A Platinum Open Access Journal for Organic Chemistry

Stereoselective one-pot five-component synthesis of polysubstituted 1,4,5,6tetrahydropyridines with two and three stereocenters

Taigib M. Iliyasov, Kirill A. Karpenko, Alexander S. Akulinin, Artem N. Fakhrutdinov, Viktor A. Korolev, Michail N. Elinson, and Anatoly N. Vereshchagin*
N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 119991 Moscow, Russian Federation
Email: vereshchagin@ioc.ac.ru

Received 04-29-2022
Accepted 06-17-2022
Published on line 06-26-2022

Abstract

A novel five-component stereoselective synthesis of polysubstituted tetrahydropyridines is reported. The Knoevenagel condensation - Michael addition - Mannich reaction - cyclization - dehydration cascade of aldehydes, esters of 3-oxocarboxylic acids $\mathrm{C}-\mathrm{H}$ acids and ammonium acetate provides convenient access to 2substituted alkyl ($4 S R, 6 R S$)-4,6-diaryl-5,5-dicyano-1,4,5,6-tetrahydropyridi-ne-3-carboxylates with two stereocenters and 3,5-dialkyl (4RS, 5SR,6RS)-5-cyano-2,4,6-triaryl-1,4,5,6-tetrahydropyri-dine-5,3-carboxylates with three stereocenters in $57-84 \%$ yields. It was established that formation of products proceeds via substituted 2-hydroxypiperidines with four stereocenters. Ammonium acetate plays a dual role, acting as a base and as a nitrogen source. Five bonds are formed as a result of multicomponent process. Structures of new compounds were confirmed by ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ NMR, IR, and mass spectral studies. The formation of single diastereomers was confirmed by singe crystal X-ray diffraction studies and 2D-NMR spectroscopy.

$$
\begin{gathered}
\text { Knoevenagel / Michael / Mannich /cyclization / dehydrataton cascade } \\
\text { Formation of } 3 \mathrm{C}-\mathrm{C}, 2 \mathrm{C}-\mathrm{N} \text { bonds } \\
\text { One diastereomer }
\end{gathered}
$$

Keywords: Multicomponent reactions, tetrahydropyridines, ammonium acetate, C-H acids, stereoselectivity

Introduction

A piperidine ring is a structural unit of a huge number of natural and synthetic biologically active compounds, many of which are widely used in medicine. About a third of all known alkaloids contain a piperidine ring in their structure. ${ }^{1}$ Piperidine derivatives play a significant role in the discovery of drugs exhibiting various biological activities such as antihypertensive, ${ }^{2}$ antimalarial, ${ }^{3}$ neuroprotective, ${ }^{4,5}$ antibacterial, ${ }^{6}$ anticonvulsant ${ }^{7}$ and antiinflammatory activity. ${ }^{8}$ Also piperidine containing drugs are important therapeutic agents in the treatment of influenza, ${ }^{9-11}$ diabetes, ${ }^{12,13}$ viral infections including AIDS, ${ }^{14,15}$ and cancer metastases. ${ }^{16,17}$ Among pharmaceutical drugs, substituted 4-arylpiperidine and 4,6-diarylpiperidine derivatives, resembling a pharmacophore fragment of morphine, are of great importance. A number of valuable medicines with various physiological properties have been obtained on their basis, for example, analgesics, ${ }^{18}$ neuroleptics, ${ }^{19}$ antidepressants, ${ }^{20}$ antiallergic drugs, ${ }^{21}$ and many others.

At present, many strategies are known for constructing six-membered heterocycles with one nitrogen atom as the only hetero atom, and the overwhelming majority of them are a sequence of classical two-component reactions. This approach has a number of significant disadvantages. In a two-component paradigm, even relatively small and not too complex molecules often have to be synthesized using complex multistep synthesis, which leads to great labor costs and small overall yields, resulting in high cost of final products. This problem becomes especially pressing if several stereocenters are present in the target molecule, which must have a strictly defined configuration. Multicomponent synthesis has already become an instrument of classical organic synthesis. Multicomponent reactions are important processes, in which more than three different reactants directly get converted into one new structure bearing most of the atoms of these reactants. $22-24$

The success of a multicomponent approach in assembling a piperidine ring was demonstrated as far back as in 1917 when a three-component assembly of tropinone, a key compound in the synthesis of atropine, was accomplished. Later, the synthesis of tropinone was improved. ${ }^{25}$ At present, this reaction is known as the Robinson-Schöpf reaction. Recently, a multicomponent synthesis of substituted piperidines was carried out applying ammonium acetate ${ }^{26-32}$, water ammonia ${ }^{33-35}$ or amines ${ }^{36,37}$ as a source of nitrogen.

In continuation of our research on the multicomponent synthesis of alicyclic ${ }^{38-41}$ and heterocyclic ${ }^{42-48}$ derivatives from carbonyl compounds and C-H acids, we report the results of a novel one-pot five-component reaction between aromatic aldehydes, esters of 3-oxocarboxylic acid, nitriles and ammonium acetate for the direct highly stereoselective substituted 1,4,5,6-tetrahydropyridines formation.

Results and Discussion

The Knoevenagel condensation - Michael addition - Mannich reaction - cyclization - dehydration cascade of aldehydes 1 (both with electron-withdrawing and electron-donating substituents), esters of 3-oxocarboxylic acids 2 malononitrile or ethylcyanoacetate and ammonium acetate afforded highly functionalized 1,4,5,6tetrahydropyridines 5 (Scheme 1, Table 1). Refluxing of the starting compounds in methanol for 2 h leads to the selective formation of products. This technique was developed in the study of multicomponent synthesis of piperidin-2-ones using $\mathrm{NH}_{4} \mathrm{OAc}$ as a nitrogen source for the piperidine cycle. ${ }^{30}$

The new multicomponent reaction allows to obtain 2 -substituted alkyl 4,6-diaryl-5,5-dicyano-1,4,5,6-tetrahydropyridine-3-carboxylates 5a-n with two stereocenters and 3,5-dialkyl 5-cyano-2,4,6-triaryl-1,4,5,6-tetrahydropyri-dine-5,3-carboxylates $\mathbf{5 0 , p}$ with three stereocenters in $\mathbf{5 7 - 8 4 \%}$. It should be noted, that 5a-n
were isolated by simple filtration of the reaction mixture and column chromatography was avoided entirely. 5o,p have a higher solubility in methanol and their isolation was more laborious.

Scheme 1. Stereoselective formation of 2-alkyl (4SR,6RS)-4,6-diaryl-5-cyano-1,4,5,6-tetrahydropyridine-3carboxylates $\mathbf{5}$ from aldehydes $\mathbf{1}$, ester of 3-oxocarboxylic acid 2, cyanides $\mathbf{3}$ and ammonium acetate 4.

Table 1. Five-component stereoselective substituted 1,4,5,6-tetrahydropyridine 5 synthesis ${ }^{a}$

Aldehyde	C-H acid	X	R	R^{1}	R^{2}	Product	Yield ${ }^{\text {b }}$
1a	2a	CN	H	Me	Me	5a	84
1b	2a	CN	3-Me	Me	Me	5b	78
1c	2a	CN	2-F	Me	Me	5c	69
1d	2a	CN	$3-\mathrm{Cl}$	Me	Me	5d	72
1 e	2a	CN	$4-\mathrm{Br}$	Me	Me	5 e	73
1 f	2a	CN	$4-\mathrm{NO}_{2}$	Me	Me	$5 f$	76
1a	2b	CN	H	Me	Et	5 g	84
1g	2b	CN	4-Me	Me	Et	5h	82
1h	2c	CN	$4-\mathrm{Cl}$	Et	Me	$5 i$	71
1 f	2c	CN	$4-\mathrm{NO}_{2}$	Et	Me	5 g	62
1 i	2d	CN	4-OMe	$\mathrm{C}_{6} \mathrm{H}_{5}$	Me	5k	58
1a	2 e	CN	H	$\mathrm{C}_{6} \mathrm{H}_{5}$	Et	51	65
1h	2e	CN	$4-\mathrm{Cl}$	$\mathrm{C}_{6} \mathrm{H}_{5}$	Et	5 m	81
1 g	2 f	CN	4-Me	$4-\mathrm{BrC}_{6} \mathrm{H}_{4}$	Me	5n	70
1e	2g	$\mathrm{CO}_{2} \mathrm{Et}$	$4-\mathrm{Br}$	4-ClC6 H_{4}	Me	50	66
1h	2h	$\mathrm{CO}_{2} \mathrm{Et}$	$4-\mathrm{Cl}$	$4-\mathrm{ClC}_{6} \mathrm{H}_{4}$	Me	5p	57

[^0]In the NMR spectra of compounds 5, only a single set of signals was identified, assuming the stereoselective formation of individual diastereoisomers. The structure of compound $\mathbf{5 i}$ is shown in Figure 1. The X-ray crystal diffraction data indicated that structure $5 \mathbf{i}$ with two stereogenic centers should be determined as methyl (4SR,6RS)-5,5-dicyano-2-ethyl-4,6-bis(4-chloro)phenyl-1,4,5,6-tetrahydropyridine-3-carboxylate. In this conformation, bulky aryl substituents are located in sterically least hindered positions relative to each other.

