the X-ray structure it is confirmed that the molecules in the unit cell are bound by the intermolecular N H...O hydrogen bonds (Figure 4). ORTEP view of the compound 5a is shown in Figure 5. Figure 6 shows the packing view of molecules down c-axis within the unit cell of compound $\mathbf{5 a}$.

Table 3. Optimization of reaction conditions for the synthesis of $5,5^{\prime}$-(arylmethylene)bis(6-amino-1,3-dimethylpyrimidine-2,4(1H,3H)-diones)

		catalyst reaction condition		
Entry	Catalyst (mol \%)	Solvent	Time (h)	Yield (\%) ${ }^{\text {a }}$, ${ }^{\text {b }}$
1.	Catalyst-free	neat	6	trace
2	Catalyst-free	$\mathrm{H}_{2} \mathrm{O}$	6	>20
3	Mandelic acid (20)	neat	6	56
4	Mandelic acid (20)	$\mathrm{H}_{2} \mathrm{O}$	6	73
5	Mandelic acid (20)	$\mathrm{CH}_{3} \mathrm{CN}$	6	62
6	Mandelic acid (20)	MeOH	6	59
7	Mandelic acid (20)	EtOH	6	88
8	Mandelic acid (20)	EtOH: $\mathrm{H}_{2} \mathrm{O}$ (1:1)	3	91
9	Mandelic acid (15)	EtOH: $\mathrm{H}_{2} \mathrm{O}$ (1:1)	3	70
10	Mandelic acid (15)	EtOH: $\mathrm{H}_{2} \mathrm{O}(1: 1)$	6	82
11	Mandelic acid (10)	EtOH: $\mathrm{H}_{2} \mathrm{O}$ (1:1)	6	54
12	Mandelic acid (25)	EtOH: $\mathrm{H}_{2} \mathrm{O}(1: 1)$	3	91
13	Itaconic acid (20)	EtOH: $\mathrm{H}_{2} \mathrm{O}(1: 1)$	3	66
14	Palmitic acid (20)	EtOH: $\mathrm{H}_{2} \mathrm{O}$ (1:1)	3	54
15	Shikimic acid (20)	EtOH: $\mathrm{H}_{2} \mathrm{O}$ (1:1)	3	49

${ }^{\text {a Reaction conditions: }} \mathrm{N}, \mathrm{N}$-dimethyl-6-aminouracil (1; 1 mmol) and benzaldehyde (2a; $0.5 \mathrm{mmol})$ in the absence or presence of a catalytic amount of naturally occurring organic acids in neat/4 mL of water/ethanol/methanol/acetonitrile at $28-32{ }^{\circ} \mathrm{C}$. ${ }^{\text {b }}$ Isolated yields.

Table 4. Synthesis of aryl-substituted bis(6-aminouracil-5-yl)methane derivatives ($\mathbf{3 a}-\mathbf{3 g}$) using mandelic acid as catalyst at room temperature

Entry	R	Ar	Product	Time (h)	Yield (\%) ${ }^{\text {a,b }}$	Melting point (${ }^{\circ} \mathrm{C}$)	
						Found	Reported ${ }^{\text {REF }}$
1	CH_{3}	$\mathrm{C}_{6} \mathrm{H}_{5}(2 \mathrm{a})$	3 a	3.0	91	290-293	296-299 ${ }^{15}$
2	CH_{3}	4-Cl-C66 H_{4} (2b)	3b	3.5	95	273-275	268-270 ${ }^{15}$
3	CH_{3}	4- $\mathrm{NO}_{2}-\mathrm{C}_{6} \mathrm{H}_{4}$ (2c)	3c	4.0	89	300-302	228-229 ${ }^{15}$
4	CH_{3}	4-F-C6 H_{4} (2d)	3d	4.0	97	265-267	263-265 ${ }^{10}$
5	CH_{3}	$3,4-\mathrm{OCH}_{2} \mathrm{O}-\mathrm{C}_{6} \mathrm{H}_{3}(\mathbf{2 e})$	3 e	3.0	94	232-235	236-237 ${ }^{10}$
6	H	$\mathrm{C}_{6} \mathrm{H}_{5}(2 \mathrm{a})$	3 f	4.0	90	298-300	293-295 ${ }^{10}$
7	H	4-F-C6 H_{4} (2d)	3 g	4.5	85	300-303	-

${ }^{\text {a Reaction }}$ conditions: N, N-dimethyl-6-aminouracil ($\mathbf{1} ; 1 \mathrm{mmol}$) or 1-methyl-6-aminouracil (1a; 1 mmol) and aldehydes ($\mathbf{2 a} \mathbf{- 2 e}$; 0.5 mmol) in the presence of $20 \mathrm{~mol} \%$ mandelic acid as catalyst in aqueous ethanol at $28-32^{\circ} \mathrm{C}$. ${ }^{\mathrm{b}}$ Isolated yields.

