Supplementary Material

Synthesis of novel imidazopyridine-oxadiazole molecular hybrids by a regioselective sulfenylation of imidazo[1,2-*a*]pyridines with 1,3,4oxadiazole-2-thiols using I₂-FeCl₃ catalytic system and O₂/air as cooxidant

Kartik Dutta,^{a,b} Nisha Kushwah,^c Amey P. Wadawale,^c and Sunil K. Ghosh^{*a,b}

^aBio-Organic Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085 ^bHomi Bhabha National Institute, Anushaktinagar, Mumbai 400094 ^cChemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai-400085, India Email: <u>ghsunil@barc.gov.in</u>

Table of Contents

1. General procedure for synthesis imidazo[1,2-a]pyridine 1a-h	S2
2. General procedure for synthesis 2a-I	S2
3. Characterization data for 2b , 2d and 2i	S2
4. X-ray crystallographic Characterization of compound 3c	S3
5. ¹ H and ¹³ C NMR spectra	S5
6. References	S24

1. General procedure for synthesis imidazo[1,2-a]pyridine derivatives 1a-h

Following the reported procedure,¹ sodium bicarbonate (1.6 g, 20 mmol) was added to a stirred solution of 2-bromoacetophenone derivatives (10 mmol) and 2-aminopyridine derivatives (10 mmol) in 50 mL of acetonitrile and the mixture was refluxed for 2 h. After completion of reaction as monitored by TLC, the reaction mixture was diluted with water and extracted with ethyl acetate. The organic phase was then dried over anhydrous Na₂SO₄, filtered, and concentrated under reduced pressure. The resulting crude product was purified by silica gel column chromatography using petroleum ether and ethyl acetate as the eluent to afford pure **1a-h**. Spectroscopic data for **1a**, f^2 ; **1b-e**³ and **1g**, h^4 were similar as reported.

2. General procedure for synthesis 2a-i

Following the reported procedure,⁵ a vigorously stirred solution of appropriately substituted carboxy benzohydrazide (10 mmol) in 30 mL absolute ethanol was basified with potassium hydroxide (10 mmol) until a solid precipitate came out. Carbon disulphide (15 mmol) was added to the mixture and refluxed for 6 h. After completion of the reaction as verified by TLC, ethanol was removed under vacuum. Then sticky mass was diluted with cold water and acidified with 0.5 M HCL to maintain pH = 3-4. The precipitated crude product was filtered, washed with water and air dried. Recrystallization from ethanol gave pure **2a-i** in 68-75% yield. Spectroscopic data for **2a,c**⁵ and **2e-h**⁵ were similar as reported.

Scheme S1 synthesis of 1,3,4-oxadiazole-2-thiols 2a-i

3. Characterization data for 2b, 2d and 2i

5-phenyl-1,3,4-oxadiazole-2-thiol (2b) White solid (1.3 g, 75% yield); mp 202.2 – 221.9 °C; ¹H NMR (300 MHz, DMSO- d_6) δ (ppm) 7.86 (d, J = 6.9 Hz, 2 H), 7.62–7.55 (m, 3 H); ¹³C NMR (75

MHz, DMSO-*d*₆) δ (ppm) 177.8, 160.9, 132.7, 129.9, 126.5, 122.9; Elemental Anal. Calcd. for C₈H₆N₂OS C, 53.92; H, 3.39; N, 15.72; S, 17.99%. Found C, 54.25; H, 3.52; N, 15.69; S, 18.24%.

5-(3,4,5-trimethoxyphenyl)-1,3,4-oxadiazole-2-thiol (2d) White solid (1.9 g, 71% yield); mp 185.6- 186.9 °C; ¹H NMR (300 MHz, DMSO- d_6) δ (ppm) 7.09 (s, 2 H), 3.85 (s, 6 H), 3.73 (s, 3.09); NMR (75 MHz, DMSO- d_6) δ (ppm) 177.7, 160.8, 153.9, 141.2, 117.9, 103.8, 60.7, 56.6; Elemental Anal. Calcd. for C₁₁H₁₂N₂O₄S C, 49.25; H, 4.51; N, 10.44; S, 11.95%. Found C, 49.25; H, 4.37; N, 10.31; S, 12.26%.

