A Platinum Open Access Journal for Organic Chemistry

New method for the acylation of benzofurans toward the synthesis of 6 H -indeno[2,1-b]benzofuran-6-ones and 2,2-bibenzofurans

Xuebing Zheng, Chuanjun Song, and Yonggang Meng*
College of Chemistry, and Green Catalysis Center, Zhengzhou University, Zhengzhou 450001, China
E-mail: 202011151030123@gs.zzu.edu.cn

Received 08-30-2021
Accepted Manuscript 02-11-2022
Published on line 03-24-2022

Abstract

We have developed a TFAA-mediated acylation of benzofurans using carboxylic acids as acylating agents. The reaction does not require the aid of Lewis acid catalysts, and lead to the regioselective formation of 2-acyl benzofurans. Among these, 2-bromophenylacyl benzofurans and 2-(2-bromophenyl)acetyl benzofurans could be converted into 6 H -indeno[2, 1-b]benzofuran-6-ones and 2, 2'-bibenzofurans, respectively.

Keywords: TFAA, 2-acyl benzofurans, 6H-indeno[2, 1-b]benzofuran-6-ones, 2, 2'-bibenzofurans

Introduction

2-Substituted benzofurans have shown unique anti-fungal, ${ }^{1,2}$ anti-viral, ${ }^{3}$ anti-diabetic, ${ }^{4}$ anti-tumor, ${ }^{5,6}$ antiosteoporosis ${ }^{7}$ and anti-Alzheimer's disease activities. ${ }^{8}$ Besides, many medical products such as amiodarone hydrochloride ${ }^{9}$ are also derived from 2-substituted benzofurans. A number of strategies for the synthesis of 2substituted benzofurans have been developed. The base-catalyzed intermolecular or intramolecular condensation reactions to construct a fused furan ring to form 2 -substituted benzofuran derivatives is the most common synthetic method (Scheme 1a). ${ }^{10,11} 2$-Acylbenzofurans can also be obtained by Lewis acid catalyzed acylation of benzofurans using acid anhydrides or acyl chlorides as acylating agents (Scheme 1b). ${ }^{12-15}$ The trifluoroacetic anhydride (TFAA)-mediated acylation ${ }^{16}$ using carboxylic acids as the acylating agent have been applied to arenes ${ }^{17}$ and heteroarenes including thiophenes, ${ }^{18}$ benzothiophenes, ${ }^{19}$ pyrroles, ${ }^{20}$ and carbazoles. ${ }^{21}$ However, to the best of our knowledge, this protocol has never been used with benzofurans, although a single literature precedent with furans as substrates has been reported. ${ }^{22}$ Herein, we report the TFAA-mediated acylation of benzofurans using carboxylic acids as the acylating agent. The reaction does not require the aid of Lewis acid catalysts, and leads to the regioselective formation of 2-acyl benzofurans (Scheme 1c).

Previous work
(a)

(b)

This work
(c)

Scheme 1. Synthetic routes toward 2-substituted benzofuran derivatives.

Results and Discussion

Our optimization of reaction conditions commenced with acetic acid as the acylating agent. The reaction was complete in different solvents such as N, N-dimethylformamide (DMF), dichloromethane (DCM) and 1,2dichloroethane (DCE) under appropriate temperature conditions in the presence of 5 equivalent of TFAA. It was found that the optimum yield was 88% when the solvent was DCE and acylation reaction system of benzofuran with acetic acid reacted at $70^{\circ} \mathrm{C}$ under TFAA-mediated conditions. Next, the substrate scope was examined and the results were shown in Table 1. Acylation with a variety of aliphatic carboxylic acids provided the corresponding 2-acylbenzofurans 3a-e in good to excellent isolated yields. While acylation with 2-(2-
bromophenyl)acetic acid gave $\mathbf{3 f}$ in 66% isolated yield, reaction of 2-(2-bromophenyl)proponic acid was less satisfactory and resulted in the formation of $\mathbf{3 g}$ in 36% yield only. Under the reaction conditions, acylation with aromatic acids proceeded as expected to provide 3h-j in good isolated yields. Finally, acylation of representative substituted benzofurans were examined, which resulted in the formation of $\mathbf{3 k} \mathbf{k}$ - \mathbf{m} in moderate to excellent isolated yields.

