Supplementary Material

Synthesis and exploratory biological evaluation of 3-[(*N*-4benzyloxyphenyl)iminoethyl]- and 3-(1-hydrazonoethyl)-4-hydroxycoumarins

Meloddy H. Manyeruke^a, Heinrich C.Hoppe^{b,c}, Michelle Isaacs^c, Ronnett Seldon,^d Digby F. Warner,^e Rui W.M. Krause,^{a,c*}and Perry T. Kaye^{a,c*}

^aDepartment of Chemistry, ^b Department of Biochemistry and Microbiology and ^cCentre for Chemico- and Biomedicinal Research (CCBR), Rhodes University, Makhanda/Grahamstown, 6140, South Africa. ^dDrug Discovery and Development Centre (H3-D), Department of Chemistry, University of Cape Town, Rondebosch 7701, South Africa ^eMolecular Mycobacteriology Research Unit, Department of Pathology and Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa Email: P.Kaye@ru.ac.za; R.Krause@ru.ac.za

Table of Contents

Biological studies	S2
NMR spectra	S5
HRMS Spectrometric data	S25

Biological studies

To assess antimalarial activity, percentage viability of *Plasmodium falciparum* (3D7 strain) parasites incubated for 48 hours with 20 μ M of the test compounds was determined by detecting plasmodium lactate dehydrogenase (pLDH) activity as described previously by Lunga *et al.*(*ChemMedChem* **2018**, *13*, 1352-1362). For anti-trypanosomal and cytotoxicity evaluation, percentage viability of *Trypanosoma brucei brucei* (427 strain) parasites or HeLa cells incubated with 20 μ M of the test compounds for 48 hours was determined using resazurin, as previously described by Veale and Hoppe (*Med. Chem. Commun.* **2018**, *9*, 2037).

Table 1. Bioassay data for compounds **9a-f** showing % viability of pLDH, *T.b. brucei* and HeLa cells at 20 μM concentrations

	R			
	D	PLDH %	T.b. brucei	Cytotoxicity
Compound	K	parasite	% parasite	% HeLa
		viability	VIADIIILY	viability
				VIADIIILY
9a	Н	93.0	33.5	82.6
9b	F	100.0	37.9	77.7
9c	Cl	94.2	31.3	96.3
9d	Br	100.0	23.3	100.0
9e	Me	100.0	96.4	100.0
9f	MeO	71.1	89.1	100.0
Control		IC ₅₀ = 0.010μM ^a	IC ₅₀ = 0.022 μM ^b	IC ₅₀ = 0.019 μM ^c

Controls: ^a chloroquine; ^b pentamidine and ^c emetine

 Table 2. Bioassay data for compounds 13a-g, showing % viability of pLDH, *T.b. brucei* and HeLa and activity against mycobacterial cells at 20 μM concentrations.

 Visual

OH N Ar	Ar	PLDH % viabilityª	<i>T.b. brucei</i> % viability ^b	% HeLa cells viability ^c	Visual MIC90 7D 7H9 GLU CAS Tx(µM)	Calculated MIC90 7D 7H9 GLU CAS Tx (µM)
	Ň					
13a		100.00	97.40	96.98	>125	>125
13b		100.00	52.34	92.26	>125	>125
13c	Br	100.00	80.86	89.75	125	>125
	\bigcirc					
13d	Br	100.00	100.00	83.50	-	-
	Br O					
13e	ностон	63.93	100.22	67.78	>125	>125
13f	ОН	81.62	58.11	59.80	>125	>125
13g	но он	86.51	1.53 (IC₅₀	65.25	62.50	62.44
			0.90)			
Control		IC ₅₀ = 0.01 μΜ a	IC ₅₀ = 0.022 μΜ _b	IC ₅₀ = 0.021 μM ^c	0.019 ^d	0.007 ^d

Controls. ^a Chloroquine ^b Pentamidine ^c emetine ^d Rifampicin ^e IC_{50} value

Table 3. Bioassay data for compounds **15a-g**, showing % activity against pLDH, *T.b. brucei* and HeLa cells at 20 μ M concentrations