5-(4-nitrophenyl)-1,3,4-oxadiazole-2-thiol (2i) Yellow solid (1.5 g, 68% yield); mp 190.1-191.9 °C; ¹H NMR (300 MHz, DMSO- d_6) δ (ppm) 8.37 (d J = 8.7 Hz 2 H), 8.10 (d J = 8.7 Hz 2 H); NMR (75 MHz, DMSO- d_6) δ (ppm) 178.1, 159.3, 149.6, 128.5, 127.9, 125.0; Elemental Anal. Calcd. for C₈H₅N₃O₃S C, 43.05; H, 2.26; N, 18.83; S, 14.36%. Found C, 43.18; H, 2.54; N, 18.70; S, 14.67%.

3. X-ray crystallographic Characterization of compound 3c

CCDC number 2184609	
Empirical formula	$C_{22}H_{16}N_4OS$
Formula weight	384.45
Temperature [K]	298(2)
Crystal system	orthorhombic
Space group (number)	P2 ₁ 2 ₁ 2 ₁ (19)
<i>a</i> [Å]	8.3230(3)
<i>b</i> [Å]	10.8098(3)
<i>c</i> [Å]	20.8096(6)
α [Å]	90
β [Å]	90
γ [Å]	90
Volume [ų]	1872.24(10)
Ζ	4
$ ho_{calc}$ [g/cm ³]	1.364

μ [mm ⁻¹]	1.699
F(000)	800
Crystal size [mm ³]	0.150×0.050×0.050
Crystal colour	colorless
Crystal shape	needle
Radiation	Cu <i>K_α</i> (λ=1.54184 Å)
2⊖ range [°]	9.22 to 153.70 (0.79 Å)
Index ranges	-9 ≤ h ≤ 10 -13 ≤ k ≤ 13 -24 ≤ l ≤ 26
Reflections collected	29635
Independent reflections	3791 R _{int} = 0.1362 R _{sigma} = 0.0653
Completeness to $\theta = 67.684^{\circ}$	99.9 %
Data / Restraints / Parameters	3791/0/256
Goodness-of-fit on F^2	1.008
Final <i>R</i> indexes [/≥2σ(/)]	$R_1 = 0.0432$ w $R_2 = 0.1008$
Final <i>R</i> indexes [all data]	$R_1 = 0.0629$ w $R_2 = 0.1150$
Largest peak/hole [eų]	0.15/-0.23
Flack X parameter	-0.02(3)
Extinction coefficient	0.0021(5)

4. ¹H & ¹³C NMR Spectra

210 200 190 180 170 160 150 140 130 120 110 100

ppm

30

20

40

70

60 50

90 80

Figure S4. ¹³C NMR spectrum of 3b

Page S9

Figure S10. ¹³C NMR spectrum of 3e

Figure S12. ¹³C NMR spectrum of 3f

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 ppm

Figure S14. ¹³C NMR spectrum of 3g

Figure S16. ¹³C NMR spectrum of 3h

Br

3h

Figure S18. ¹³C NMR spectrum of 4a

Figure S20. ¹³C NMR spectrum of 4b

Figure S22. ¹³C NMR spectrum of 4c

Figure S26. ¹³C NMR spectrum of 4e

Figure S30. ¹³C NMR spectrum of 4g

Figure S32. ¹³C NMR spectrum of 2b

Figure S36. ¹³C NMR spectrum of 2i

5. References

- 1. Santaniello, B. S.; Price, M. J.; Murray, J. K. *J. Chem. Educ.* **2017**, *94*, 388-391. <u>https://doi.org/10.1021/acs.jchemed.6b00286</u>
- 2. Zhang, Y.; Chen, Z.; Wu, W.; Zhang, Y.; Su, W. *J. Org. Chem.* **2013**, *78*, 12494-12504. <u>https://doi.org/10.1021/jo402134x</u>
- 3. Okai, H.; Tanimoto, K.; Ohkado, R.; Lida, H. *Org. Lett.* **2020**, *20*, 8002-8006. <u>https://doi.org/10.1021/acs.orglett.0c02929</u>
- 4. Veer, B.; Singh, R. *Proc. R. Soc.* **475** A: 20190238. http://dx.doi.org/10.1098/rspa.2019.0238
- 5. Upadhyay, P. K.; Mishra, P. Pak. J. Pharm. Sci. **2019**, 32, 1025-1032 https://scholar.google.co.in/scholar?cluster=7970997639781650167&hl=en&as sdt=0,5 &as vis=1