Table 5. Synthesis of 2,2'-(arylmethylene)bis(3-hydroxy-5,5-dimethylcyclohex-2-enone) (5a-5e) using mandelic acid as catalyst at room temperature

Entry	Ar	Product	Time (h)	Yield$(\%)^{\mathrm{a}, \mathrm{~b}}$	Melting point (${ }^{\circ} \mathrm{C}$)	
					Found	Reported ${ }^{\text {REF }}$
1	$\mathrm{C}_{6} \mathrm{H}_{5}(2 \mathrm{a})$	5a	4.0	92	190-191	190-192 ${ }^{22}$
2	4- $\mathrm{NO}_{2}-\mathrm{C}_{6} \mathrm{H}_{4}(2 \mathrm{c})$	5b	4.0	90	180-181	169-171 ${ }^{22}$
3	4-OMe- $\mathrm{C}_{6} \mathrm{H}_{4}$ (2f)	5c	4.0	94	141-143	142-144 ${ }^{22}$
4	$3-\mathrm{OMe}-4-\mathrm{OH}-\mathrm{C}_{6} \mathrm{H}_{3}(\mathbf{2 g})$	5d	4.5	92	215-217	191-193 ${ }^{51}$
5	3,5-diOMe-4-OH-C6 H_{2} (2h)	5 e	4.5	94	192-194	-

${ }^{\text {a }}$ Reaction conditions: dimedone ($\mathbf{4} ; 1 \mathbf{m m o l}$) and aldehydes ($\mathbf{2 a , 2 c} \mathbf{2 f} \mathbf{2 f} \mathbf{- 2 h} ; 0.5 \mathrm{mmol}$) in the presence of $20 \mathrm{~mol} \%$ mandelic acid as catalyst in aqueous ethanol at $28-32^{\circ} \mathrm{C}$. ${ }^{\text {b }}$ Isolated yields.

Figure 2. Proposed mechanism for the synthesis of aryl-substituted bis(6-aminouracil-5-yl)methane derivatives.

Figure 3. ORTEP view of the molecule 3d with displacement ellipsoids drawn at 40% probability level. Small spheres of arbitrary radii shows H (CCDC 1975999).

Figure 4. Packing view of the molecules in the unit cell viewed down the a-axis.

Figure 5. ORTEP view of the molecule 5a with displacement ellipsoids drawn at 40% probability level. Small spheres of arbitrary radii shows H (CCDC 2157455).

Figure 6. Packing arrangement of molecules viewed down the c-axis.

Experimental Section

General

Melting points were recorded on a Digital Melting Point Apparatus (Model No. MT-934) and are uncorrected. TLC was performed on silica gel 60 F254 (Merck) plates. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were obtained at 500 MHz Jeol (JNM ECX-500) NMR machines with DMSO-d ${ }_{6}$ as the solvent. Mass spectra (TOF-MS ES ${ }^{+}$) were measured on a Bruker Impact HD QTOF Micro mass spectrometer.

