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Abstract 

Personalized medicine applied to patients with complex diseases, like cancer, grants a better quality of life and 

longer survival. However, in most instances it is not curative, due to the onset of two main obstacles represented 

by undesired toxicity and/or drug resistance, which contribute to a different extent depending upon the 

inhibition mechanism. In this short commentary, we try to combine the idea of multi-targeting agents with an 

Artificial Intelligence platform to further improve patients’ treatment and allowing them to be cured or live 

essentially disease-free. 
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1. Introduction 
 

Cancer is a leading cause of death. Worldwide, an estimated 19.3 million new cancer cases and 10.0 million 

cancer deaths occurred in 2020. The global cancer burden is expected to reach 28.4 million cases in 2040, a 47% 

rise from 2020, which might get even worse due to increasing risk factors associated with globalization and a 

growing economy.1,2 Figures that deserve in-depth reflection and make us feel inadequate, especially if we are 

scientists committed to contribute to the field of oncologic medicinal chemistry and pharmacology. This does 

not mean that we can currently do palliative treatments only. In fact, the search for increasingly effective 

therapeutic regimens has been remarkably successful. We are in the age of personalized medicine,3,4 in which 

it is possible to understand the molecular basis of disease and the correlated genomic aspects. This is particularly 

true in the case of cancer, which is but one (group) of the many genetic diseases produced by inherited or 

acquired genomic mutations, impairing the control of cellular replication.5 Since the metastatic progression of 

the disease requires several concurrent DNA-damage events affecting the signal transduction pathways, the 

damage pattern is changing from individual to individual. This requires specific treatments which can be 

rationally assessed in terms of expected outcome and concurrent risks following appropriate genetic studies. 

An illuminating example is represented by Imatinib (Gleevec), able to target a specific enzyme produced by a 

chromosomal translocation occurring in Acute Myeloid Leukemia.6 Therefore, only patients harboring this 

translocation could benefit of the drug treatment. These types of innovative approaches can make cancer a 

manageable chronic disease in which partial remissions alternate with relapses, keeping the disease under 

control. So, the patient does not die with cancer, but lives with cancer.7 The quality of life has been greatly 

improved in terms of nutritional, psychological, and physical performance, but we must humbly admit we are 

at present still unable to cure cancer, with few exceptions.8 
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2. Recently Approved Anticancer Agents 
 

Numerous excellent reviews on general cancer-related subjects pertinent to this commentary are available. We 

will cite the most recent ones only, without introducing long lists with similar contents or repeating already 

dissected issues. Going through recent literature, we note that an impressive number of new compounds were 

approved for cancer treatment by the American regulatory agency, the FDA.9, 10  

Anticancer drugs approved by the FDA in 2021, reported in Table 1, are all endowed with high specificity.11 

They belong to two types of molecules, namely high- and low-molecular weight compounds.  

 

Table 1. New anticancer drugs approved by FDA in 2021 

# 

 
Name 

(Producer) 
Active species Therapeutic indication Composition 

1. Tivdak (Seagen) tisotumab 

vedotin-tftv 

Recurrent/metastatic  

cervical cancer  

monoclonal antibody bound to 

cytotoxic auristatin 

2.  Exkivity 

(Takeda)V 

mobocertinib Advanced/metastatic  

non-small cell lung cancer  

EGFR tyrosine kinase inhibitor 

3. Welireg 

(Merck) 

belzutifan Von Hippel-Lindau disease  HIF-2α transcription factor inhibitor 

4. Truseltiq 

(Helsinn) 

infigratinib Cholangiocarcinoma  FGFR tyrosine kinase inhibitor 

5. Lumakras 

(Amgen) 

sotorasib Types of non-small cell lung 

cancer 

kRAS G protein inhibitor 

6. Rybrevant 

(Jannsen) 

amivantamab-

vmjw 

Subset of non-small cell 

lung cancer 

Bispecific (EGFR/cMet) monoclonal 

antibody 

7. Zynlonta 

(ADC Ther) 

loncastuximab 

tesirine-lpyl 

Relapsed/refractory large B-

cell lymphoma 

monoclonal antibody bound to 

cytotoxic pyrrolobenzodiazepine  

8. Jemperli 

(GSK) 

dostarlimab-gxly Endometrial cancer PD-1 monoclonal antibody 

9. Fotivda 

(AVEO) 

tivozanib Renal cell carcinoma VEGFR tyrosine kinase inhibitor 

10. Ukoniq 

(TG Ther.) 