Compound	Ar	PLDH % viability ^a	T.b. brucei % viability ^b	Cytotoxicity % HeLa cells viability
15a	o C	100.00	96.35	78.49
15b		100.00	100.00	78.04
15c		100.00	94.57	84.71
15d		100.00	90.96	80.70
15e		100.00	64.77	72.24
15f	, CI	100.00	90.01	89.55
15g	, Br	100.00	80.49	79.38
Control	<i>""</i>	IC ₅₀ = 0.01µM ^a	IC ₅₀ = 0.022 μM	IC ₅₀ = 0.021 μM ^c

Controls. ^a chloroquine ^b pentamidine ^c emetine

NMR Spectra

Figure 1. 400 MHz ¹H NMR spectrum of compound 9a in CDCl₃.

Figure 2. 100 MHz ¹³C NMR spectrum of compound **9a** in CDCl₃.

- 2500 - 2000 - 1500 - 1000 - 500 - 0 - -500

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

Figure 6. 100 MHz ¹³C NMR spectrum of compound **9c** in CDCl₃.

Figure 8. 100 MHz ¹³C NMR spectrum of compound **9d** in CDCl₃.

1000

500

- 0

0 -10

20 10

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 f1 (ppm)

Figure 10. 100 MHz ¹³C NMR spectrum of compound 9e in CDCl₃.

Figure 12. 100 MHz ¹³C NMR spectrum of compound **9f** in CDCl₃.

3-[1-(Benzylidenehydrazono)ethyl]-4-hydroxycoumarins 13a-g

Figure 14. 150 MHz ¹³C NMR spectrum of compound 13a in CDCl₃.

Figure 15. ¹H 600 MHz NMR spectrum of compound 13b in CDCl₃.

Figure 16. 150 MHz ¹³C NMR spectrum of compound **13b** in CDCl₃.

Figure 18. 150 MHz ¹³C NMR spectrum of compound 13c in CDCl₃.

Figure 19. ¹H 600 MHz NMR spectrum of compound 13d in CDCl₃.

Figure 20. 150 MHz ¹³C NMR spectrum of compound **13d** in CDCl₃.

Figure 21. ¹H 600 MHz NMR spectrum of compound **13e** in DMSO- d_6 .

Figure 22. 150 MHz ¹³C NMR spectrum of compound **13e** in DMSO-*d*₆.

Figure 23. ¹H 400 MHz NMR spectrum of compound 13f in DMSO- d_6 .

Figure 24. 100 MHz ¹³C NMR spectrum of compound 13f in DMSO-*d*₆.

Figure 25. ¹H 400 MHz NMR spectrum of compound **13g** in DMSO- d_6 .

Figure 26. 100 MHz ¹³C NMR spectrum of compound **13g** in DMSO-*d*₆.

3-{1-[(prop-2-yn-1-yloxy)benzylidenehydrazono]ethyl}-4-hydroxycoumarins 15a-g

Figure 28. 100 MHz ¹³C NMR spectrum of compound 15a in CDCl₃.

Figure 29. ¹H 300 MHz NMR spectrum of compound **15b** in CDCl₃.

Figure 30. 75 MHz ¹³C NMR spectrum of compound 15b in CDCl₃.

Figure 32. 75 MHz ¹³C NMR spectrum of compound **15c** in CDCl₃.

Figure 34. 150 MHz ¹³C NMR spectrum of compound **15d** in CDCl₃.

Figure 36. 100 MHz ¹³C NMR spectrum of compound **15e** in CDCl₃.

Figure 38. 150 MHz ¹³C NMR spectrum of compound **15f** in CDCl₃.

Figure 40. 100 MHz ¹³C NMR spectrum of compound **15g** in CDCl₃.