General procedure for the synthesis of 5,5'-(arylmethylene)bis(6-amino-pyrimidine-2,4(1H,3H)-dione) (3a$\mathbf{3 g}$) and 2,2'-(arylmethylene)bis(3-hydroxy-5,5-dimethylcyclohex-2-enone) (5a-5e). In a dry screw-cap test tube a magnetic stir bar, N, N-dimethyl-6-aminouracil (1; 1 mmol) or 1-methyl-6-aminouracil (1a; 1 mmol), substituted benzaldehydes ($\mathbf{2 a} \mathbf{- 2 e} ; 0.5 \mathrm{mmol}$), 4 mL aqueous ethanol and a catalytic amount of mandelic acid ($20 \mathrm{~mol} \%$) were taken sequentially. On a magnetic stirrer, the reaction mixture was then stirred vigorously at room temperature and it was monitored by TLC. After completion of the reaction, the white products of 5,5'-(arylmethylene)bis(6-amino-pyrimidine-2,4(1H,3H)-dione) ($\mathbf{3 a}-\mathbf{3 g}$) were isolated pure just by simple filtration and washing the crude products subsequently with ethanol. Under the same optimized reaction conditions, synthesis of 2,2'-(arylmethylene)bis(3-hydroxy-5,5-dimethylcyclohex-2-enone) (5a-5e) was achieved form the
reactions of dimedone ($\mathbf{4} ; 1 \mathrm{mmol}$) and substituted benzaldehydes ($\mathbf{2 a}, \mathbf{2 c}, \mathbf{2 f}-\mathrm{h} ; 0.5 \mathrm{mmol}$) using $20 \mathrm{~mol} \%$ mandelic acid as catalyst in aqueous ethanol at room temperature. The structures of the synthesized compounds were confirmed by ${ }^{1} \mathrm{H}$ NMR, ${ }^{13} \mathrm{C}$ NMR and HRMS analysis.
5,5'-(Phenylmethylene)bis(6-amino-1,3-dimethylpyrimidine-2,4(1H,3H)-dione) (3a). White solid, yield 91\%; ${ }^{1} \mathrm{H}$ NMR (500 MHz, DMSO- d_{6}): $\delta_{\mathrm{H}} / \mathrm{ppm} 7.36\left(4 \mathrm{H}, \mathrm{brs}, 2 \times \mathrm{NH}_{2}\right), 7.17(2 \mathrm{H}, \mathrm{t}, J=8,7.5 \mathrm{~Hz}$, aromatic H$)$, $7.05(3 \mathrm{H}$, $\mathrm{t}, \mathrm{J}=7.5,6.5 \mathrm{~Hz}$, aromatic H), $5.55(1 \mathrm{H}, \mathrm{s},-\mathrm{CH}-), 3.30\left(6 \mathrm{H}, \mathrm{s}, 2 \mathrm{x}-\mathrm{NCH}_{3}\right), 3.11\left(6 \mathrm{H}, \mathrm{s}, 2 \mathrm{x}-\mathrm{NCH}_{3}\right) ;{ }^{13} \mathrm{CNMR}(125$ MHz, DMSO- d_{6}): $\delta_{\mathrm{c}} / \mathrm{ppm} 162.99(2 \mathrm{C}), 154.93$ (2C), 150.99 (2C), 140.10, 128.22 (2C), 127.07 (2C), 125.39, 85.87 (2C), $35.79(2 \mathrm{C}), 30.51(2 \mathrm{C}), 28.54$; HRMS (ESI-TOF) m / z : For $\mathrm{C}_{19} \mathrm{H}_{22} \mathrm{~N}_{6} \mathrm{O}_{4}$ Calcd. [$\left.\mathrm{M}+\mathrm{Na}\right]^{+} 421.1600$; Found $[\mathrm{M}+\mathrm{Na}]^{+} 421.2078$.
5,5'-((4-Chlorophenyl)methylene)bis(6-amino-1,3-dimethylpyrimidine-2,4(1H,3H)-dione) (3b). White solid, yield 95\%; ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$): $\delta_{\mathrm{H}} / \mathrm{ppm} 7.35\left(4 \mathrm{H}, \mathrm{br} \mathrm{s}, 2 \times \mathrm{NH}_{2}\right), 7.20(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=9 \mathrm{~Hz}$, aromatic H), $7.80(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8 \mathrm{~Hz}$, aromatic H$), 5.52(1 \mathrm{H}, \mathrm{s},-\mathrm{CH}-), 3.29\left(6 \mathrm{H}, \mathrm{s}, 2 \times-\mathrm{NCH}_{3}\right), 3.10\left(6 \mathrm{H}, \mathrm{s}, 2 \times \mathrm{NCH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR (125 MHz, DMSO- d_{6}): $\delta_{c} /$ ppm 163.31 (2C), 155.37 (2C), 150.95 (2C), 139.32, 129.96, 129.12 (2C), 128.06 (2C), $86.58(2 \mathrm{C}), 35.46(2 \mathrm{C}), 30.53(2 \mathrm{C}), 28.52$; HRMS (ESI-TOF) m / z : For $\mathrm{C}_{19} \mathrm{H}_{21} \mathrm{ClN}_{6} \mathrm{O}_{4}$ Calcd. [M + Na] ${ }^{+} 455.1211$; Found $[\mathrm{M}+\mathrm{Na}]^{+} 455.1355$.