umbralisib Marginal zone/follicular 

lymphoma 

PI3k kinase inhibitor 

11. Tepmetko 

(EMD Serono) 

tepotinib Non-small cell lung cancer MET tyrosine kinase inhibitor 

 

2.1. High molecular weight compounds 

These drugs are targeted at cancer cell specific components, hence able to kill sick cells while preserving healthy 

cells. The first group comprises immunotherapy applications of monoclonal antibodies as drugs12, see entry 8 in 

Table 1, for treatment of endometrial cancer. Bispecific antibodies represent a more sophisticated evolution 

recognizing two different antigens (entry 6 in Table 1) specific for two known mutations of EGFR (Epidermal 

Growth Factor Receptor) and cMET gene in lung cancer. In other applications, antibodies behave as drug carriers 
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(entries 1 and 7 in Table 1), devised for precisely delivering toxic moieties, linked to them, in solid and liquid 

tumors.13  

Novel targets being presently exploited by immunotherapy are checkpoint inhibitors largely employed for 

melanoma and lung cancer treatment. These antibodies can recognize and bind to protein targets involved in 

signal transduction processes blocking protein-protein interactions.14 Examples of this strategy are reported in 

Table 2. The above inhibitors are particularly effective against melanoma and lung cancer and target checkpoint 

proteins like PD-1, PD-L1 and CTLA-4. Finally, cancer vaccines15 like Sipuleucel-T (Provenge, Dendreon) and 

Salimogene laherparepvec (T-VEC, Amgen) have been developed, which stimulate cytokine production, turning 

on the cellular immune response against melanoma and prostate cancer. The important advances made by 

immunotherapy practice in the last few years are verified also when treating metastatic cancers.16 For example, 

Pembrolizumab (Table 2) prolonged progression-free survival and life expectancy in patients with locally 

advanced or metastatic non-small cell lung cancer.17 As a consequence of high selectivity, immunotherapy 

shows modest but serious off-target effects,18 related to interference with the immune system (autoimmunity). 

Moreover, biological macromolecules suffer limitations19 which reduce their applicability. First, tumors, which 

represent most of the real cases awaiting treatment. In addition, like for all protein-based drugs, concerns arise 

on the preparation and administration modalities, storage, and stability of the pharmaceutical formulation.20 

Finally, bio drugs are remarkably expensive, for example, a single dose of Jemper (500 mg, Table1) costs about 

10,000€. 

 

Table 2. Checkpoint inhibitors for cancer immunotherapy  

# 
Name 

(producer) 

Active species Therapeutic indication Targeta 

1 Keytruda 

(Merck) 

penbrolizumab Melanoma, urinary tract cancer PD-1 

2 Yervoy 

(BMS) 

ipilimumab Renal carcinoma CTLA-4 

3 Opdivo 

(BMS) 

nivolumab Renal, Head and Neck cancer CTLA-4 

4 Tecentriq 

(Genentech) 

atezolizumab Urothelial carcinoma, lung 

cancer 

PD-1L 

aPD-1, Programmed Cell Death-1; PD-1L, PD-1 Ligand; CTLA-4, Cytotoxic T-

Lymphocyte Antigen- 4 

 

2.2. Low molecular weight compounds 

The second approach for modern cancer drug discovery is based upon specific and effective recognition by low 

molecular weight compounds of aberrant/overexpressed proteins causing loss of cell growth control. Many of 

them are TKIs, as they impair protein phosphorylation processes in cancer cells.21 A list of such compounds is 

reported in Figure 1. The second class of synthetic anticancer agents consists of epigenetic inhibitors (Figure 

2).22 Such inhibitors are aimed at chromatin-modifying enzymes such as Methyltransferases and Histone 

deacetylases. Their role is to make chromatin DNA available for transcription and replication. Processing must 

be accurately performed to grant physiological balance of growth activation and repression. Imbalance of 

signalling, with uncontrolled growth, turns healthy cell into cancer cells without changing DNA sequence.22 
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Given the limited specificity of the present inhibitors, it is suggested to perform treatments in combination with 

checkpoint inhibitors. 