HRMS Spectrometric data

9a	
Remental Composition	×
Ele Edit View Process Help	
Single Mass Analysis Tolerance = 100.0 PPM / DBE: min = -1.5, max = 100.0 Element prediction: Off Number of isotope peaks used for i-FIT = 3 Monoisotopic Mass, Even Electron lons 1303 formula(e) evaluated with 108 results within limits (up to 100 closest results for each mass) Elements Used:	<
Mass Cak. Mass mDa PPM DBE Formula I+FIT I+FIT Norm Fit Conf % C H N O S	^
2500.1393 300.1392 0.13 0.16 155 12.4 HOU NO 4 10.2 14 10 1 366.1393 0.40 1.15 C1 / HOU NO 25 33.8 12.2668 0.00 17 20 7 2 1 366.1396 0.9 2.3 6.5 C16 H24 N3 O6 33.8 23.291 0.00 16 24 3 6 1 386.1406 -11 -2.8 2.5 C2 H16 N5 20.9 10.472 0.00 25 16 5 386.1341 -1.6 -41.1 2.5 C12 H24 N3 O11 26.7 16.271 0.00 72 2 1 386.1342 -2.4 6.2 -1.5 C7 H24 N5 O13 25.7 19.24 0.00 72 24 5 13 386.1424 -2.5 -5.5 1.5 C13 H28 N3 O6 S2 37.2 26.778 0.00 13 28 3 6 2 386.1424 -2.9 -7.5 C13 H28 N3 O6 S2 37.2 26.778 0.00 13 28 3<	~
MME1 MS_Direct_211013_RU_3613 (0.103) Cm (13:24) 1: TOF MS E8	<u>;+</u>
306.1395 3.08e+0)5
259.0458 287.0417 299.9971 309.2051 389.1455 499.1245 424.0946 431.1978 445.2127 484.1083 260 270 280 290 300 310 320 340 350 360 370 380 390 400 410 420 430 440 450 460 470 480 For Help, press F1 For Help, press F1	ılz
9b	
Elemental Composition Ele gdt View Process tele Single Mass Analysis Tolerance = 100.0 PPM / DBE: min = -1.5, max = 100.0 Element prediction: Off Number of isotope peaks used for i+FIT = 3 Monoisotopic Mass, Even Electron Ions 4033 formula(e) evaluated with 436 results within limits (up to 100 closest results for each mass) Elements Used:	
Mass Calc. Mass mDa PPM DBE Formula I+FIT I+FIT Norm Fit Conf % C H N O S F 409.1296 409.1296 0.0 0.0 11.5 C22 H21 N 0 S F 409.1296 409.1296 0.0 0.0 11.5 C22 H21 N 0 S F 404.1294 0.2 0.5 15.5 C24 H19 N 0 C H N 0 S F 404.1294 0.2 0.5 15.5 C24 H19 N 0 E N 1 4 1 404.1294 0.2 0.5 S C14 H70 YO 4 F3 2.12 10.906 0.00 14 17 7 4 3 404.1292 0.4 1.0 6.5 C16 H23 N3 06 5 F 30.4 20.070 0.00 16 23 3 1 1 1 1	
MME2 MS_Direct_211013_RU_3717 (0.118) Cm (17:24) 1: TOF MS E8	;+
100- 404.1296 1.21e+01)5

~]					
-			405.1327 405.1327	1114	
0-1	277.0365 286.0367 305.0323 317.9870 270.0365 286.0367 305.0323 319.9871 270 280 290 300 310 320 330 340	347.2319 350 360 370 380 390 400	406.1352 410 420	427.1144 442.0853 430 440 450 460	502.0972
or Helr	nress F1				

9c

🔀 Elemental Composition Eile Edit View Process Help

🖬 🖻 🖻 🖉 🖾 🛛 🖾

Single Mass Analysis Tolerance = 100.0 PPM / DBE: min = -1.5, max = 100.0

Element prediction: Off Number of isotope peaks used for i-FIT = 3 Monoisotopic Mass, Even Electron Ions