The structure of $\mathbf{5 0}$ with three stereogenic centers was determined by means of NMR spectroscopy. The full NMR signal assignment has been carried out using 2D NMR techniques such as ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H} \operatorname{COSY},{ }^{1} \mathrm{H}-{ }^{13} \mathrm{C}$ HSQC and ${ }^{1} \mathrm{H}-$ ${ }^{13} \mathrm{C}$ HMBC (See supplementary materials). First of all, it was found signals of the tetrahydropyridine ring in ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ spectra. p-Hal-phenyl moieties are at the $2^{\text {nd }}, 4^{\text {th }}$ and $6^{\text {th }}$ positions and C^{2} is substituted by p-Cl-phenyl fragment. All respective cross-peaks from $\mathrm{H}^{\circ} / \mathrm{C}^{\#}$ in the ${ }^{1} \mathrm{H}-{ }^{13} \mathrm{C} \mathrm{HMBC} \mathrm{spectra} \mathrm{are} \mathrm{presented}$. of substitutions near C^{5} was determined by analyzing ${ }^{1} \mathrm{H}-{ }^{13} \mathrm{C}$ spin coupling constant from the ${ }^{13} \mathrm{C}$ spectrum recorded with only ethyl CH_{2} proton decoupling. It was found carboxyl ($\mathrm{d}, J=3.4 \mathrm{~Hz}$) and nitrile ($\mathrm{t}, J=8.3 \mathrm{~Hz}$) carbon signal (Fig. 3). It can be concluded that nitrile group is in trans-position to the axial H^{4} and H^{6} while COOEt is in cis one due to $J_{\text {COO-H }}$ is smaller than $J_{C N-H}$. Carboxyl carbon has a spin coupling interaction only with H^{4}. Thus, 50 has $4 R S, 5 S R, 6 R S$ configuration.

A possible reaction pathway is shown in Scheme 2. The Knoevenagel condensation of aromatic aldehyde 1 with malononitrile or ethyl cyanoacetate affords the corresponding cyano-olefin A. Michael addition of 3oxocarboxylic acid ester $\mathbf{2}$ to the olefin generates alkyl 2-substituted 3-aryl-4-cyanobutanoates \mathbf{B}, which undergo Mannich reaction of the intermediate arylimine to form amine C. Next intramolecular cyclization leads to the formation of 2-substituted 4,6-diaryl-5-cyano-2-hydroxypiperidine-3-carboxylate 6. Finally, dehydration of alcohol 6 affords corresponding tetrahydropyridine 5.

To confirm the proposed mechanism, we monitored the reaction between 4-methylbenzaldehyde $\mathbf{1 g}$, ethylcyanoacetate, methyl 3-(4-bromophenyl)-3-oxopropanoate $\mathbf{2 f}$ and ammonium acetate in methanol at room temperature. The starting compounds, symmetrical para-substituted in aromatic nuclei, were chosen for ease of identification of the reaction products by ${ }^{1} \mathrm{H}$ NMR spectroscopy. After 50 minutes of stirring, a thick white precipitate formed in the reaction mass. After filtration and drying, this compound (by high resolution mass spectrometry) was identified (by high resolution mass spectrometry) as $\mathrm{C}_{29} \mathrm{H}_{26} \mathrm{BrN}_{3} \mathrm{O}_{3}$, corresponding to methyl ester 5,5-dicyano-2-(4-bromo)phenyl-2-hydroxy-4,6-bis(4-methyl)phenylpiperidine-3-carboxylic acid 6 . In the recorded spectra of ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C} 6$, one set of signals was observed, which indicates the formation of one diastereomer.

Figure 1. Structure of 5i. $\mathrm{p}=50 \%$.

Figure 2. ${ }^{1} \mathrm{H}-{ }^{13} \mathrm{C}$ correlation in HMBC NMR spectrum of 5 o .

Figure 3. Fragments of ${ }^{13} \mathrm{C}$ NMR spectra 50 decoupled from ethyl CH_{2} protons (scale is the same): a) CN signal at 115.5 ppm , b) COOEt signal at 165.5 ppm .

Scheme 2. Mechanism of stereoselective polysubstituted 1,4,5,6-tetrahydropyridines 5 formation.

The structure of 6 was confirmed by NMR spectroscopy methods including 2D NMR techniques such as ${ }^{1} \mathrm{H}$ ${ }^{1} \mathrm{H}$ COSY, ${ }^{1} \mathrm{H}-{ }^{13} \mathrm{C}$ HSQC, ${ }^{1} \mathrm{H}-{ }^{13} \mathrm{C} \mathrm{HMBC}$ and ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ NOESY (Figure 4). The full assignment of NMR signals has been made (See supplementary materials). In the proton spectrum it was found signals from three para-substituted phenyls in aromatic region, two singlets from protons at heteroatoms (OH at 6.16 ppm and NH at 3.64 ppm), three signals from piperidine ring ($\delta 5.05,4.33$ and 3.41 ppm) and three methyl signals ($\delta 3.09,2.33$ and 2.28 ppm). Protons H 4 and H 3 are axial ones for the characteristic spin coupling constant ($\mathrm{J}=12.3 \mathrm{~Hz}$). Location of phenyl rings was determined by observing respective $\mathrm{H}^{\circ} / \mathrm{C}^{\#}$ and $\mathrm{H}^{\#} / \mathrm{C}^{\circ}$ cross-peaks. In addition, $\mathrm{OH} / \mathrm{C}^{\mathrm{i}}\left(\delta_{\mathrm{H} / \mathrm{C}}\right.$ 6.16/143.9 ppm) cross-peak was found. The cross-peak from H^{4} and $\mathrm{H}^{6}\left(\delta_{H / H} 5.05 / 4.33 \mathrm{ppm}\right)$ in NOESY indicate that the protons are in the same half-space relatively piperidine ring. Thus, intermediate 2-hydroxypiperidine has the $2 S R, 3 R S, 4 S R, 6 R S$ configuration.

Figure 4. ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ and ${ }^{1} \mathrm{H}-{ }^{13} \mathrm{C}$ correlation in 2D NMR spectra of 6 .

Conclusions

We have developed a one-pot five-component stereoselective synthesis of substituted 1,4,5,6tetrahydropyridine, utilizing aldehydes (both with electron-withdrawing and electron-donating substituents), malononitrile or ethylcyanoacetate, esters of 3-oxocarboxylic acids and ammonium acetate, which played dual role, acting as a base and as a nitrogen source for six-membered nitrogen-containing ring. Five bonds are formed as a result of multicomponent process. Our method allows to obtain 2-substituted alkyl (4SR,6RS)-4,6-diaryl-5,5-dicyano-1,4,5,6-tetrahydropyridine-3-carboxylates with two stereogenic centers and 3,5-dialkyl (4RS, $5 S R, 6 R S$)-5-cyano-2,4,6-triaryl-1,4,5,6-tetrahydropyridine-5,3-carboxylates with three stereocenters in 57-84\%. We have proved that 1,4,5,6-tetrahydropyridines formation proceeds via stereoselective formation of substituted ($2 S R, 3 R S, 4 S R, 6 R S$)-2-hydroxypiperidines.