5,5'-((4-Nitrophenyl)methylene)bis(6-amino-1,3-dimethylpyrimidine-2,4(1H,3H)-dione) (3c). White solid, yield $89 \% ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$): $\delta_{\mathrm{H}} / \mathrm{ppm} 8.02(2 \mathrm{H}, \mathrm{d}, J=9 \mathrm{~Hz}$, aromatic H), 7.37-7.35 (6 H , m, aromatic $\mathrm{H}+2 \mathrm{x}-\mathrm{NH}_{2}$), $5.62(1 \mathrm{H}, \mathrm{s},-\mathrm{CH}-), 3.30\left(6 \mathrm{H}, \mathrm{s}, 2 \mathrm{x}-\mathrm{NCH}_{3}\right), 3.11\left(6 \mathrm{H}, \mathrm{s}, 2 \mathrm{x}-\mathrm{NCH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR ($\left.125 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}\right)$: $\delta_{\mathrm{C}} 162.57$ (2C), 154.91 (2C), 150.94 (2C), 149.45, 145.75, 128.51 (2C), 123.39 (2C), 84.74 (2C), 36.37 (2C), 30.57 (2C), 28.49; HRMS (ESI-TOF) m / z : For $\mathrm{C}_{19} \mathrm{H}_{21} \mathrm{~N}_{7} \mathrm{O}_{6}$ Calcd. [$\left.\mathrm{M}+\mathrm{Na}\right]^{+} 466.1451$; Found [$\left.\mathrm{M}+\mathrm{Na}\right]^{+} 466.1588$.
5,5'-((4-Fluorophenyl)methylene)bis(6-amino-1,3-dimethylpyrimidine-2,4(1H,3H)-dione) (3d). White solid, yield 97\%; ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$): $\delta_{\mathrm{H}} / \mathrm{ppm} 7.35\left(4 \mathrm{H}, \mathrm{br}, \mathrm{s}, 2 \times \mathrm{NH}_{2}\right), 7.09-7.06(2 \mathrm{H}, \mathrm{m}$, aromatic H), 6.96 $(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=9 \mathrm{~Hz}$, aromatic H$), 5.52(1 \mathrm{H}, \mathrm{s},-\mathrm{CH}-), 3.29\left(6 \mathrm{H}, \mathrm{s}, 2 \mathrm{x}-\mathrm{NCH}_{3}\right), 3.12\left(6 \mathrm{H}, \mathrm{s}, 2 \mathrm{x}-\mathrm{NCH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR (125 MHz, DMSO- d_{6}): $\delta_{c} /$ ppm 162.75 (2C), 154.91, 150.94 (2C), 149.45 (2C), 145.75, 128.91 (2C), 123.39 (2C), 84.74 (2C), 36.37 (2C), 30.94 (2C), 28.51; HRMS (ESI-TOF) m / z : For $\mathrm{C}_{19} \mathrm{H}_{21} \mathrm{FN}_{6} \mathrm{O}_{4}$ Calcd. [M + Na] 439.1506 ; Found [M $+\mathrm{Na}]^{+} 439.1668$.
5,5'-(Benzo[d][1,3]dioxol-5-ylmethylene)bis(6-amino-1,3-dimethylpyrimidine-2,4(1H,3H)-dione) (3e). White solid, yield 94\%; ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$): $\delta_{\mathrm{H}} / \mathrm{ppm} 7.37\left(4 \mathrm{H}, \mathrm{br} s, 2 \mathrm{x}-\mathrm{NH}_{2}\right), 6.68(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8 \mathrm{~Hz}$, aromatic H), $6.62\left(1 \mathrm{H}, \mathrm{s}\right.$, aromatic H), 6.53-6.50(1H, m, aromatic H), $5.91\left(2 \mathrm{H}, \mathrm{s},-\mathrm{CH}_{2}\right), 5.47(1 \mathrm{H}, \mathrm{s},-\mathrm{CH}-), 3.28(6 \mathrm{H}, \mathrm{s}, 2$ $\mathrm{x}-\mathrm{NCH}_{3}$), $3.11\left(6 \mathrm{H}, \mathrm{s}, 2 \times \mathrm{NCH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}$): $\delta_{\mathrm{c}} / \mathrm{ppm} 161.62$ (2C), 155.00 (2C), 150.98 (2C), 147.60, 145.16, 134.09, 119.53, 108.09, 107.87, 101.02, 85.85 (2C), 35.56 (2C), 30.48 (2C), 28.48; HRMS (ESITOF) m / z : For $\mathrm{C}_{20} \mathrm{H}_{22} \mathrm{~N}_{6} \mathrm{O}_{6}$ Calcd. $[\mathrm{M}+\mathrm{Na}]^{+} 465.1499$; Found [M + Na] ${ }^{+} 465.1696$.
5,5'-(Phenylmethylene)bis(6-amino-1-methylpyrimidine-2,4(1H,3H)-dione) (3f). White solid, yield 90%; ${ }^{1} \mathrm{H}$ NMR (500 MHz, DMSO- d_{6}): $\delta_{H} /$ ppm 10.82-10.65 (1H, m, NH), $10.29(1 \mathrm{H}, \mathrm{s},-\mathrm{NH}), 7.27(2 \mathrm{H}, \mathrm{br}$ s, NH 2), 7.16 (1 H , $\mathrm{t}, \mathrm{J}=8,7 \mathrm{~Hz}$, aromatic H$), 7.06(2 \mathrm{H}, \mathrm{d}, J=7.5,6.5 \mathrm{~Hz}$, aromatic H$), 6.77-6.74\left(3 \mathrm{H}, \mathrm{m}\right.$, aromatic $\left.\mathrm{H}+-\mathrm{NH}_{2}\right), 5.41$ $(1 \mathrm{H}, \mathrm{s},-\mathrm{CH}-), 4.50(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=1.5 \mathrm{~Hz}), 3.22\left(3 \mathrm{H}, \mathrm{s},-\mathrm{NCH}_{3}\right), 3.13\left(3 \mathrm{H}, \mathrm{s},-\mathrm{NCH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$): $\delta_{\text {c/ppm }} 162.86$ (2C), 156.90 (2C), 151.81 (2C), 150.65, 140.18, 128.15 (2C), 127.08, 125.37, 75.69 (2C), 34.47, 28.74 (2C); HRMS (ESI-TOF) m / z : For $\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{~N}_{6} \mathrm{O}_{4} \mathrm{Calcd}$. $[\mathrm{M}+\mathrm{Na}]^{+} 393.1287$; Found [$\left.\mathrm{M}+\mathrm{Na}\right]^{+} 393.1441$.