9d

Elemental Composition Eile Edit View Process Help

Construction of the second secon

2829 formu Elements U	24 tormula(e) evaluated with 153 results within limits (up to 1 uu closest results tor each mass) aments Used:														
Mass	Calc. Mass	mDa	PPM	DBE	Formula	i-FIT	i-FIT Norm	Fit Conf %	C	н	N	0	S Br	·	
400.1548	400.1549	-0.1	-0.2	15.5	C25 H22 N O4	18.6	4.135	1.60	25	22	1	4		<u>i</u>	
	400.1542	0.6	1.5	6.5	C17 H26 N3 O6 5	32.8	18.360	0.00	17	26	3	6	1		
	400.1559	-0.0	-2.7	0.5	C13 H31 N5 O4 Br	41.0	26.602	0.00	13	31	5	4	1		
	400.1562	-1.4	-3.5	20.5	C26 H18 N5	20.6	6.135	0.22	26	18	5				
	400.1567	-1.9	-4.7	2.5	C13 H26 N3 O11	26.4	12.019	0.00	13	26	3	11			
	400.1527	2.1	5.2	-1.5	C8 H26 N5 O13	28.9	14.470	0.00	8	26	5	13			
	400.1522	2.6	6.5	16.5	C21 H18 N7 O2	16.4	1.944	14.31	21	18	7	2	1 1	×	
MME5 MS_Direct_3	211013_RU_4	i0 14 (0.1	107) Cm	n (14:22)						400	.1548		1: TOF MS ES+ 2.01e+005	
-															
%-															
														422.1367	
1												401.	1580		
														423.1398	
2	73.0620		301.05	571 ^{3*}	14.0115							402	.1614	438.1090 445.2123 459.2282 498.1215	
2	70 280	290	300	31	0 320 330 3	340	350 360	370	380	390	4	00	410	420 430 440 450 460 470 480 490 500	
For Help, pres	; F1														

9f

🔀 Element	tal Compe	osition																									
Eile Edit Y	jew <u>P</u> roce	ss <u>H</u> elp																									
	866	5 M [
Single M Tolerance Element pi Number of Monoisoto; 3065 formi	igte Mass Analysis srance = 100.0 PPM // DBE: min = -1.5, max = 100.0 ment prediction: Off nber of isotope peaks used for i-FIT = 3 noisotopic Mass, Even Electron Ions 5 formula(e) evaluated with 178 results within limits (up to 100 closest results for each mass) ments Used:																										
Elements (~										
Mass	ass Calc. Mass mDa PPM DBE Formula i+FIT i+FIT Norm Fit Conf % C H N O S Br																^										
416.1500	416.149 416.150 416.150 416.150 416.150 416.151 416.151 416.151 416.151	3 0.2 5 -0.5 7 -0.7 9 -0.9 1 0.9 1 -1.1 34 1.6 .6 -1.6 .7 -1.7	0.5 -1.2 -1.7 -2.2 2.2 -2.6 3.8 -3.8 -3.8 -4.1	15.5 11.5 14.5 0.5 6.5 20.5 4.5 2.5 -0.5	C25 H22 C18 H22 C26 H26 C13 H31 C17 H26 C26 H18 C17 H31 C13 H26 C13 H26 C14 H31	N 05 N7 03 5 N 52 N5 05 Br N3 07 5 N5 0 N5 5 Br N3 012 N5 52 Br	19. 32. 35. 41. 32. 21. 41 23 41	4 8.310 2 21.12 7 24.61 2 30.11 .8 21.67 .4 10.21 .3 30.11 .8 12.7 .4 10.22 .3 30.11	21 17 12 43 55 55 52 704 232	0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00		25 18 26 13 17 26 17 13 13	22 26 31 26 18 31 26 35	1 7 1 5 3 5 5 3 5	5 3 5 7 1 12	1 2 1 1 2	1 1 1										
MME6 MS_Direct_: 100-	211013_F	(U_41 13 (0	.103) Cr	n (13:24))										4	16.15	500									1:	TOF MS ES+ 2.68e+005
% -																											
262.9	825	289.0562				330.0063										4	418.1553	438	.1315 439.1 454	350 .1046 _	461.	2082	475.2	233			514.1183
27 For Help, pres	70 280 c E1) 290	300	310	320	330	340	350	360	370	380	390	0 4	400	410	4	420 4	30	440	450	46	0 4	\$70	480	490	500	510