Experimental Section

General. All melting points were measured with a Stuart SMP30 melting point apparatus and are uncorrected. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were recorded with a Bruker AM300 and Bruker DRX 500 at ambient temperature in DMSO- d_{6} or CDCl_{3} solutions. Chemical shift values are given in δ scale relative to $\mathrm{Me}_{4} \mathrm{Si}$. The J values are given
in hertz. Only discrete or characteristic signals for the 1 H NMR are reported. IR spectra were recorded with a Bruker ALPHA-T FT-IR spectrometer in KBr pellets. HR-ESI-MS was measured on a Bruker microTOF II instrument; external or internal calibration was done with electrospray calibrant solution (Fluka). All starting materials were obtained from commercial sources and used without purification. All reactions were monitored with thin layer chromatography (TLC) and carried out with Merck precoated plates DC-AlufolienKieselgel60 F254. X-ray crystallographic analyses were performed with Bruker Quest D8 diffractometer.

General procedure for preparation of polysubstituted 1,4,5,6-tetrahydropyridines 5.

Synthesis of 3a-n (General method). A mixture of aldehyde 1 (6 mmol), malononitrile ($3 \mathrm{mmol}, 0.198 \mathrm{~g}$), ester of 3 -oxocarboxylic acid $\mathbf{2}(3 \mathrm{mmol})$ and ammonium acetate ($6 \mathrm{mmol}, 0.462$) was refluxed in methanol (10 mL) for 2 h . After the reaction completion, the mixture was maintained at $-10{ }^{\circ} \mathrm{C}$ for 30 min for the complete precipitation of the product. The precipitate was collected by filtration and dried to give pure tetrahydropyridines 5a-n.
Synthesis of $\mathbf{5 p , 0}$. A mixture of aldehyde $1(6 \mathrm{mmol})$, ethylcyanoacetate ($3 \mathrm{mmol}, 0.339 \mathrm{~g}$), ester of 3oxocarboxylic acids $2(3 \mathrm{mmol})$, and ammonium acetate (6 mmol) was refluxed in methanol (10 mL) for 2 h . After the reaction completion, the methanol was evaporated under reduce pressure. The residue was purified by column chromatography (eluent: hexane/ethylacetate $=3 / 01$) to give pure tetrahydropyridines $\mathbf{5 p}, \mathbf{0}$.
Methyl (4SR,6RS)-5,5-dicyano-2-methyl-4,6-diphenyl-1,4,5,6-tetrahydropyridine-3-carboxylate (5a). White solid; yield: $0.89 \mathrm{~g}(84 \%)$; mp $218-219^{\circ} \mathrm{C}$. (lit. mp ${ }^{35} 218-219^{\circ} \mathrm{C}$). ${ }^{1} \mathrm{H}-\mathrm{NMR}$ (DMSO-d, 300.13 MHz): $2.32(\mathrm{~s}, 3 \mathrm{H}$, CH_{3}), $3.11\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 4.83(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH}), 5.27(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH}), 7.28-7.34(\mathrm{~m}, 4 \mathrm{H}, \mathrm{Ar}+\mathrm{NH}), 7.52\left(\mathrm{dd}, 4 \mathrm{H}, \mathrm{Ar}, \mathrm{J}^{1} 5.9 \mathrm{~Hz}\right.$, $J^{2} 1.6 \mathrm{~Hz}$,), 7.63 (m, 2H, Ar) ppm.
Methyl (4SR,6RS)-5,5-dicyano-2-methyl-4,6-bis(3-methyl)phenyl-1,4,5,6-tetrahydropyridine-3-carboxylate (5b). White solid; yield: $0.90 \mathrm{~g}(78 \%)$; mp 191-193 ${ }^{\circ} \mathrm{C}$. IR (KBr): v 3422, 2252, 1655, 1453, $1248 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}-\mathrm{NMR}$ $\left(\mathrm{CDCl}_{3}, 300.13 \mathrm{MHz}\right): 2.38\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.42\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.44\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 3.30\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 4.43(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH})$, $4.57(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH}), 4.72(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH}), 7.11-7.48(\mathrm{~m}, 8 \mathrm{H}, \mathrm{Ar}) \mathrm{ppm} .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 75.47 \mathrm{MHz}\right): 20.3,21.5(\mathrm{~s}, 2 \mathrm{C}), 48$, $50,51,51.1,61.9,97.8,111.9,113.8,125$ (s, 2C), 128.4, 128.5, 129.2, 129.2, 131.5, 133.6, 137.7, 138.1, 139.3, 151.9, 166.9 ppm . HRMS (ESI) $\mathrm{m} / \mathrm{z}[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{24} \mathrm{H}_{24} \mathrm{~N}_{3} \mathrm{O}_{2}{ }^{+}$: 386.1863; found: 386.1857.