Table 1. Substrate scope of acylation reaction

3e, 67\%

3h, 68\%

3k, 53\%

3f, 66%

31, 48\%

3g, 36\%

3m, 86\%

Based on the results obtained above and literature reports, ${ }^{16,20,23}$ a plausible mechanism is depicted in Scheme 2. Mixed anhydride formation from acid 1 and TFAA provided A and trifluoroacetic acid (TFA). Because of the strong eletron-withdrawing nature of the trifluoromethyl group, protonation of the alternative carbonyl group by TFA generated the acylating agent B, which reacted with benzofuran $\mathbf{2}$ to provide $\mathbf{3}$ via intermediate \mathbf{C}. The fact that no trifluoroacylation product was observed could be attributed to the inability for TFAA to be protonated.

Scheme 2. Proposed mechanism.

Having established the method, we then turned our attention to the transformation of the products into other useful molecules. First, palladium-catalyzed C-H activation ${ }^{24,25}$ of $\mathbf{3 j}, \mathbf{3 I}$ provided fluorenores $\mathbf{4}$ and $\mathbf{5}$ in
80% and 98% isolated yields, respectively (Scheme 3). Second, under the joint action of FeCl_{3} and $2,2,6,6-$ tetramethyl-3,5-heptanedione (TMHD), 3f, 3g could be converted into 2, 2'-bibenzofurans 6 and 7, respectively, in moderate isolated yields (Scheme 4). The pharmacological activities of 2,2'-bibenzofurans have attracted much attention. ${ }^{5}$ Literature methods for the synthesis of 2,2 '-bibenzofurans include homogeneous coupling of benzofurans ${ }^{26,27}$ or 2-(2,2-dibromovinyl)phenols, ${ }^{28}$ and condensation of 2-acetylbenzofurans with benzoquinones. ${ }^{29}$ However, these either suffered from limited substrate scope or could only be applied to the synthesis of symmetrical 2, 2'-bibenzofurans. The method reported herein provided a new entry to access unsymmetrically substituted 2, 2'-bibenzofurans.

Scheme 3. Synthesis of 6H-indeno[2,1-b]benzofuran-6-ones 4 and 5.

Scheme 4. Synthesis of 2,2'-bibenzofurans 6 and 7.

Conclusions

We have developed a TFAA-mediated approach for the acylation of benzofurans using carboxylic acid as the acylating agent. A series of 2-acyl benzofuran derivatives have been synthesized. Among these, $\mathbf{3 j}, \mathbf{3 I}$ and $\mathbf{3 f}$, $\mathbf{3 g}$ could be further converted into 6 H -indeno[2,1-b]benzofuran-6-ones 4, 5 and 2,2'-bibenzofurans 6, 7, respectively.

Experimental Section

General. Melting points were determined on a XT4A hot-stage apparatus and are uncorrected. IR spectra were obtained using a PerkinElmer FT/IR spectrometer. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were obtained on a Agilent AV400 instrument. High-resolution mass spectra were recorded on a Micromass Q-TOF mass spectrometer.

General procedure for the preparation of $\mathbf{3 a - m}$. TFAA (5.0 mmol) was added to a solution of benzofurans 1a$\mathbf{m}(1.0 \mathrm{mmol})$ and acids $\mathbf{2 a}-\mathrm{m}(1.2 \mathrm{mmol})$ in DCE $(25 \mathrm{~mL})$. The resulting mixture was heated at $70^{\circ} \mathrm{C}$ until the reaction was completed (reaction monitored by TLC). The mixture was poured into water (20 mL), neutralized with saturated aqueous $\mathrm{NaHCO}_{3}(20 \mathrm{~mL})$, then extracted with EtOAc ($3 \times 40 \mathrm{~mL}$). The combined organic extracts were dried over anhydrous sodium sulfate, filtered, and then evaporated in vacuo. The residue was purified by column chromatograph on silica gel to afford 3a-m.