5,5'-((4-Fluorophenyl)methylene)bis(6-amino-1-methylpyrimidine-2,4(1H,3H)-dione) (3g). White solid, yield 85%; ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{DMSO}_{6}$): $\delta_{\mathrm{H}} / \mathrm{ppm} 10.83-10.67(1 \mathrm{H}, \mathrm{m}, \mathrm{NH}), 10.30(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{NH}), 7.28(2 \mathrm{H}, \mathrm{br} \mathrm{s},-$ $\left.\mathrm{NH}_{2}\right), 7.06(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=5.5,2.5 \mathrm{~Hz}$, aromatic H$), 6.97(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=9,8.5 \mathrm{~Hz}$, aromatic H$), 6.77-6.71(3 \mathrm{H}, \mathrm{m}$, aromatic $\left.\mathrm{H}+-\mathrm{NH}_{2}\right), 5.37(1 \mathrm{H}, \mathrm{s},-\mathrm{CH}-), 4.50\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=2 \mathrm{~Hz}, \mathrm{NH}_{2}\right), 3.21\left(3 \mathrm{H}, \mathrm{s},-\mathrm{NCH}_{3}\right), 3.13\left(3 \mathrm{H}, \mathrm{s},-\mathrm{NCH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR (125 MHz, DMSO-d ${ }_{6}$: $\delta c 162.85$ (2C), 161.61, 161.53, 159.70, 156.89, 151.81, 150.62, 136.09, 128.84, 114.61(2C),
75.69 (2C), 39.95, 28.74 (2C); HRMS (ESI-TOF) m / z : ForC ${ }_{17} \mathrm{H}_{17} \mathrm{FN}_{6} \mathrm{O}_{4}$ Calcd. $[\mathrm{M}+\mathrm{Na}]^{+} 411.1193$; Found $\left[\mathrm{M}+\mathrm{Na}^{+}\right.$ 411.1317.