Methyl (4SR,6RS)-5,5-dicyano-2-methyl-4,6-bis(2-fluoro)phenyl-1,4,5,6-tetrahydropyridine-3-carboxylate (5c). White solid; yield: $0.81 \mathrm{~g}(69 \%)$; $\mathrm{mp} 191-193^{\circ} \mathrm{C}$. IR (KBr): v 3355, 2253, 1688, 1458, 1249, $1187 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}-$ NMR ($\mathrm{CDCl}_{3}, 300.13 \mathrm{MHz}$): $2.42\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 3.29\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 4.42(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH}), 5.18(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}), 5.33(\mathrm{~s}, 1 \mathrm{H}$, $\mathrm{CH}), 7.10-7.38(\mathrm{~m}, 5 \mathrm{H}, \mathrm{Ar}), 7.42-7.56(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ar}), 7.85(\mathrm{t}, J 7.19 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}) \mathrm{ppm} .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 75.47 \mathrm{MHz}\right): \delta$ $20.2,45.9,50.6,53.8,53.9,97.2,112.1,112.5,115.6$ (d, J ${ }^{2}{ }_{C-F} 22.8 \mathrm{~Hz}, 1 \mathrm{C}$), 116.3 ($\mathrm{d}, \mathrm{J}^{2}{ }_{C-F} 21.9 \mathrm{~Hz}, 1 \mathrm{C}$), 120.9 (d , $\left.J^{3}{ }_{C-F} 11.6 \mathrm{~Hz}, 1 \mathrm{C}\right), 124.3\left(\mathrm{~d}, J^{5} \mathrm{C}-\mathrm{F} 3.5 \mathrm{~Hz}, 1 \mathrm{C}\right), 125.1\left(\mathrm{~d}, J^{3}{ }_{\mathrm{C}-\mathrm{F}} 12.9 \mathrm{~Hz}, 1 \mathrm{C}\right), 125.3\left(\mathrm{~d}, J^{5} \mathrm{C}-\mathrm{F} 3.7 \mathrm{~Hz}, 1 \mathrm{C}\right), 127.6\left(\mathrm{~d}, J^{6} \mathrm{C}-\mathrm{F} 1.3\right.$ $\mathrm{Hz}, 1 \mathrm{C}), 127.9,130\left(\mathrm{~d}, \mathrm{~J}^{4} \mathrm{C}-\mathrm{F} 8.4 \mathrm{~Hz}, 1 \mathrm{C}\right), 132.3\left(\mathrm{~d}, \mathrm{~J}^{4} \mathrm{C}-\mathrm{F} 8.6 \mathrm{~Hz}, 1 \mathrm{C}\right), 153.1,160.6\left(\mathrm{~d}, J^{1} \mathrm{C}-\mathrm{F} 250.5 \mathrm{~Hz}, 1 \mathrm{C}\right), 160.9\left(\mathrm{~d}, J^{1} \mathrm{C}-\right.$ ${ }_{\mathrm{F}} 248 \mathrm{~Hz}, 1 \mathrm{C}$), 166.4 ppm . HRMS (ESI) $\mathrm{m} / \mathrm{z}\left[\mathrm{M}+\mathrm{H}^{+}\right.$calcd for $\mathrm{C}_{22} \mathrm{H}_{18} \mathrm{~F}_{2} \mathrm{~N}_{3} \mathrm{O}_{2}{ }^{+}$: 394.1362; found: 394.1369.
Methyl (4SR,6RS)-5,5-dicyano-2-methyl-4,6-bis(3-chloro)phenyl-1,4,5,6-tetrahydropyridine-3-carboxylate (5d). White solid; yield: $0.92 \mathrm{~g}(72 \%)$; mp $210-213^{\circ} \mathrm{C}$. IR(KBr): v 3411, 2240, 1712, 1458, 1247, $711 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}-\mathrm{NMR}$ (DMSO- $d_{6}, 300.13 \mathrm{MHz}$): $2.34\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 3.18\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 4.86(\mathrm{~s}, \mathrm{H}, \mathrm{CH}), 5.31(\mathrm{~s}, \mathrm{H}, \mathrm{CH}), 7.25-7.63(\mathrm{~m}, 7 \mathrm{H}, \mathrm{Ar}$ $+\mathrm{NH}), 7.68(\mathrm{~d}, \mathrm{~J} 10.15 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}) \mathrm{ppm} .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 75.47 \mathrm{MHz}\right): 20.3,47,48,50.5,50.7,61.2,97.2,111.4$, $113.2,125,86,126.3,128.1(\mathrm{~s}, 2 \mathrm{C}), 128.8,129.9,130.7,131.1,134.5,135.2,135.4,139.7,152.7,166.4 \mathrm{ppm}$. HRMS (ESI) $\mathrm{m} / \mathrm{z}[\mathrm{M}+\mathrm{H}]^{+}\left(\right.$for $\left.{ }^{35} \mathrm{Cl}\right) 426.0765$ calcd for $\mathrm{C}_{22} \mathrm{H}_{18} \mathrm{Cl}_{2} \mathrm{~N}_{3} \mathrm{O}_{2}{ }^{+}$: 426.0765 , (for ${ }^{35} \mathrm{Cl}$ and ${ }^{37} \mathrm{Cl}$) 428.0740 calcd for $\mathrm{C}_{22} \mathrm{H}_{18} \mathrm{Cl}_{2} \mathrm{~N}_{3} \mathrm{O}_{2}{ }^{+}$: 428.0742 .
Methyl (4SR,6RS)-5,5-dicyano-2-methyl-4,6-bis(4-bromo)phenyl-1,4,5,6-tetrahydropyridine-3-carboxylate (5e). White solid; yield: $1.13 \mathrm{~g}(73 \%)$; mp 197-198 ${ }^{\circ} \mathrm{C}$. (lit.mp ${ }^{35} 197-198^{\circ} \mathrm{C}$). ${ }^{1} \mathrm{H}-\mathrm{NMR}$ (DMSO- $\mathrm{d}_{6}, 300.13 \mathrm{MHz}$):
$2.34\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 3.19\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 4.85(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH}), 5.31(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH}), 7.27(\mathrm{~d}, J 8.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}), 7.60\left(\mathrm{dd}, \mathrm{J}_{1} 8.5\right.$ $\left.\mathrm{Hz}, \mathrm{J}_{2} 2.9 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{Ar}\right), 7.66$ (s, 1H, NH), 7.79 (d, J $8.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}$) ppm.
Methyl (4SR,6RS)-5,5-dicyano-2-methyl-4,6-bis(4-nitro)phenyl-1,4,5,6-tetrahydropyridine-3-carboxylate (5f) White solid; yield: $1.02 \mathrm{~g}(76 \%)$; m.p $250-251^{\circ} \mathrm{C}$. (lit.mp ${ }^{35} 250-251^{\circ} \mathrm{C}$). ${ }^{1} \mathrm{H}-\mathrm{NMR}$ (DMSO- $\mathrm{d}_{6}, 300.13 \mathrm{MHz}$): $\delta=2.4$ (s, $\left.3 \mathrm{H}, \mathrm{CH}_{3}\right), 3.19\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 5.1(\mathrm{~s}, \mathrm{H}, \mathrm{CH}), 5.55(\mathrm{~s}, \mathrm{H}, \mathrm{CH}), 7.02(\mathrm{~d}, 3 \mathrm{H}, \mathrm{Ar}+\mathrm{NH}, \mathrm{J} 8.8 \mathrm{~Hz}), 7.61(\mathrm{~d}, \mathrm{~J} 8.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar})$, 8.31 (s, $2 \mathrm{H}, \mathrm{Ar}, \mathrm{J} 8.8 \mathrm{~Hz}$), 8.46 (d, $2 \mathrm{H}, \mathrm{Ar}, \mathrm{J} 8.8 \mathrm{~Hz}$) ppm.