1-(Benzofuran-2-yl)ethan-1-one (3a). ${ }^{30}$ The title compound was prepared according to the general procedure by stirring a mixture of benzofuran ($110 \mu \mathrm{~L}, 1.0 \mathrm{mmol}$), acetic acid ($69 \mu \mathrm{~L}, 1.2 \mathrm{mmol}$) and TFAA ($705 \mu \mathrm{~L}, 5.0$ $\mathrm{mmol})$ in DCE (25 mL) at $70{ }^{\circ} \mathrm{C}$ for 48 h . The crude product was purified by column chromatography on silica gel (0.5% EtOAc in petroleum ether) to afford compound 3 a ($141 \mathrm{mg}, 88 \%$) as a colorless solid: mp $61-62{ }^{\circ} \mathrm{C}$; IR (neat, cm^{-1}): $v_{\max } 3120,1673,1555,1295,928 ;{ }^{1} \mathrm{H} N \mathrm{NR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.71(\mathrm{~d}, \mathrm{~J} 7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.58(\mathrm{~d}, \mathrm{~J}$ $8.4 \mathrm{~Hz}, 1 \mathrm{H}$), $7.51(\mathrm{~s}, 1 \mathrm{H}), 7.48(\mathrm{t}, J 7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.32(\mathrm{t}, J 7.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.62(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm})^{13} \mathrm{C}$ NMR (100 MHz , CDCl_{3}): δ 188.7, 155.7, 152.6, 128.3, 127.1, 123.9, 123.3, 113.1, 112.5, 26.5 ppm ; HRMS (ESI): m / z calcd for $\mathrm{C}_{10} \mathrm{H}_{9} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+} 161.0597$; found 161.0596.
1-(Benzofuran-2-yl)butan-1-one (3b). The title compound was prepared according to the general procedure by stirring a mixture of benzofuran ($110 \mu \mathrm{~L}, 1.0 \mathrm{mmol}$), butyric acid ($106 \mathrm{mg}, 1.2 \mathrm{mmol}$) and TFAA ($705 \mu \mathrm{~L}, 5.0$ mmol) in DCE (25 mL) at $70^{\circ} \mathrm{C}$ for 48 h . The crude product was purified by column chromatography on silica gel (0.5% EtOAc in petroleum ether) to afford compound $\mathbf{3 b}$ ($169 \mathrm{mg}, 90 \%$) as a colorless solid: mp $56-57^{\circ} \mathrm{C}$; IR (neat, cm^{-1}): $v_{\max } 2965,1682,1561,1158,743 ;{ }^{1} \mathrm{H} N \mathrm{NR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.70(\mathrm{~d}, \mathrm{~J} 7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.57(\mathrm{~d}, \mathrm{~J}$ $8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.49(\mathrm{~s}, 1 \mathrm{H}), 7.48-7.44(\mathrm{~m}, 1 \mathrm{H}), 7.30(\mathrm{t}, J 7.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.93(\mathrm{t}, J 7.4 \mathrm{~Hz}, 2 \mathrm{H}), 1.81(\mathrm{~m}, 2 \mathrm{H}), 1.02(\mathrm{t}, \mathrm{J}$ $7.4 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ 191.7, 155.7, 152.8, 128.2, 127.2, 123.9, 123.4, 112.7, 112.6, 40.9, 17.9, 14.0 ppm ; HRMS (ESI): m / z calcd for $\mathrm{C}_{12} \mathrm{H}_{13} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}$189.0910; found 189.0912.

1-(Benzofuran-2-yl)-2-methylpropan-1-one (3c). ${ }^{31}$ The title compound was prepared according to the general procedure by stirring a mixture of benzofuran ($110 \mu \mathrm{~L}, 1.0 \mathrm{mmol}$), isobutyric acid ($106 \mathrm{mg}, 1.2 \mathrm{mmol}$) and TFAA ($705 \mu \mathrm{~L}, 5.0 \mathrm{mmol}$) in DCE $(25 \mathrm{~mL})$ at $70{ }^{\circ} \mathrm{C}$ for 48 h . The crude product was purified by column chromatography on silica gel (0.5% EtOAc in petroleum ether) to afford compound $\mathbf{3 c}(113 \mathrm{mg}, 60 \%$) as a light brown oil: IR (neat, cm^{-1}): $v_{\max } 3423,2972,1680,1553,1003 ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.69(\mathrm{~d}, \mathrm{~J} 7.9 \mathrm{~Hz}$, $1 \mathrm{H}), 7.56(\mathrm{~d}, \mathrm{~J} 8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.50(\mathrm{~s}, 1 \mathrm{H}), 7.45(\mathrm{t}, \mathrm{J} 7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.29(\mathrm{t}, \mathrm{J} 7.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.50-3.45(\mathrm{~m}, 1 \mathrm{H}), 1.26(\mathrm{~d}, \mathrm{~J}$ $6.9 \mathrm{~Hz}, 6 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 195.6,155.6,152.1,128.1,127.1,123.9,123.3,112.9,112.5$, 36.7, 18.9 ppm ; HRMS (ESI): m / z calcd for $\mathrm{C}_{12} \mathrm{H}_{13} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}$189.0910; found 189.0909.