2,2'-(Phenylmethylene)bis(3-hydroxy-5,5-dimethylcyclohex-2-enone) (5a). White solid, yield $92 \% ;{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta_{\mathrm{H}} / \mathrm{ppm} 11.90(1 \mathrm{H}, \mathrm{s}, \mathrm{OH}), 11.56(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{OH}), 7.27-7.23(2 \mathrm{H}, \mathrm{m}$, aromatic H$), 7.17-7.15(1 \mathrm{H}$, m , aromatic H), $7.09-7.08(2 \mathrm{H}, \mathrm{m}$, aromatic H$), 5.53(1 \mathrm{H}, \mathrm{s},-\mathrm{CH}-), 2.46-2.29\left(8 \mathrm{H}, \mathrm{m},-\mathrm{CH}_{2}-\right), 1.24(6 \mathrm{H}, \mathrm{s}, 2 \mathrm{X}-$ $\left.\mathrm{CH}_{3}\right), 1.22\left(6 \mathrm{H}, \mathrm{s}, 2 \mathrm{X}-\mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta \mathrm{c} / \mathrm{ppm} 190.58(2 \mathrm{C}), 189.50(2 \mathrm{C}), 138.12,128.30(2 \mathrm{C})$, $126.85(2 \mathrm{C}), 125.93,115.66(2 \mathrm{C}), 47.12(2 \mathrm{C}), 46.51(2 \mathrm{C}), 32.81,31.49(2 \mathrm{C}), 29.78$ (2C), 27.46 (2C); HRMS (ESITOF) m / z : For $\mathrm{C}_{23} \mathrm{H}_{28} \mathrm{O}_{4}$ Calcd. [M] ${ }^{+} 368.1988$; Found [$\left.\mathrm{M}-\mathrm{H}\right]^{-} 367.2760$.
2,2'-((4-Nitrophenyl)methylene)bis(3-hydroxy-5,5-dimethylcyclohex-2-enone) (5b). White solid, yield 90\%; ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta_{\mathrm{H}} / \mathrm{ppm} 11.78(1 \mathrm{H}, \mathrm{s},-\mathrm{OH}), 11.57(1 \mathrm{H}, \mathrm{br} s,-\mathrm{OH}), 8.13(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.2,1.2 \mathrm{~Hz}$, aromatic), $7.24\left(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=8.4,6 \mathrm{~Hz}\right.$, aromatic), $5.53(1 \mathrm{H}, \mathrm{s},-\mathrm{CH}-), 2.49-2.31\left(8 \mathrm{H}, \mathrm{m}, 4 \mathrm{x}-\mathrm{CH}_{2}\right), 1.22\left(6 \mathrm{H}, \mathrm{s}, 2 \mathrm{x}-\mathrm{CH}_{3}\right), 1.10$ ($6 \mathrm{H}, \mathrm{s}, 2 \mathrm{x}-\mathrm{CH}_{3}$); ${ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta_{\mathrm{c}} 191.08$ (2C), 189.72 (2C), 146.67, 146.29, 127.82 (2C), 123.67 (2C), 115.06 (2C), 47.14 (2C), 46.55 (2C), 33.39, 31.61 (2C), 29.67 (2C), 27.60 (2C); HRMS (ESI-TOF) m/z: For $\mathrm{C}_{23} \mathrm{H}_{27} \mathrm{NO}_{6}$ Calcd. $[\mathrm{M}]^{+} 413.1838$; Found $[\mathrm{M}+\mathrm{H}]^{+} 414.1401$.
2,2'-((4-Methoxyphenyl)methylene)bis(3-hydroxy-5,5-dimethylcyclohex-2-enone) (5c). White solid, yield $94 \% ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta_{\mathrm{H}} / \mathrm{ppm} ; 11.91(1 \mathrm{H}, \mathrm{s},-\mathrm{OH}), 11.58(1 \mathrm{H}, \mathrm{br} \mathrm{s},-\mathrm{OH}), 6.99(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=9 \mathrm{~Hz}$, aromatic H), $6.80\left(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.5 \mathrm{~Hz}\right.$, aromatic H), $5.47(1 \mathrm{H}, \mathrm{s},-\mathrm{CH}-), 3.76\left(3 \mathrm{H}, \mathrm{s},-\mathrm{OCH}_{3}\right), 2.46-2.28(8 \mathrm{H}, \mathrm{m}, 4 \mathrm{x}-$ $\left.\mathrm{CH}_{2}\right), 1.22\left(6 \mathrm{H}, \mathrm{s}, 2 \mathrm{x}-\mathrm{CH}_{3}\right), 1.09\left(6 \mathrm{H}, \mathrm{s}, 2 \mathrm{x}-\mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta_{\mathrm{c}} / \mathrm{ppm} ; 190.53(2 \mathrm{C}), 189.48(2 \mathrm{C})$, $157.65,129.88,127.88(2 \mathrm{C}), 115.88$ (2C), 113.72 (2C), 55.30, 47.14(2C), 46.51 (2C), 32.10, 31.47 (2C), 29.80 (2C), 27.44 (2C). HRMS (ESI-TOF) m / z : For $\mathrm{C}_{24} \mathrm{H}_{30} \mathrm{O}_{5}$ Calcd. [M] ${ }^{+} 398.2093$; Found [M - H] 397.1967.
2,2'-((4-Hydroxy-3-methoxyphenyl)methylene)bis(3-hydroxy-5,5-dimethylcyclohex-2-enone) (5d). White solid, yield 92\%; ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta_{\mathrm{H}} / \mathrm{ppm} ; 11.97(1 \mathrm{H}, \mathrm{s},-\mathrm{OH}), 11.61(1 \mathrm{H}, \mathrm{br} \mathrm{s},-\mathrm{OH}), 6.80(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8$ Hz , aromatic H), $6.60(1 \mathrm{H}, \mathrm{s}$, aromatic H$), 6.57(1 \mathrm{H}, \mathrm{d}, J=8.5 \mathrm{~Hz}$, aromatic H$), 5.48(1 \mathrm{H}, \mathrm{s},-\mathrm{CH}-), 5.46(3 \mathrm{H}, \mathrm{s},-$ $\mathrm{OH}), 3.76\left(3 \mathrm{H}, \mathrm{s},-\mathrm{OCH}_{3}\right), 2.42-2.33\left(8 \mathrm{H}, \mathrm{m}, 4 \mathrm{x}-\mathrm{CH}_{2}\right), 1.22\left(6 \mathrm{H}, \mathrm{s}, 2 \mathrm{x}-\mathrm{CH}_{3}\right), 1.10\left(6 \mathrm{H}, \mathrm{s}, 2 \mathrm{x}-\mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR (125 $\mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta_{\mathrm{c}} / \mathrm{ppm} ; 190.50(2 \mathrm{C}), 189.45$ (2C), 146.33, 143.61, 129.83, 119.58, 115.86, 114.11, 109.80 (2C), 55.73, 47.15 (2C), 46.46 (2C), 32.39, 31.33 (2C), 29.99 (2C), 27.16 (2C). HRMS (ESI-TOF) m/z: For $\mathrm{C}_{24} \mathrm{H}_{30} \mathrm{O}_{6}$ Calcd. [M] ${ }^{+} 414.2042$; Found [$\left.\mathrm{M}-\mathrm{H}\right]^{-} 413.1761$.
2,2'-((4-Hydroxy-3,5-dimethoxyphenyl)methylene)bis(3-hydroxy-5,5-dimethylcyclohex-2-enone) (5e). White solid, yield $94 \% ;{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta_{\mathrm{H}} / \mathrm{ppm} 12.01(1 \mathrm{H}, \mathrm{s},-\mathrm{OH}), 11.61(1 \mathrm{H}, \mathrm{br} \mathrm{s}, 2-\mathrm{OH}), 6.33(2 \mathrm{H}, \mathrm{s}$, aromatic H), $5.48(1 \mathrm{H}, \mathrm{s},-\mathrm{CH}-), 5.34(1 \mathrm{H}, \mathrm{s},-\mathrm{OH}), 3.76\left(6 \mathrm{H}, \mathrm{s}, 2 \mathrm{x}-\mathrm{OCH}_{3}\right), 2.44-2.34\left(8 \mathrm{H}, \mathrm{m}, 4 \mathrm{x}-\mathrm{CH}_{2}\right), 1.23(6 \mathrm{H}, \mathrm{s}$, $\left.2 \mathrm{x}-\mathrm{CH}_{3}\right), 1.10\left(6 \mathrm{H}, \mathrm{s}, 2 \mathrm{x}-\mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta_{\mathrm{c}} / \mathrm{ppm} 196.49$ (2C), 189.44 (2C), 146.91 (2C), $132.82,129.21,115.83$ (2C), 104.03 (2C), 56.17 (2C), 47.26 (2C), 46.48 (2C), 32.68, 31.26 (2C), 30.15 (2C), 26.96 (2C); HRMS (ESI-TOF) m / z : For $\mathrm{C}_{25} \mathrm{H}_{32} \mathrm{O}_{7}$ Calcd. [$\left.\mathrm{M}+\mathrm{Na}\right]^{+} 467.2046$; Found [$\left.\mathrm{M}+\mathrm{Na}\right]^{+} 467.1732$.