ARKIVOC 2022, v, S1-S37

13a

13b

13c

13e

13f

ARKIVOC 2022, v, S1-S37

General Papers

15a

15b

15c

🔀 Elemer	ntal Compositi	ion																					
Eile Edit	View Process		il sat																				
Single I	Mass Analys	is 🔛																					~
Tolerance	e = 100.0 PPN	1 / DB	E: min =	= -1.5,	max = 100.	.0																	
Number of	prediction. Oil of isotope peak	ks used f	ior i-FIT :	= 3																			
Monoisoti 2733 form	opic Mass, Ever nula(e) evaluate	n Electror ed with 16	n lons 65 result	s within	limits (up ti	o 100 closes	t results	for each	mass)														
Elements	Used:																						~
Mass 391 1295	Calc. Mass	mDa	PPM	DBE	Formula	12 05	i-FIT	i-FIT No	rm Fit	Conf %	C	H 19	N 2	0	S Br								<u>^</u>
	391.1287 391.1303	0.8	2.0	5.5 13.5	C14 H23 N	14 07 5	32.8 32.7	4.683	0.9	3 2	14	23 23	4	7	1								=
	391.1305 391.1306	-1.0	-2.6 -2.8	-0.5 2.5	C10 H28 M	46 O5 Br 02 5 Br	35.6 33.9	7.536 5.837	0.0	- 5 9	10 18	28 32	6	5 2	1								
	391.1307 391.1280	-1.2 1.5	-3.1 3.8	19.5 3.5	C23 H15 M C14 H28 M	16 O 16 S Br	31.7 35.5	3.612 7.369	2.7 0.0	0 6	23 14	15 28	6 6	1	1 1								
	391.1312 391.1313	-1.7 -1.8	-4.3 -4.6	1.5 -1.5	C10 H23 N C11 H32 N	↓4 O12 ↓6 52 Br	32.0 36.3	3.931 8.172	1.9 0.0	6 3	10 11	23 32	4 6	12	2 1								
	391.1274 391.1273	2.1 2.2	5.4 5.6	0.5 7.5	C13 H27 C	011 5 02 Br	32.0 33.9	3.875 5.764	2.0 0.3	7 1	13 21	27 28		11 2	1 1								
	391.1269 391.1321	2.6 -2.6	6.6 -6.6	18.5 0.5	C26 H19 M C11 H27 M	125 140752	32.1 33.9	4.000 5.837	1.8 0.2	3 9	26 11	19 27	2 4	7	1 2								
	391.1266 391.1262	2.9 3.3	7.4 8.4	-1.5 9.5	C13 H32 N C18 H23 N	12 O4 5 Br 14 O2 52	34.4 33.2	6.252 5.094	0.1 0.6	9 1	13 18	32 23	2 4	4 2	1 1 2								
	391.1328 391.1331	-3.3 -3.6	-8.4 -9.2	9.5 -1.5	C19 H23 N C14 H32 C	J2 O5 5 07 Br	32.2 33.9	4.071 5.822	1.7 0.3	1 0	19 14	23 32	2	5 7	1 1								
	391.1334 301 1254	-3.9 4 1	-10.0	18.5	C27 H19 C	03	31.4	3.259	3.8	4 2	27 17	19 19	4	3 7									~
ММНЗ					<u></u>	1		1		1			1			T .		T			_		705 10 50
MMH3	soft 🔸 📕 I	lperius Bac	:k	A ACC	UITY UP	👼 Phenoli	cs_T3	U 🖾 D	ata		🔄 Syster	n (C:)		🧿 MUL	TIBOOT		💡 SYNAPT G2		💆 Experime	ent	W MM_RU_	211	Elemental
MS_Direct_2	11013_RU_59 2	24 (0.144)	Cm (14:2	24-2:5)												459.1	285						1: TOF MS ES+ 3.05e5
1																							
1																							
1																							
*																							
1																							
								391.12	95								460.1317						
1										119	1117												
										- 13													
-									00 4000						456.120	00					513.1753		
	317.0457							3	22.1329		414.114	⁴⁰ 429.0	0852)	461.1342	481.11	108 485 145	499.1590	.1633	527	.1896
04,					53.1130	375.0	957				II, <u>.</u>				450	ĻII,	1	<u>] </u>			باليري		