1-(Benzofuran-2-yl)-2,2-dimethylpropan-1-one (3d). ${ }^{31}$ The title compound was prepared according to the general procedure by stirring a mixture of benzofuran ($110 \mu \mathrm{~L}, 1.0 \mathrm{mmol}$), pivalic acid ($122 \mathrm{mg}, 1.2 \mathrm{mmol}$) and TFAA ($705 \mu \mathrm{~L}, 5.0 \mathrm{mmol}$) in DCE (25 mL) at $70{ }^{\circ} \mathrm{C}$ for 48 h . The crude product was purified by column chromatography on silica gel (1% EtOAc in petroleum ether) to afford compound $\mathbf{3 d}$ ($151 \mathrm{mg}, 75 \%$) as a bright yellow oil: IR (neat, cm^{-1}): $v_{\max } 3429,2971,1671,1546,1132 ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.70(\mathrm{~d}, \mathrm{~J} 7.9 \mathrm{~Hz}$, $1 \mathrm{H}), 7.59-7.55(\mathrm{~m}, 1 \mathrm{H}), 7.54(\mathrm{~d}, \mathrm{~J} 1.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.48-7.43(\mathrm{~m}, 1 \mathrm{H}), 7.32-7.28(\mathrm{~m}, 1 \mathrm{H}), 1.43(\mathrm{~s}, 9 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 196.9,155.2,152.8,127.8,126.9,123.8,123.2,113.8,112.4,43.6,26.9 \mathrm{ppm}$; HRMS (ESI): m / z calcd for $\mathrm{C}_{13} \mathrm{H}_{15} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}$203.1067; found 203.1065.
Benzofuran-2-yl(cyclohexyl)methanone (3e). The title compound was prepared according to the general procedure by stirring a mixture of benzofuran ($110 \mu \mathrm{~L}, 1.0 \mathrm{mmol}$), cyclohexanecarboxylic acid ($153 \mathrm{mg}, 1.2$ $\mathrm{mmol})$ and TFAA ($705 \mu \mathrm{~L}, 5.0 \mathrm{mmol}$) in DCE (25 mL) at $70^{\circ} \mathrm{C}$ for 48 h . The crude product was purified by column chromatography on silica gel (0.5% EtOAc in petroleum ether) to afford compound 3 ($152 \mathrm{mg}, 67 \%$) as a colorless solid: mp $61-62^{\circ} \mathrm{C}$; IR (neat, cm^{-1}): $v_{\max } 3114,2940,2858,1666,987 ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.69(\mathrm{~d}, \mathrm{~J} 7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.58(\mathrm{~d}, \mathrm{~J} 8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.52-7.50(\mathrm{~m}, 1 \mathrm{H}), 7.49-7.43(\mathrm{~m}, 1 \mathrm{H}), 7.32-7.28(\mathrm{~m}, 1 \mathrm{H}), 3.24$ $-3.17(m, 1 H), 2.00-1.91(m, 2 H), 1.89-1.83(m, 2 H), 1.77-1.72(m, 1 H), 1.61-1.51(m, 2 H), 1.46-1.35$ (m, 2H), 1.34-1.25 (m, 1H) ppm; ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ 194.9, 155.7, 152.3; 128.1, 127.2, 123.9, 123.3, 112.9, 112.6, 46.8, 29.9, 25.9, 25.9 ppm ; HRMS (ESI): m / z calcd for $\mathrm{C}_{15} \mathrm{H}_{17} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+} 229.1223$; found 229.1225 . 1-(Benzofuran-2-yl)-2-(2-bromophenyl)ethan-1-one (3f). The title compound was prepared according to the general procedure by stirring a mixture of benzofuran ($110 \mu \mathrm{~L}, 1.0 \mathrm{mmol}$), 2-(2-bromophenyl)acetic acid (257 $\mathrm{mg}, 1.2 \mathrm{mmol})$ and TFAA ($705 \mu \mathrm{~L}, 5.0 \mathrm{mmol}$) in DCE (25 mL) at $70{ }^{\circ} \mathrm{C}$ for 48 h . The crude product was purified
by column chromatography on silica gel (0.5% EtOAc in petroleum ether) to afford compound $\mathbf{3 f}$ (207 mg , 66%) as a colorless solid: mp 126-127 ${ }^{\circ} \mathrm{C}$; IR (neat, cm^{-1}): $v_{\max } 3424,1678,1159,1138,1020 ;{ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 8.11(\mathrm{~s}, 1 \mathrm{H}), 7.89(\mathrm{~d}, J 7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.77(\mathrm{~d}, J 8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.65(\mathrm{~d}, J 7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.58-7.37(\mathrm{~m}$, 1 H), 7.46 (dd, J $7.6,1.8 \mathrm{~Hz}, 1 \mathrm{H}$), $7.43-7.37$ (m, 2H), 7.27 (td, J $7.8,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.57(\mathrm{~s}, 2 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR (100 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 187.3,155.8,152.3,134.2,133.0,131.9,129.1,128.5,127.7,127.2,125.2,124.1,123.5,113.5$, 112.6, 46.0 ppm; HRMS (ESI): m / z calcd for $\mathrm{C}_{16} \mathrm{H}_{12}{ }^{79} \mathrm{BrO}_{2}[\mathrm{M}+\mathrm{H}]^{+} 315.0015$; found 315.0017.