Conclusions

In conclusion, we have developed a simple, facile, efficient and general method for the synthesis of 5,5'-(arylmethylene)bis(6-amino-pyrimidine-2,4(1H,3H)-diones) via one-pot pseudo three-component reactions between two equivalents of either N, N-dimethyl-6-aminouracil or 1-methyl-6-aminouracil and one equivalent of aldehydes using a catalytic amount of mandelic acid as catalyst in aqueous ethanol at room temperature. Under the same optimized conditions, reactions between two equivalents of dimedone and one equivalent of aromatic aldehydes afforded the corresponding 2,2'-(arylmethylene)bis(3-hydroxy-5,5-dimethylcyclohex-2enone) derivatives in excellent yields. Mild reaction conditions, use of naturally occurring commercially
available low cost organocatalyst, environmentally benign solvent, high yields, short reaction times, gram scale production and column chromatography-free purification procedure are some of the major advantages of this developed protocol.

Acknowledgements

Dr. B. Banerjee is thankful to the Akal University, Talwandi Sabo, Bathinda, Punjab, India and the Kalgidhar Trust, Baru Sahib, Himachal Pradesh, India for the support. Authors are grateful to AMRC, IIT Mandi, Himachal Pradesh, India for the spectral measurements such as ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR and HRMS data.