Ethyl (4SR,6RS)-5,5-dicyano-2-methyl-4,6-diphenyl-1,4,5,6-tetrahydropyridine-3-carboxylate (5g). White solid; yield: $0.93 \mathrm{~g}(84 \%)$; mp 200-202 ${ }^{\circ} \mathrm{C}$. IR (KBr): v 3312, 2252, 1644, 1470, 1456, $1247 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}-\mathrm{NMR}$ (DMSO$\left.d_{6}, 500.13 \mathrm{MHz}\right): 0,57\left(\mathrm{t}, \mathrm{J} 7.12 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.36\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 3.64\left(\mathrm{~m}, 2 \mathrm{HCH}_{2}\right), 4.86(\mathrm{~s} 1 \mathrm{HCH}), 5.31(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH})$, 7.31-7.72 (m, 11H, Ar + NH) ppm. ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{DMSO}-\mathrm{d}_{6}, 75.47 \mathrm{MHz}\right): 13.8,19.4,48.2,49.6,58.6,60,94.9,113.4$, $114.4,128.3$ ($\mathrm{s}, 3 \mathrm{C}$), 128.6 ($\mathrm{s}, 2 \mathrm{C}$), 128.8 ($\mathrm{s}, 2 \mathrm{C}$), 129.1 ($\mathrm{s}, 2 \mathrm{C}$), 130.4, 134.8, 139.7, 154.3, 166.3 ppm . HRMS (ESI) $\mathrm{m} / \mathrm{z}[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{23} \mathrm{H}_{22} \mathrm{~N}_{3} \mathrm{O}_{2}{ }^{+}$: 372.1707; found: 372.1700.
Ethyl (4SR,6RS)-5,5-dicyano-2-methyl-4,6-bis(4-methyl)phenyl-1,4,5,6-tetrahydropyridine-3-carboxylate (5h) White solid; yield: $0.98 \mathrm{~g}(82 \%)$; mp $224-225^{\circ} \mathrm{C}$. (lit. $\mathrm{mp}^{35} 224-225^{\circ} \mathrm{C}$). ${ }^{1} \mathrm{H}-\mathrm{NMR}$ (DMSO- $\mathrm{d}_{6}, 300.13 \mathrm{MHz}$): 0.59 (t, J $7.3 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}$) , $2.31\left(\mathrm{~s}, 6 \mathrm{H}, 2 \mathrm{CH}_{3}\right), 2.37\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 3.64\left(\mathrm{qd}, \mathrm{J}_{1} 12.2 \mathrm{~Hz}, \mathrm{~J}_{2} 6.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{OCH}\right.$) , $4.76(\mathrm{~s}, 1 \mathrm{H}$, CH), $5.21(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH}), 7.20\left(\mathrm{dd}, \mathrm{J}_{1} 8.8 \mathrm{~Hz}, \mathrm{~J}_{2} 2.2 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{Ar}\right), 7.33$ (d, J $\left.8.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}\right), 7.42$ (s, 1H, NH), 7.52 (d, J 8.1 $\mathrm{Hz}, 2 \mathrm{H}, \mathrm{Ar}) \mathrm{ppm}$.
Methyl (4SR,6RS)-5,5-dicyano-2-ethyl-4,6-bis(4-chloro)phenyl-1,4,5,6-tetrahydropyridine-3-carboxylate (5i). White solid; yield: $0.93 \mathrm{~g}(71 \%)$; mp 132-135 ${ }^{\circ} \mathrm{C}$. IR (KBr): v 3420, 2255, 1705, 1464, 1260, $837 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}-\mathrm{NMR}$ $\left(\mathrm{CDCl}_{3} 300.13 \mathrm{MHz}\right)$: ppm. $1.33\left(\mathrm{t}, \mathrm{J} 7.5 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.93-2.65\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 3.32\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 4.50(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH})$, $4.60(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH}), 4.75(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH}), 7.35-7.38(\mathrm{~m}, 4 \mathrm{H}, \mathrm{Ar}), 7.5(\mathrm{~d}, \mathrm{~J} 8.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}), 7.59(\mathrm{~d}, \mathrm{~J} 8.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}) \mathrm{ppm}$. ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 75.47 \mathrm{MHz}\right): 13.4,27,47.8,50.2,50.7,60.9,96.3,111.5,113.4,128.9$ (s, 2C), 129.1 (s, 2C), 129.2 (s, 2C), 129.7 (s, 2C), 131.9, 134.3, 136.3, 136.9, 158, 166.1 ppm. HRMS (ESI) $\mathrm{m} / \mathrm{z}[\mathrm{M}+\mathrm{H}]^{+}\left(\right.$for $\left.{ }^{35} \mathrm{Cl}\right) 440.0922$ calcd for $\mathrm{C}_{27} \mathrm{H}_{20} \mathrm{Cl}_{2} \mathrm{~N}_{3} \mathrm{O}_{2}{ }^{+}$: 440.0927 .
X-ray diffraction data were collected at 100K on a Bruker Quest D8 diffractometer equipped with a Photon-III area-detector (graphite monochromator, shutterless φ - and ω-scan technique), using Mo K_{a}-radiation. The intensity data were integrated by the SAINT program ${ }^{49}$ and were corrected for absorption and decay using SADABS. ${ }^{50}$ The structure was solved by direct methods using SHELXT ${ }^{51}$ and refined on F^{2} using SHELXL-2018. ${ }^{52}$ All non-hydrogen atoms were refined with individual anisotropic displacement parameters. The location of atom H1 was found from the electron density-difference map; it was refined with an individual isotropic displacement parameter. All other hydrogen atoms were placed in ideal calculated positions and refined as riding atoms with relative isotropic displacement parameters. The SHELXTL program suite ${ }^{48}$ was used for molecular graphics. Crystal Data for $\mathrm{C}_{24} \mathrm{H}_{23} \mathrm{Cl}_{2} \mathrm{~N}_{3} \mathrm{O}_{3} \mathbf{5 i}$, Formula weight $472.35, \mathrm{~T}=100$ (2) K, Wavelength $0.71073 \AA$, Crystal system Monoclinic, Space group $\mathrm{P} 21 / \mathrm{c}$, Unit cell dimensions $\mathrm{a}=12.5724(4) \AA \mathrm{A}=90^{\circ} ; \mathrm{b}=16.7206(5) \AA \mathrm{A}=95.6182(11)^{\circ}$; $\mathrm{c}=11.2121(4) \AA \AA \mathrm{g}=90^{\circ}$, Volume $2345.66(13) \AA 23, \mathrm{Z}=4$, Density (calculated) $1.338 \mathrm{~g} / \mathrm{cm} 3$, Absorption coefficient $0.307 \mathrm{~mm}-1, F(000) 984$, Crystal size $0.59 \times 0.59 \times 0.56 \mathrm{~mm} 3$, Theta range for data collection 2.033 to 38.575°, Index ranges $-22<=\mathrm{h}<=22 ;-29<=k<=29 ;-19<=1<=19$, Reflections collected 98467, Independent reflections 13254 $[R($ int $)=0.0312]$, Observed reflections 11486, Completeness to theta $=25.242^{\circ} 99.9 \%$, Absorption correction Semi-empirical from equivalents, Max. and min. transmission 0.6085 and 0.5229 , Refinement method Fullmatrix least-squares on F2, Data / restraints / parameters 13254 / 0 / 301, Goodness-of-fit on F2 1.036, Final R indices [I>2sigma(I)] R1 $=0.0367, w R 2=0.0964, R$ indices (all data) $R 1=0.0443, w R 2=0.1021$, Extinction coefficient $0.0028(7)$, Largest diff. peak and hole 0.608 and -0.681 e.Å-3. Obtained crystal structure was deposited in CCDC No. 2032520
Methyl (4SR,6RS)-5,5-dicyano-2-ethyl-4,6-bis(4-nitro)phenyl-1,4,5,6-tetrahydropyridine-3-carboxylate (5j).