15d

🔀 Element	tal Compositi	ion															
<u>E</u> ile <u>E</u> dit ⊻	jew <u>P</u> rocess	Help															
	16 6	<u>M</u>	\mathbf{X}														
Single M	lass Analys	is 4 / DB	E: min =	15	nov = 100.0												<u>^</u>
Element p	rediction: Off	. ,	E. min -	-1.5, 1	nax - 100.0												
Number of	fisotope peal	ks used f	or i-FIT =	3													
2932 formi	pic mass, Evei ula(e) evaluate	n Electror ed with 17	1 ions 10 results	within I	limits (up to 100 closes	st results	for each m	ass)									
Elements (Used:																~
Mass	Calc. Mass	mDa	PPM	DBE	Formula	i-FIT	i-FIT Norm	Fit	Conf %	СН	N	0	S B	3r			~
405.1457	405.1459	-0.2	-0.5	13.5	C24 H25 N2 52	73.2	23.875	0.0		24 25	5 2	-	2	1			
	405.1463	-0.4	-1.0	2.5	C19 H34 O2 5 Br	78.7	29.140	0.0)	19 34	1 0	2	1 1	1			
L	405.1450 405.1464	0.7 -0.7	-1.7	14.5 19.5	C23 H21 N2 O5 C24 H17 N6 O	56.6 58.7	7.240 9.383	0.0	7	23 21 24 17	2	5					
	405.1469 405.1470	-1.2	-3.0 -3.2	1.5	C11 H25 N4 O12 C12 H34 N6 52 Br	61.3 78.6	11.982	0.0	נ	11 25	; 4 ; 6	12	2 1	1			
	405.1444	1.3	3.2	5.5	C15 H25 N4 O7 5	70.4	21.069	0.0	5	15 25	4	7	1				
	405.1436 405.1478	-2.1	-5.2	3.5 0.5	C15 H30 N6 5 Br C12 H29 N4 O7 52	78.5 73.9	29.206 24.549	0.0)	15 30) b) 4	7	2 1	1			
	405.1431 405.1484	2.6 -2.7	6.4 -6.7	0.5 9.5	C14 H29 O11 5 C20 H25 N2 O5 5	71.0 69.8	21.683 20.475	0.0) 1	14 29 20 25) ; 2	11 5	1				
	405.1429	2.8	6.9	7.5	C22 H30 O2 Br	78.6	29.269	0.0	j.	22 30		2	. 1	1			
	405.1488 405.1425	-3.1 3.2	-7.7	-1.5 18.5	C15 H34 O7 Br C27 H21 N2 S	/8./ 69.7	29.380 20.352	0.0)	15 34 27 21	2		1	1			
	405.1491 405.1423	-3.4 3.4	-8.4 8.4	18.5 -1.5	C28 H21 O3 C14 H34 N2 O4 5 Br	62.7 78.7	13.391 29.325	0.0))	28 21	2	3 4	1 1	1			
	405.1419	3.8	9.4	9.5	C19 H25 N4 O2 52	73.4	24.042	0.0	5	19 25	5 4 6	2	2				~
MMH4						Nº N						· · ·					
X 2 Microso	ft 🖌 📕	lperius Bac	k		UITY UP 🗍 🏛 Pheno	lics T <u>3</u>	Dat.			System (C:		Co ML	ILTIBOOT	r 📲 şynapt g2	Experim	ent	J 211 Remental
MMH4	1						1				1			1.*			1 440
MS_Direct_21	1013_RU_60 2	25 (0.168)	Cm (13:3	6-(2:7+1	(20:130))			405.	1457								1: TOF MS ES+ 1.63e5
1																	
										427	1274						
1																	
1																	
~																	
1																	
									406.1486								
											428.13	306					
1													449.10	091			
309	9.2039			047.00-	10				406.1852		1	443	5.1019	464.2184		503 1137	
	310.2068 3	26.3787		347.229	10	:	389.1105		42	24.1199	429.1	347	L II	459.0641 465.0859		504.1141	531.1134 525.0960 532.1153
04,,.	310 320	330	340		0 360 370	380	390	400	μι 410		111 430	440	<u>, </u>		480 490		

15e

15g