 

 
 

Figure 1. Chemical structure of selected FDA-approved anticancer Tyrosine kinase inhibitors (TKIs). 

 

          * Approved in China 

 

Figure 2. Chemical structure of FDA-approved anticancer epigenetic inhibitors.  

 

5-Azacytidine and 
2’-deoxy analogue, Meitheal 
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From a chemical viewpoint, the small molecule approach is most appealing as it allows the rational synthesis of 

essentially any new chemical entity, introducing appropriate substituents to optimize target recognition and 

better address druggability by adjusting ADMET parameters.23 The history of Gleevec (Figure 1) is a successful 

example of stepwise modification of an inactive scaffold to obtain selective Tyrosine Kinase activity, with 

subsequent optimization of hydrophobicity to grant adequate pharmacokinetics. 

 

 

3. Major Advances in Science and Technologies 
 

In recent times we have also seen spectacular advances in science and technology, especially by the introduction 

of new research fields fostered by the rapid, substantial improvements in computer science and 

bioinformatics.24 In addition, advanced biophysical and biochemical techniques, like Next Generation 

Sequencing methods, single molecule studies, and atom-level structural determinations of biological 

macromolecules (cryo Electron Microscopy)25 have been rendered available to the medicinal chemist as 

advanced investigation tools, giving invaluable help to deeply understand the molecular events producing 

(desired and undesired) pharmacological responses, with the final goal to correctly foresee the performance of 

a newly designed scaffold on a putative receptor before performing synthetic and clinical steps. 

 

 

4. Important Limitations 
 

Notably, despite the widespread use of the new methods, to date we are still unable to fully describe the 

pharmacokinetic and pharmacodynamic processes that make the drug act on an identified target. In fact, a non-

exhaustive list of the necessary detailed information includes: 

• 3D structural properties, acid-base behavior, solubility, tautomeric equilibria, aggregation, H-bonding, 

permeability, reactivity, and metabolism of isolated drugs. 

• 3D and chemical-physical properties of the identified cell target(s). 

• In vivo kinetic, thermodynamic and structural parameters of the interactive process(es) causing the 

therapeutic effect, including account of all potential off-target interaction(s). This is not simply related to 

the principal players, but also to apparently unrelated cell components. For example, a simple bivalent ion 

can function as a bridge between two side chains of aspartic acid that would otherwise exert a mutual 

repulsion in the ionized form. Again, divalent metal ions like Mg2+ participate in the catalytic activity of DNA 

processing enzymes, like topoisomerases, by coordinating phosphate oxygens and reducing O-O repulsion 

in the transition state.26 As another example, cell membranes represent an additional phase interacting with 

lipophilic proteins and changing their conformation and distribution.27  

 

 

5. Thermodynamic Considerations 
 

A simple calculation using the thermodynamic correlation between free energy variation, ∆G, and equilibrium 

binding constant, K (R, universal gas constant, T, absolute temperature):  

∆G= - RT ln K 

tells us that for a 100-fold change in affinity at 37 °C the energy into play is about 2.8 Kcal/mol, hardly 

corresponding to a single hydrogen bond. This means that minor modifications in drug structure may result in 
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huge changes in affinity and, consequently, in pharmacological response. On the other hand, single mutations 

in the receptor can fully justify drug resistance, as it occurs in topoisomerase I mutant Gly 503 to Ser, insensitive 

to poisoning by the chemotherapeutic drug Camptothecin (Sigma).28 Substantial affinity changes may be not 

necessarily due to modifications in the binding partners, but also to trivial changes in the environmental setting 

of living systems. In line with this, different tissues belonging to the same organism can fix different amounts of 

drug thus generating tissue tropism with uneven distribution of the therapeutic agent.29 

 

 

6. Target Conformation 
 

Another fundamental problem is related to an insufficient level of structural information for quantitatively 

describing the conformational state of the target macromolecule. In fact, the number of structures (for 

simplicity let us consider a protein target) available in the Protein Data Bank is about 170,000, which, compared 

to the 200,000,000 sequences thus far reported30 represents about 0.1% of the total. It is like solving a 1,000-

tile puzzle having just one tile at hand, a difficult job, indeed. In fact, the level of predictability of a target 

structure starting from the amino acid sequence was until recently unsatisfactory and in silico molecular 

parameters could be at variance compared to the “true” 3D structure obtained from experimental studies. Not 

having a correct target structure makes drug design poorly significant or, even worse, misleading. Very recently, 

however, a breakthrough occurred in the field, since Artificial Intelligence deep mind techniques have now been 

applied to protein structure determinations.31- 33 

 