Supplementary Material

Scanned ${ }^{1} \mathrm{H}-\mathrm{NMR},{ }^{13} \mathrm{C}$-NMR and HRMS spectra of all the synthesized scaffolds are supplemented in supporting information.

References

1. Arbour, C. A.; Imperialli, B. Uridine Natural Products: Bioorg. Med. Chem. 2020, 28, 115661. https://doi:10.1016/i.bmc.2020.115661
2. Awad, S. M.; Ali, S. M.; Mansour, Y. E.; Fatahala, S. S. Molecules 2021, 26, 2988. https:// https://doi.org/10.3390/molecules26102988
3. Meshcheryakova, S.; Shumadalova, A.; Beylerli, O.; Gareev, I.; Zhao, S.; Wu, J. Drug Dev. Res. 2022, 83, 578.
4. Sanduja, M.; Gupta, J.; Singh, H.; Pagare, P. P.; Rana, A. J. Saudi Chem. Soc. 2020, 24, 251.
https://doi.org/10.1016/j.jscs.2019.12.001
5. Kezin, V. A.; Matyugina, E. S.; Novikov, M. S.; Chizhov, A. O.; Snoeck, R.; Andrei, G.; Kochetkov, S. N.; Khandazhinskaya, A. L. Molecules 2022, 27, 2866.
https://doi.org/10.3390/molecules27092866
6. Singh, A.; Kaur, B.; Sharma, A.; Priya, A.; Kaur, M.; Shamim, M.; Banerjee, B. Phy. Sci. Rev. 2022, (in press) https://doi.org/10.1515/psr-2021-0098
7. Cubero, D. I. G.; Cruz, F. M.; Santi, P.; Silva, I. D. C. G.; del Giglio, A. Ther. Adv. Med. Oncol. 2012, 4, 167. https://doi.org/10.1177/1758834012441049
8. Ramesh, D.; Mohanty, A. K.; De, A.; Vijaykumar, B. G.; Sethumadhavan, A.; Muthuvel, S. K.; Mani, M.; Kannan, T. RSC Adv. 2022, 12, 17466. https://doi.org/10.1039/D2RA02450K
9. Maharvi, G. M.; Ali, S.; Riaz, N.; Afza, N.; Malik, A.; Ashraf, M.; Iqbal, L.; Lateef, M. J. Enzyme Inhib. Med. Chem. 2008, 23, 62.
https://doi.org/10.1080/14756360701408754
10. Goutam, B.; Banerjee, B. RSC Adv. 2015, 5, 39263.
https://doi.org/10.1039/C5RA04723D
11. Banerjee, B.; Brahmachari, G. Curr. Organocatal. 2016, 3, 125.
https://doi.org/10.2174/2213337202666150812231130
12. Azizian, J.; Mohammadizadeh, M. R.; Teimouri, F.; Mohammadi, A. A.; Karimi, A. R. Synth. Commun. 2006, 36, 3631. https://doi.org/10.1080/00397910600943832
13. Bansal, R.; Kumar, R. S.; Kumar, G.; Thota, S.; Thamotharan, S.; Parthasarathi V.; Linden, A. J. Heterocycl. Chem. 2008, 45, 1789. https://doi.org/10.1002/ihet. 5570450636
14. Ayoob, B.; Azimi, S. C. Iran. J. Catal. 2013, 3, 21.
15. Das, S.; Thakur, A. J. Eur. J. Org. Chem. 2011, 12, 2301. https://doi.org/10.1002/ejoc.201001581
16. Zare, A.; Ghobadpoor, A.; Safdari, T. Res. Chem. Intermed. 2020, 46, 1319. https://doi.org/10.1007/s11164-019-04036-3
17. Ren, Z.; Cao, W.; Tong, W.; Jing, X. Synth. Commun. 2002, 32, 1947. https://doi.org/10.1081/SCC-120004844
18. Kantevari, S.; Bantu, R.; Nagarapu, L. J. Mol. Catal. A Chem. 2007, $269,53$.
https://doi.org/10.1016/j.molcata.2006.12.039
19. Vaid, R.; Gupta, M.; Kant, R.; Gupta, V. K. J. Chem. Sci. 2016, 128, 967.
https://doi.org/10.1007/s12039-016-1088-y
20. Cravotto, G.; Demetri, A.; Nano, G. M.; Palmisano, G.; Penoni, A.; Tagliapietra, S. Eur. J. Org. Chem. 2003, 2003, 4438.
https://doi.org/10.1002/ejoc. 200300369
21. Zhang, Y.; Sun, C.; Liang, J.; Shang Z. Chin. J. Chem. 2010, 28, 2255. https://doi.org/10.1002/cjoc. 201090373
22. Zhang, Y.; Shang, Z. Chin. J. Chem. 2010, 28, 118 https://doi.org/10.1002/cjoc.201090373
23. Heravi, M. R. P.; Piri, S. J. Chem. 2012, 2013, 1. https://doi.org/10.1155/2013/652805
24. Sapkal, B. M.; Labhane, P. K.; Satam, J. R. Res. Chem. Intermed. 2017, 43, 4967. https://doi.org/10.1007/s11164-017-2924-5
25. Vajara, S.; Mokhtary, M. Polycycl. Aromat. Compd. 2019, 39, 111.
26. Kour, M.; Paul, S. New J. Chem. 2015, 39, 6338.
https://doi.org/10.1039/C5NJ00607D
27. Bhattacharjee, D.; Sheet, S. K.; Khatua, S.; Biswas, K.; Joshi, S.; Myrboh, B. Bioorg. Med. Chem. 2018, 26, 5018. https://doi.org/10.1016/j.bmc.2018.08.033
28. Maharvi, G. M.; Ali, S.; Riaz, N.; Afza, N.; Malik, A.; Ashraf, M.; Iqbal, L.; Lateef, M. J. Enzyme Inhib. Med. Chem. 2008, 23, 62. https://doi.org/10.1080/14756360701408754
29. Khan, K. M.; Maharvi, G. M.; Khan, M. T. H.; Shaikh, A. J.; Perveen, S.; Begun, S.; Choudhary, M. I. Bioorg. Med. Chem. 2006, 14, 344.
https://doi.org/10.1016/j.bmc.2005.08.029
30. Maghsoodlou, M. T.; Habibi-Khorassani, S. M.; Shahkarami, Z.; Maleki, N.; Rostamizadeh, M. Chin. Chem. Lett. 2010, 21, 686.
31. Azizi, N.; Dezfooli, S.; Hashemi, M. C. R. Chim. 2013, 16, 997.
https://doi.org/10.1016/j.crci.2013.05.002
32. Tajbakhsh, M.; Heidary, M.; Hosseinzadeh, R. Res. Chem. Intermed. 2016, 42, 1425. https://doi.org/10.1007/s11164-015-2094-2
33. Ilangovan, A.; Malayappasamy, S.; Muralidharan, S.; Maruthamuthu. S. Chem. Cent. J. 2011, 5, 81. https://doi.org/10.1186/1752-153X-5-81
34. Rao, V. K.; Kumar, M. M.; Kumar, A. Indian J. Chem. 2011, 50B, 1128.
35. Bhardwaj, M.; Sahi, S.; Mahajan, H.; Paul, S.; Clark, J. H. J. Mol. Catal. 2015, 408, 48. https://doi.org/10.1016/j.molcata.2015.07.005
36. Banerjee, B. Curr. Org. Chem. 2018, 22, 208. https://doi.org/10.2174/1385272821666170703123129
37. Banerjee, B.; Kaur, G.; Kaur, N. Curr. Org. Chem. 2021, 25, 209. https://doi.org/10.2174/1385272824999201019162655
38. Banerjee, B.; Bhardwaj, V.; Kaur, A.; Kaur, G.; Singh, A. Curr. Org. Chem. 2020, 23, 3191. https://doi.org/10.2174/1385272823666191121144758
39. Kaur, M.; Priya, A.; Sharma, A.; Singh, A.; Banerjee, B. Synth. Commun. 2022, 52, 1635. https://doi.org/10.1080/00397911.2022.2090262
40. Sharma, A.; Singh, A.; Priya, A.; Kaur, M.; Gupta, V. K.; Jaitak, V.; Banerjee, B. Synth. Commun. 2022, 52, 1614.
https://doi.org/10.1080/00397911.2022.2101378
41. Banerjee, B.; Priya, A.; Sharma, A.; Kaur, G.; Kaur, M. Phys. Sci. Rev. 2022, 7, 539.
https://doi.org/10.1515/psr-2021-0080
42. Kaur, G.; Moudgil, R.; Shamim, M.; Gupta, V. K.; Banerjee, B. Synth. Commun. 2021, 51, 1100. https://doi.org/10.1080/00397911.2020.1870043
43. Kaur, G.; Singh, A.; Kaur, N.; Banerjee, B. Synth. Commun 2021, 51, 112. https://doi.org/10.1080/00397911.2021.1873383
44. Kaur, G.; Singh, D.; Singh, A.; Banerjee, B. Synth. Commun. 2021, 51, 1045. https://doi.org/10.1080/00397911.2021.1873383
45. Banerjee, B.; Singh, A.; Kaur, G. Phys. Sci. Rev. 2022, 7, 301. https://doi.org/10.1515/psr-2021-0021
46. Kaur, G.; Singh, A.; Bala, K.; Devi, M.; Kumari, A.; Devi, S.; Devi, R.; Gupta, V.K.; Banerjee, B. Curr. Org. Chem. 2019, 23, 1778. https://doi.org/10.2174/13852728226666190924182538
47. Singh, A.; Kaur, G.; Kaur, A.; Gupta, V. K.; Banerjee, B. Curr. Green Chem. 2020, 7, 128. https://doi.org/10.2174/2213346107666200228125715
48. Kaur, G.; Shamim, M.; Bhardwaj, V.; Gupta, V. K.; Banerjee, B. Synth. Commun. 2020, 50, 1545. https://doi.org/10.1080/00397911.2020.1745844
49. Kaur, G.; Kumar, R.; Saroch, S.; Gupta, V. K.; Banerjee, B. Curr. Organocatal. 2020, 8, 147. https://doi.org/10.2174/2213337207999200713145440
50. Sharma, A.; Kaur, G.; Singh, D.; Gupta, V. K.; Banerjee, B. Curr. Organocatal. 2022, 9, 53.
51. Vaid, R. ; Gupta, M. ; Kant, R. ; Gupta, V. K.; J. Chem. Sci. 2016, 128, 967. https://doi.org/10.1007/s12039-016-1088-y

This paper is an open access article distributed under the terms of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/)