White solid; yield: $0.86 \mathrm{~g}(62 \%)$; mp $243-248^{\circ} \mathrm{C}$. $\mathrm{IR}(\mathrm{KBr}): v 3387,2250,1685,1484,1349,1256 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}-\mathrm{NMR}$ (DMSO- $\left.d_{6}, 300.13 \mathrm{MHz}\right): 1.27\left(\mathrm{t}, \mathrm{J} 7.3 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.65-2.88\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 3.16\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 5.08(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH})$, $5.52(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH}), 7.58(\mathrm{~d}, J 8.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}), 7.9(\mathrm{~d}, J 8.9 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}), 7.92(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}), 8.3$ (d, J $8.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}), 8.44$ (d, J $8.7 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}$) ppm. ${ }^{13} \mathrm{C}-\mathrm{NMR}$ (DMSO-d ${ }_{6}, 75.47 \mathrm{MHz}$): 14.5, 26.2, 47, 48.8, 50.5, 58.9, 92.8, 112.5, 113.5, $124(\mathrm{~s}, 2 \mathrm{C}), 124.1(\mathrm{~s}, 2 \mathrm{C}), 129.2(\mathrm{~s}, 2 \mathrm{C}), 130.3(\mathrm{~s}, 2 \mathrm{C}), 141,147.2,149.1,161.3,166 \mathrm{ppm}$. HRMS (ESI) $\mathrm{m} / \mathrm{z}\left[\mathrm{M}+\mathrm{H}^{+}\right.$ calcd for $\mathrm{C}_{23} \mathrm{H}_{20} \mathrm{~N}_{5} \mathrm{O}_{6}{ }^{+}$: 462.1408; found: 462.1401.
Methyl (4SR,6RS)-5,5-dicyano-2-phenyl-4,6-bis(4-methoxy)phenyl-1,4,5,6-tetrahydropyridine-3-carboxylate (5k). White solid; yield: $0.83 \mathrm{~g}(58 \%)$; mp $133-137^{\circ} \mathrm{C}$. $\mathrm{IR}(\mathrm{KBr}): v 3440,2250,1460,1263,1133 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right.$ 500.13 MHz): $3.17\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.83\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 3.84\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 4.68(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}), 4.71(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH}), 4.92(\mathrm{~s}, 1 \mathrm{H}$, $\mathrm{CH}), 6.95(\mathrm{~d}, \mathrm{~J} 8.7 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}), 7(\mathrm{~d}, \mathrm{~J} 8.7 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}), 7.43-7.53(\mathrm{~m}, 7 \mathrm{H}, \mathrm{Ar}), 7.58(\mathrm{~d}, \mathrm{~J} 8.7 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}) \mathrm{ppm} .{ }^{13} \mathrm{C}-\mathrm{NMR}$ ($\mathrm{CDCl}_{3}, 125.76 \mathrm{MHz}$): 48.8, $50.5,50.9,55.2,55.4,61.7,99.1,112.1,113.9,114.1$ (s, 2C), 114.5 (s, 2C), 125.3, 128.3 (s, 2C), 128.4 (s, 2C), 129.1, 129.2 (s, 4C), 129.7, 136.6, 153.9, 159.7, 161.3, 166.2 ppm. HRMS (ESI) [M + $\mathrm{H}]^{+}$calcd for $\mathrm{C}_{29} \mathrm{H}_{26} \mathrm{~N}_{3} \mathrm{O}_{4}{ }^{+}$: 480.1918; found: 480.1913 .
Ethyl (4SR,6RS)-5,5-dicyano-2-phenyl-4,6-diphenyl-1,4,5,6-tetrahydropyridine-3-carboxylate (5I). White solid;
 $0.6\left(\mathrm{t}, \mathrm{J} 7.1 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 3.56-3.75(\mathrm{~m}, 2 \mathrm{H} \mathrm{CH}$) , $4.6(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}), 4.79(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH}), 4.98(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH}), 7.34-7.72(\mathrm{~m}$, $15 \mathrm{H}, \mathrm{Ar}) \mathrm{ppm} .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 75.47 \mathrm{MHz}\right): 13.3,48.2,51.3,59.5,62.2,99.2,111.8,113.7,127.9(\mathrm{~s}, 2 \mathrm{C}), 128.2$ ($\mathrm{s}, 4 \mathrm{C}$) , 128.51 ($\mathrm{s}, 2 \mathrm{C}$), 128.6, 128.7 (s, 2C), 129.4 (s, 2C), 129.7, 130.8, 133.3, 136.5, 137.3, 153.9, 165.4 ppm. HRMS (ESI) $m / z[M+H]^{+}$calcd for $\mathrm{C}_{28} \mathrm{H}_{24} \mathrm{~N}_{3} \mathrm{O}_{2}{ }^{+}$: 434.1863; found: 434.1850.
Ethyl (4SR,6RS)-5,5-dicyano-2-phenyl-4,6-bis(4-chloro)phenyl-1,4,5,6-tetrahydropyridine-3-carboxylate (5m) White solid; yield: $1.22 \mathrm{~g}(81 \%)$; m.p $193-197^{\circ} \mathrm{C}$. IR (KBr): v 3334, 2250, 1700, $1259,771 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}-\mathrm{NMR}^{\left(\mathrm{CDCl}_{3}\right.}$ $300.13 \mathrm{MHz}): 0.64\left(\mathrm{t}, \mathrm{J} 7.1 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 3.57-3.76\left(\mathrm{~m}, 2 \mathrm{HCH}_{2}\right), 4.55(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}), 4.75(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH}), 4.96(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH})$, $7.4(\mathrm{~d}, \mathrm{~J} 8.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}), 7.45-7.53(\mathrm{~m}, 9 \mathrm{H}, \mathrm{Ar}), 7.61(\mathrm{~d}, \mathrm{~J} 8.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}) \mathrm{ppm} .^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 75.47 \mathrm{MHz}\right): 13.4$, $48,50.5,59.7,61.5,98.9,111.5,113.3,128.3$ ($\mathrm{s}, 4 \mathrm{C}$), 129 ($\mathrm{s}, 2 \mathrm{C}$), 129.3 ($\mathrm{s}, 2 \mathrm{C}$), 129.5 ($\mathrm{s}, 2 \mathrm{C}$), 129.7 ($\mathrm{s}, 2 \mathrm{C}$), 129.8, 131.6, 134.6, 135.7, 136.3, 137, 154.1, 165.2 ppm. HRMS (ESI) $\mathrm{m} / \mathrm{z}[\mathrm{M}+\mathrm{H}]^{+}$(for ${ }^{35} \mathrm{Cl}$) 502.1075 calcd for $\mathrm{C}_{28} \mathrm{H}_{22} \mathrm{Cl}_{2} \mathrm{~N}_{3} \mathrm{O}_{2}{ }^{+}: 502.1084$, (for ${ }^{35} \mathrm{Cl}$ and $\left.{ }^{37} \mathrm{Cl}\right) 504.1053$ calcd for $\mathrm{C}_{28} \mathrm{H}_{22} \mathrm{Cl}_{2} \mathrm{~N}_{3} \mathrm{O}_{2}{ }^{+}$: 504.1056.