 

7. Artificial Intelligence 
 

Artificial intelligence (AI) is an emerging technology-based platform using sophisticated innovative 

computational tools like neural networks to effectively mimic human intelligence. AI uses software and systems 

able to understand and learn from the input data to make independent decisions for achieving specific goals.34 

AI has proved useful in the field of drug discovery and development with an efficiency comparable to other 

methods.35 However, a recent application using novel AI deep-mind algorithm (AlphaFold 2), has been 

outstandingly successful (almost 100% score) in predicting the correct folding of several proteins from sequence 

data only.31,32 The method simulates protein structures by considering the whole polypeptide chain, rather than 

protein domains, folding per se independently of the sequence context of the flanking residues. Hence, 

prediction allows the consideration of novel, previously unmet types of folding, contextual information from 

the rest of the sequence and inter-domain packaging. In principle, these innovative approaches allow to safely 

foresee the structural features of any polypeptide chain, even before synthesizing it, which stands for an 

immense step forward to the rational design of new effective medicines. There is a corollary to this, since 

assembly of several protein units often generates targets with superstructural arrangements. This issue has also 

been examined with AlphaFold in combination with AI program RoseTTAfold.33 The real performance of AI in 

rational drug design will be soon assessed by comparing in silico predictions with experimental results. 
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8. Resistance and Toxicity 
 

From the above discussion we can conclude that, although the task remains greatly challenging, we have the 

analytical-computational tools and the pharmacological chemical-biological knowledge necessary to 

successfully design new chemical entities as drug candidates, along with an educated forecast of their dynamic 

and kinetic properties. So far, the answer to the title question, “Are we all set to defeat cancer?”, should be: 

“yes, we are”. This seems to be the correct answer even at the beginning of the personalized treatment (see the 

case of Gleevec, the first selective TKI in clinical practice, Figure 1).6 Shortly afterwards, however, the drug’s 

potency steadily dropped to levels incompatible with useful treatment, and resistance set on.34 Irrespective of 

the drug(s) used, this is a generally occurring event in cancer (and other disease) therapy. If it is difficult to 

predict the effects of drug-receptor interaction, much more complex will be describing resistance, a multi-

factorial process with a concomitant set of different mechanisms, including those of pleiotropic nature, 

irrespective of the drug’s chemical structure with an evolution varying from patient to patient.  

Another unavoidable effect of drug administration is toxicity.35 In general, it is the result of undesired multiple 

targeting by a drug (or drug metabolite), which effectively binds to cellular components other than the intended 

receptor. The substantial advances made by pharmacogenomics allow us to identify, genome/transcriptome 

wide, which genes are affected (under- or over-expressed) in the presence of the drug. Besides gaining valuable 

information on the intended target(s), we can also highlight and quantify drug driven off-target events. This has 

two major implications, namely, i) an understanding of the molecular mechanisms of toxicity and their 

contribution to global drug response. and ii) the potential of exploiting the newly identified binding sites as 

target(s) for potential drug repurposing.36 It should however be considered that the on- and off-target effects 

change from individual to individual depending upon genetic heritage, age, body weight and epigenetic factors. 

Again, a hardly predictable issue. How could we manage to overcome two tough obstacles such as resistance 

and toxicity to finally cure cancer? 

 

8.1. Magic bullets 

 At first sight, the “simple” idea of a drug molecule behaving as a “magic bullet”, able to recognize a single known 

disease-related target specifically and selectively, appears to stand for the most rational approach, and indeed, 

in many cases efficient drug design has allowed the production of conceptually new important chemical entities. 

These include the first generation of single-target TKIs, the paradigmatic representative being Gleevec, presently 

in clinical practice for the treatment of Chronic Myeloid Leukaemia (Figure 1). This therapeutic shows impressive 

antiproliferative performance at the beginning of therapy. Unfortunately, however, the more selective the 

drug’s binding to the receptor, the faster the onset of resistance, 6 which prevents full eradication of cancer 

disease. Using a targeted drug mixture produces a better treatment profile but presents a series of further 

problems related to less predictable pharmacokinetics, heterogeneity of drug mixtures and different 

administration schedules.37 

 

8.2. Multiple targets (polypharmacology) 

Hence, the idea of a single molecule shaped to work on several disease-related targets.37 In fact, this approach 

was used to design the above mentioned last generation of TKIs, like Sunitinib and Sorafenib (see Figure 1).38 

Besides cancer, this novel line of rational drug design could prove particularly useful in other complex illnesses, 

involving different biochemical pathways, such as neurological and psychiatric conditions.39 Here, we should 

consider that the broadening of target is expected to reduce the occurrence of resistance, especially when 

several independent signal transduction pathways are simultaneously affected. However, this might 
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contextually increase the probability of undesired off-target events. This is in fact the case for the second 

generation TKIs, which recognize at least five different disease-related TKs. On target, they perform better than 

the parent single-target derivatives; but at the same time as mentioned above, they show cardiac toxicity,40 

unprecedented in the TKI family, due to more extensive off-target binding. 

 

 

9. Conclusions 
 

Considering the potent and dependable tools we have at hand, we envisage a protocol for the discovery of new 

(small molecule) multi-targeted anticancer agents, starting from available AI-implemented drug design 

software41 to perform the following steps: 

• Locate disease-related biochemical pathways. 

• Find suitable (protein) targets for efficient pathways inhibition. 

• Identify (all) other members of the family to participate in the multitarget process.  

• Identify similar, functionally unrelated, proteins present in healthy cells. 

• Use AI-driven platforms to safely predict structural features of identified proteins and of the drug-target(s) 

complex(es). 

• Search for structure similarities and differences in the genome-wide collection of potential on- and off-target 

binding species.  

• Exploit similarities to design effective multiple binders to the on-target protein subset.  

• Exploit differences to hamper/reduce undesired effects caused by drug binding to the off-target proteins. 

• Trim drug structure to a minimum size compatible with efficient inhibition of cancer cells growth.  

• Optimize the structure for pharmacokinetics using AI based simulation of ADME parameters, including 

toxicity. 

• Formulate a convenient synthesis of the (few) most promising hits. 

• Perform biological and pharmacological testing to validate the multi-target strategy. 

 

According to this procedure, we should rationally (and successfully) devise multitarget low molecular weight 

agents, acting on different cancer-related biochemical pathways (for instance signal transduction as exemplified 

by TKIs),21 yet showing minimal off-target(s) affinity. Clearly, this is not the end of a story, but the beginning of 

a new scientific adventure based upon more effective and reliable information tools. In fact, we must learn 

which target inhibitory combinations will produce maximal response and how to be sure we are considering all 

possible relevant (on-target and off-target) interactions within a cancer (and healthy) cell system. In addition, 

we should be able to perfect algorithms to describe macromolecular crowding appropriately and accurately,42 

and explain drug-binding to target protein(s) (and protein-nucleic acid assemblies), including in vivo induced fit 

analysis.43 Finally, even more importantly, we should sensibly improve the available tools to predict resistance 

and toxicity effects during treatment with a given NCE. Also, new appropriate biomarkers need to be discovered 

and tuned for personalized applications.  

Although we must be cautious and humble in facing up to an ambitious, challenging goal, we believe, with 

the aid of advanced personalized approaches and AI applications, we are remarkably close to defeat cancer. 

However, even in the absence of curative magic bullets or gene therapy, today’s cancer patients can be treated 

to live essentially disease-free, with their state of remission constantly monitored. As soon as signs of relapse 

are recorded, the current treatment must be discontinued and rationally replaced by another personalized 
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therapy, possibly exploiting different molecular targets. Hence, the continuous need for effective new drugs. In 

fact, we must always be one step ahead of the disease to manage a satisfactory outcome. 

A final remark. We are deeply grateful to Gilmo, to whom this special issue is dedicated, for having put into 

practice with the commitment of a lifetime the idea that a fruitful collaboration cannot be based on professional 

grounds only but must be enriched and powered by adding a touch of human warmth and friendship to the 

qualities of the associated scientists.  
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