Methyl (4SR,6RS)-5,5-dicyano-2-(4-bromo)phenyl-4,6-diphenyl-1,4,5,6-tetrahydropyridine-3-carboxylate (5 n). White solid; yield: $1.04 \mathrm{~g}(70 \%)$; mp $167-170^{\circ} \mathrm{C}$. $\mathrm{IR}(\mathrm{KBr}): v 3305,2258,1713,1262,1212,704 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}-\mathrm{NMR}$ $\left(\mathrm{CDCl}_{3} 300.13 \mathrm{MHz}\right): 3.17\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 4.57(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}), 4.75(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH}), 4.96(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH}), 7.33-7.69(\mathrm{~m}, 14 \mathrm{H}, \mathrm{Ar})$ ppm. ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 75.47 \mathrm{MHz}\right): 48.1,50.8,51.2,62.2,99.5,111.7,113.5,124.2,127.9(\mathrm{~s}, 2 \mathrm{C}), 128(\mathrm{~s}, 2 \mathrm{C})$, 128.7 (s, 2C), 129.6 (s, 2C), 130.2 (s, 2C), 130.9 (s, 2C), 131.5 (s, 2C), 133.05, 135.1, 136.1, 152.8, 165.7 ppm. HRMS (ESI) $\mathrm{m} / \mathrm{z}[\mathrm{M}+\mathrm{H}]^{+}$(for ${ }^{79} \mathrm{Br}$) 498.0806 calcd for $\mathrm{C}_{23} \mathrm{H}_{20} \mathrm{Br}_{2} \mathrm{~N}_{3} \mathrm{O}_{2}{ }^{+}$: 498.0812 , (for ${ }^{81} \mathrm{Br}$) 500.0793 calcd for $\mathrm{C}_{23} \mathrm{H}_{20} \mathrm{Br}_{2} \mathrm{~N}_{3} \mathrm{O}_{2}{ }^{+}$: 500.0793 .
5-ethyl 3-methyl (4RS,5SR,6RS)-5-cyano-2-(4-chloro)phenyl-4,6-bis(4-bromo)phenyl-1,4,5,6-tetrahydro-pyridine-5,3-carboxylate (50). White solid; yield: 1.21 g (66%); mp 205-208 ${ }^{\circ} \mathrm{C} . \mathrm{IR}(\mathrm{KBr}): v 3333,2247,1739,1259$, $810,500 \mathrm{~cm}^{-1} .^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}$): $0.89\left(\mathrm{t}, \mathrm{J} 7.1 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 3.00(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OMe}), 3.82-4.02\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right)$, $4.75(\mathrm{~s}, 1 \mathrm{H}), 5.02(\mathrm{~d}, J 1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.18(\mathrm{~d}, J 8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.45-7.39(\mathrm{~m}, 4 \mathrm{H}), 7.47(\mathrm{~d}, J 8.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.52(\mathrm{~d}, J 8.6$ $\mathrm{Hz}, 2 \mathrm{H}), 7.63(\mathrm{~d}, \mathrm{~J} 8.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.77(\mathrm{~d}, \mathrm{~J} 1.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NH}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR (75 MHz, DMSO-d $\mathrm{d}_{\text {}}$) $\delta: 13.5,48.3,49.9$, $58.4,60.4,62.8,96.6,115.2,120.4,122.7,127.5$ (2C), 129.4 (2C), 130.5 (2C), 130.8 (2C), 131.1 (2C), 131.2 (2C), 133.4, 133.5, 135.6, 138.9, 154.8, 165.5, 165.6 ppm . HRMS (ESI) $\mathrm{m} / \mathrm{z}[\mathrm{M}+\mathrm{H}]^{+}$(for ${ }^{35} \mathrm{Cl}$ and ${ }^{79} \mathrm{Br}$) 656.9786 calcd for $\mathrm{C}_{29} \mathrm{H}_{24} \mathrm{Br}_{2} \mathrm{ClN}_{2} \mathrm{O}_{4}{ }^{+}$: 656.9776 .
5-ethyl-3-methyl (4RS,5SR,6RS)-5-cyano-2-(4-chloro)phenyl-4,6-bis(4-chloro)phenyl-1,4,5,6-tetrahydro-pyridine-5,3-carboxylate (5p). White solid; yield: $0.97 \mathrm{~g}(57 \%) ; \mathrm{mp} 190-192^{\circ} \mathrm{C}$. IR (KBr): $v=3334,2250,1740$, $1260,811 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}-\mathrm{NMR}^{\left(\mathrm{CDCl}_{3} 300.13 \mathrm{MHz}\right): 0.89\left(\mathrm{t}, J 7,1 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 3.17\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.93(\mathrm{q}, J 7 \mathrm{~Hz}, 2 \mathrm{H} \text {, }, ~, ~}$
OCH_{2}), $4.49(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}), 4.85(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH}), 4.89(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH}), 7.26-7.53(\mathrm{~m}, 12 \mathrm{H}, \mathrm{Ar}) \mathrm{ppm} .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 75.47\right.$ MHz): 13.57, $49.17,50.54,57.80,61.27,63.06,100.4,114.89,128.46$ ($\mathrm{s}, 2 \mathrm{C}$), 128.61 ($\mathrm{s}, 2 \mathrm{C}$), 129.04 ($\mathrm{s}, 2 \mathrm{C}$), 129.23 ($\mathrm{s}, 2 \mathrm{C}$), $129.32(\mathrm{~s}, 2 \mathrm{C}), 129.89(\mathrm{~s}, 2 \mathrm{C}), 132.71,133.65,135.24,135.61,136.18,137.01,152.41,166.12(\mathrm{~s}, 2 \mathrm{C}) \mathrm{ppm}$. HRMS (ESI) $m / z[\mathrm{M}+\mathrm{H}]^{+}\left(\right.$for $\left.{ }^{35} \mathrm{Cl}\right) 569.0796$ calcd for $\mathrm{C}_{29} \mathrm{H}_{24} \mathrm{Cl}_{3} \mathrm{~N}_{2} \mathrm{O}_{4}{ }^{+}$: 569.0779.
Synthesis of 6. A mixture of 4-methylbenzaldehyde $\mathbf{1 g}(3 \mathrm{mmol}, 0.36 \mathrm{~g})$, malononitrile ($3 \mathrm{mmol}, 0.198 \mathrm{~g}$), methyl 3-(4-bromophenyl)-3-oxopropanoate $\mathbf{2 f}(3 \mathrm{mmol}, 0.771 \mathrm{~g})$ and ammonium acetate ($6 \mathrm{mmol}, 0.462 \mathrm{~g}$) was stirred in methanol $(7 \mathrm{~mL})$ at $\mathrm{r} . \mathrm{t}$ for 50 min . The precipitate was collected by filtration and dried to give pure $2-\mathrm{OH}-$ piperidine 6.
Methyl (2SR,3RS,4SR,6RS)-5,5-dicyano-2-(4-bromo)phenyl-2-hydroxy-4,6-bis(4-methyl)phenyl-piperidine-3carboxylate (6). White solid; yield: $1.34 \mathrm{~g}(82 \%)$; mp $144-146^{\circ} \mathrm{C}$. $\mathrm{IR}(\mathrm{KBr}): v=3490,3316,2250,1715,512 \mathrm{~cm}^{-1}$. ${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}): $2.28\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.33\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 3.09\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.41(\mathrm{~d}, \mathrm{~J} 12.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.64$ (s, 1H, NH), 4.33 (d, J $12.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.05(\mathrm{~s}, 1 \mathrm{H}), 6.16(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}), 7.19(\mathrm{~d}, J 7.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.27(\mathrm{~d}, J 7.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.31$ (d, J $8.0 \mathrm{~Hz}, 2 \mathrm{H}$), 7.59 (d, J $7.9 \mathrm{~Hz}, 2 \mathrm{H}$), $7.63(\mathrm{~m}, 4 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR (DMSO-d, 101 MHz , $\delta: 20.6,20.8,45.7,49.0$, $51.1,54.1,58.6,83.7,113.0,113.7,121.3,128.2$ (2C), 128.3 (4C), 128.9 (2C), 129.2 (2C), 130.7 (2C), 132.8, 133.4, 138.2, 139.0, 143.9, 168.1 ppm. HRMS (ESI) $m / z\left[\mathrm{M}+\mathrm{H}^{+}\right.$(for ${ }^{79} \mathrm{Br}$) 544.1230 calcd for $\mathrm{C}_{29} \mathrm{H}_{27} \mathrm{BrN}_{3} \mathrm{O}_{3}{ }^{+}: 544.1217$.

References

1. Mascavage, L. M.; Jasmin, S.; Sonnet, P. E.; Wilson, M.; Dalton, D. R. Alkaloids. Ullmann's Encyclopedia of Industrial Chemistry,Ed. B. Elvers, Wiley Online Library, 2011.
https://doi.org/10.1002/14356007.a01 353.pub2
2. Petit, S.; Nallet, J. P.; Guillard, M.; Dreux, J.; Chermat, R.; Poncelet, M.; Bulach, C.; Simon, P.; Fontaine, C.; Barthelmebs, M.; Imbs, J. L. Eur. J. Med. Chem. 1991, 26, 19. https://doi.org/10.1016/0223-5234(91)90209-6
3. Misra, M.; Pandey, S. K.; Pandey, V. P.; Pandey, J.; Tripathi, R.; Tripathi, R. P. Bioorg. Med. Chem. 2009, 17, 625.
https://doi.org/10.1016/j.bmc.2008.11.062
4. Borza, I.; Domany, G. Curr. Top. Med. Chem. 2006, 6, 687.
a. https://doi.org/10.2174/156802606776894456
5. Mony, L.; Kew, J. N.; Gunthorpe, M. J.; Paoletti, P. Brit. J. Pharmacol. 2009, 157, 1301. https://doi.org/10.1111/j.1476-5381.2009.00304.x
6. Zhou, Y.; Gregor, V. E.; Ayida, B. K.; Winters, G. C.; Sun, Z.; Murphy, D.; Haley, G.; Bailey, D.; Froelich, J. M.; Fish, S.; Webber, S. E.; Hermann, T.; Wall, D. Bioorg. Med. Chem. Lett. 2007, 17, 1206. https://doi.org/10.1016/j.bmcl.2006.12.024
7. Ho, B.; Michael Crider, A.; Stables, J. P. Eur. J. Med. Chem. 2001, 36, 265. https://doi.org/10.1016/S0223-5234(00)01206-X
8. Gitto, R.; Luca, L. De ; Ferro, S.; Occhiuto, F.; Samperi, S.; De Sarro, G.; Russo, E.; Ciranna, L.; Costa, L.; Chimirri, A. ChemMedChem. 2008, 3, 1539.
https://doi.org/10.1002/cmdc. 200800124
9. Kim, C. U.; Lew, W.; Williams, M. A.; Liu, H.; Zhang, L.; Swaminathan, S.; Bischofberger, N.; Chen, M. S.; Mendel, D. B.; Tai, C. Y.; Laver, W. G.; Stevens, R. C. J. Am. Chem. Soc. 1997, 119, 681. https://doi.org/10.1021/ja963036t
10. Von Itzstein, M.; Wu, W.-Y.; Kok, G. B.; Pegg, M. S.; Dyason, J. C.; Jin, B.; Van Phan, T.; Smythe, M. L.; White, H. F.; Oliver, S. W.; Colman, P. M.; Varghese, J. N.; Ryan, D. M.; Woods, J. M.; Bethell, R. C.; Hotham, V. J.; Cameron, J. M.; Penn, C. R. Nature 1993, 363, 418. https://doi.org/10.1038/363418a0
11. Chand, P.; Kotian, P. L.; Dehghani, A.; El-Kattan, Y.; Lin, T.-H.; Hutchison, T. L.; Babu, Y. S.; Bantia, S.; Elliott, A. J.; Montgomery, J. A. J. Med. Chem. 2001, 44, 4379. https://doi.org/10.1021/jm010277p
12. Jacob, G. S. Curr. Opin. Struct. Biol. 1995, 5, 605. https://doi.org/10.1016/0959-440X(95)80051-4
13. Treadway, J. L.; Mendys, P.; Hoover, D. J. Expert. Opin. Investig. Drugs 2001, 10, 439. https://doi.org/10.1517/13543784.10.3.439
14. Groopman, J. E. Rev. Infect. Dis.1990, 12, 931. https://doi.org/10.1093/clinids/12.5.931
15. Karlsson, G. B.; Butters, T. D.; Dwek, R. A.; Platt, F. M. J. Biol. Chem. 1993, 268, 570. https://doi.org/10.1016/S0021-9258(18)54189-2
16. Nishimura, Y.; Satoh, T.; Adachi, H.; Kondo, S.; Takeuchi, T.; Azetaka, M.; Fukuyasu, H.; lizuka, Y. J. Med. Chem. 1997, 40, 2626. https://doi.org/10.1021/jm9606271
17. Zitzmann, N.; Mehta, A. S.; Carrouée, S.; Butters, T. D.; Platt, F. M.; McCauley, J.; Blumberg, B. S.; Dwek, R. A.; Block, T. M. Proc. Natl. Acad. Sci. 1999, 96, 11878. https://doi.org/10.1073/pnas.96.21.11878
18. Janssen, P. A. J. Brit. J. Anaesth. 1962, 34, 260. https://doi.org/10.1093/bja/34.4.260
19. Awouters, F. H. L.; Lewi, P. J. Arzneimittelforschung 2007, 57, 625. https://doi.org/10.1055/s-0031-1296660
20. Plenge, P.; Mellerup, E. T.; Honore, T.; Honore, P. F. J. Pharm. Pharmacol. 1987, 39, 877. https://doi.org/10.1111/j.2042-7158.1987.tb03121.x
21. Stokbroekx, R. A.; Luyckx, M. G. M.; Willems, J. J. M.; Janssen, M.; Bracke, J. O. M.; Joosen, R. L. P.; Wauwe, J. P.; Van Levocabastine, R. Drug Dev. Res. 1986, 8, 87. https://doi.org/10.1002/ddr. 430080111
22. Zhu, J. P. and Bienayme, H. Multicomponent Reactions, Wiley VCH: Weinheim, Germany 2004.
23. Vereshchagin, A. N. Russ. Chem. Bull. 2017, 66, 1765. https://doi.org/10.1007/s11172-017-1950-1
24. Dömling, A. Chem. Rev. 2006, 106, 17. https://doi.org/10.1021/cr0505728
25. Schopf, C. Angew. Chem. 1937, 50, 779.
26. Liu, H.; Zhou, Z.; Sun, Q.; Li, Y.; Li, Y.; Liu, J.; Yan, P.; Wang, D.; Wang, C. ACS Comb. Sci. 2012, 14, 366. https://doi.org/10.1021/co300022f
27. Li, Y.; Xue, Z.; Ye, W.; Liu, J.; Yao, J.; Wang, C. ACS Comb. Sci. 2014, 16, 113. https://doi.org/10.1021/co4001502
28. Vereshchagin, A. N.; Karpenko, K. A.; Elinson, M. N.; Dorofeeva, E. O.; Goloveshkin, A. S.; Egorov, M. P. Mendeleev Commun. 2018, 28, 384. https://doi.org/10.1016/j.mencom.2018.07.014
29. Vereshchagin, A. N.; Karpenko, K. A.; Elinson, M. N.; Goloveshkin, A. S.; Ushakov, I. E.; Egorov, M. P. Res. Chem. Intermed. 2018, 44, 5623. https://doi.org/10.1007/s11164-018-3444-7
30. Vereshchagin, A. N.; Karpenko, K. A.; Elinson, M. N.; Goloveshkin, A. S.; Dorofeeva, E. O.; Egorov, M. P. Res. Chem. Intermed. 2020, 46, 1183.
31. Sharma, M. G.; Vala, R. M.; Patel, D. M.; Lagunes, I.; Fernandes, M. X.; Padrón, J. M.; Ramkumar, V.; Gardas, R. L.; Patel, H. M. ChemistrySelect 2018, 3, 12163-12168. https://doi.org/10.1002/slct. 201802537
32. Sharma, M. G.; Rajani, D. P.; Patel, H. M. Royal Soc. Open Sci. 2017, 4, 170006. http://dx.doi.org/10.1098/rsos. 170006
33. Vereshchagin, A. N.; Karpenko, K. A.; Elinson, M. N.; Gorbunov, S. V.; Anisina, Yu. E.; Egorov, M. P. Russ. Chem. Bull. 2018, 67, 1534. https://doi.org/10.1007/s11172-018-2252-y
34. Vereshchagin, A. N.; Karpenko, K. A.; Elinson, M. N.; Gorbunov, S. V.; Gordeeva, A. M.; Proshin, P. I.; Goloveshkin, A. S.; Egorov, M. P. Monatsh. Chem. 2018, 149, 1979. https://doi.org/10.1007/s00706-018-2187-x
35. Vereshchagin, A. N.; Karpenko, K. A.; Iliyasov, T. M.; Elinson, M. N.; Dorofeeva, E. O.; Fakhrutdinov, A. N.; Egorov, M. P. Russ. Chem. Bull.2018, 67, 2049. https://doi.org/10.1007/s11172-018-2327-9
36. Patel, D. M.; Sharma, M. G.; Vala, R. M.; Lagunes, I.; Puerta, A.; Padrón, J. M.; Rajani, D. P.; Patel, H. M. Bioorg. Chem. 2019, 86, 137-150. https://doi.org/10.1016/i.bioorg.2019.01.029
37. Sharma, M. G.; Vala, R. M.; Patel, H. M. RSC Adv. 2020, 10, 35499-35504. http://dx.doi.org/10.1039/DORA06738E
38. Elinson, M. N.; Vereshchagin, A. N.; Feducovich, S. K.; Zaimovskaya, T. A.; Starikova, Z. A.; Belyakov, P. A.; Nikishin, G. I. Tetrahedron Lett. 2007, 48, 6614. https://doi.org/10.1016/j.tetlet.2007.07.119
39. Vereshchagin, A. N.; Elinson, M. N.; Egorov, M. P. RSC Adv. 2015, 5, 98522. http://dx.doi.org/10.1039/C5RA19690F
40. Elinson, M. N.; Feducovich, S. K.; Zaimovskaya, T. A.; Vereshchagin, A. N.; Nikishin, G. I. Russ. Chem. Bull. 2005, 54, 673.
https://doi.org/10.1007/s11172-005-0304-6
41. Elinson, M. N.; Vereshchagin, A. N.; Stepanov, N. O.; Ilovaisky, A. I.; Vorontsov, A. Y.; Nikishin, G. I. Tetrahedron 2009, 65, 6057.
https://doi.org/10.1016/j.tet.2009.05.062
42. Elinson, M. N.; Vereshchagin, A. N.; Nasybullin, R. F.; Bobrovsky, S. I.; Ilovaisky, A. I.; Merkulova, V. M.; Bushmarinov, I. S.; Egorov, M. P. RSC Adv. 2015, 5, 50421. http://dx.doi.org/10.1039/C5RA03452C
43. Vereshchagin, A. N.; Elinson, M. N.; Nasybullin, R. F.; Ryzhkov, F. V.; Bobrovsky, S. I.; Bushmarinov, I. S.; Egorov, M. P. Helv. Chim. Acta. 2015, 98, 1104.
https://doi.org/10.1002/hlca. 201500026
44. Elinson, M. N.; Vereshchagin, A. N.; Ryzhkov, F. V. Chem. Rec. 2016, 16, 1950.
https://doi.org/10.1002/tcr. 201600044
45. Elinson, M. N.; Vereshchagin, A. N.; Ryzhkov, F. V. Curr. Org. Chem. 2017, 21, 1427.
http://dx.doi.org/10.2174/1385272820666161017170200
46. Vereshchagin, A. N.; Elinson, M. N.; Anisina, Y. E.; Ryzhkov, F. V.; Novikov, R. A.; Egorov, M. P. ChemistrySelect 2017, 2, 4593.
https://doi.org/10.1002/slct. 201700606
47. Elinson, M. N.; Vereshchagin, A. N.; Anisina, Y. E.; Fakhrutdinov, A. N.; Goloveshkin, A. S.; Egorov, M. P. Eur. J. Org. Chem. 2019, 4123.
https://doi.org/10.1002/ejoc. 201900319
48. Elinson, M. N.; Ryzhkov, F. V.; Vereshchagin, A. N.; Korshunov, A. D.; Novikov, R. A.; Egorov, M. P. Mendeleev Commun. 2017, 27, 559.
https://doi.org/10.1016/j.mencom.2017.11.006
49. Bruker. APEX-III. Bruker AXS Inc., Madison, Wisconsin, USA, 2018.
50. Krause, L.; Herbst-Irmer, R.; Sheldrick, G. M.; Stalke, D. J. Appl. Cryst. 2015, 48, 3. http://doi.org/10.1107/S1600576714022985
51. Sheldrick, G. M. Acta Cryst. 2015, A71, 3.
http://doi.org/10.1107/S2053273314026370
52. Sheldrick, G. M. Acta Cryst. 2015, C71, 3
http://dx.doi.org/10.1107/S2053229614024218

This paper is an open access article distributed under the terms of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/)

[^0]: a Reaction conditions: aldehyde $\mathbf{1}(6 \mathrm{mmol})$, ester of 3 -oxocarboxylic acid $\mathbf{2}(3 \mathrm{mmol})$, malononitrile or ethylcyanoacetate $\mathbf{3}(3 \mathrm{mmol})$, ammonium acetate $\mathbf{4}(6 \mathrm{mmol})$ were reflux in methanol (10 mL) for 2 h . Monitored by TLC. ${ }^{\text {b }}$ Isolated yields.