1-(Benzofuran-2-yl)-2-(2-bromophenyl)propan-1-one (3g). The title compound was prepared according to the general procedure by stirring a mixture of benzofuran ($110 \mu \mathrm{~L}, 1.0 \mathrm{mmol}$), 2-(2-bromophenyl)propanoic acid ($273 \mathrm{mg}, 1.2 \mathrm{mmol}$) and TFAA ($705 \mu \mathrm{~L}, 5.0 \mathrm{mmol}$) in DCE $(25 \mathrm{~mL})$ at $70^{\circ} \mathrm{C}$ for 48 h . The crude product was purified by column chromatography on silica gel (0.5% EtOAc in petroleum ether) to afford compound $\mathbf{3 g}$ (118 $\mathrm{mg}, 36 \%$) as a light yellow solid: mp 105-106 ${ }^{\circ} \mathrm{C}$; IR (neat, cm^{-1}): $v_{\max } 2927,1673,1547,1160,755 ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.65(\mathrm{~d}, J 7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.61(\mathrm{dd}, J 8.0,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.56-7.53(\mathrm{~m}, 1 \mathrm{H}), 7.51(\mathrm{~s}, 1 \mathrm{H}), 7.46-$ $7.40(\mathrm{~m}, 1 \mathrm{H}), 7.29-7.21(\mathrm{~m}, 3 \mathrm{H}), 7.08$ (ddd, J 7.9, 7.2, 1.9 Hz, 1H), $5.10(\mathrm{q}, J 6.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.54(\mathrm{~d}, \mathrm{~J} 6.9 \mathrm{~Hz}, 3 \mathrm{H})$ ppm; ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 190.6,155.7,151.8,140.4,133.3,128.8,128.6,128.4,128.2,127.0,124.2$, 123.9, 123.4, 114.0, 112.6, 47.5, 17.6 ppm; HRMS (ESI): m / z calcd for $\mathrm{C}_{17} \mathrm{H}_{14}{ }^{79} \mathrm{BrO}_{2}[\mathrm{M}+\mathrm{H}]^{+}: 329.0172$; found 329.0174.

Benzofuran-2-yl(phenyl)methanone (3h). ${ }^{32}$ The title compound was prepared according to the general procedure by stirring a mixture of benzofuran ($110 \mu \mathrm{~L}, 1.0 \mathrm{mmol}$), benzoic acid ($146 \mathrm{mg}, 1.2 \mathrm{mmol}$) and TFAA ($705 \mu \mathrm{~L}, 5.0 \mathrm{mmol}$) in DCE (25 mL) at $70^{\circ} \mathrm{C}$ for 48 h . The crude product was purified by column chromatography on silica gel (0.5% EtOAc in petroleum ether) to afford compound 3 h ($150 \mathrm{mg}, 68 \%$) as a yellow solid: mp $83-84^{\circ} \mathrm{C}$; IR (neat, cm^{-1}): $v_{\max } 2958,2925,2853,1689,1291 ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 8.06$ $-8.03(\mathrm{~m}, 2 \mathrm{H}), 7.73(\mathrm{~d}, J 7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.64(\mathrm{t}, J 7.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.57-7.48(\mathrm{~m}, 4 \mathrm{H}), 7.34(\mathrm{t}, J 7.4 \mathrm{~Hz}, 1 \mathrm{H}) \mathrm{ppm}{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 184.6,156.1,152.3,137.3,133.0,129.6,128.7,128.5,127.1,124.1,123.5,116.7$, 112.7 ppm ; HRMS (ESI): m / z calcd for $\mathrm{C}_{15} \mathrm{H}_{11} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+} 223.0754$; found 223.0757.

Benzofuran-2-yl(p-tolyl)methanone (3i). ${ }^{32}$ The title compound was prepared according to the general procedure by stirring a mixture of benzofuran ($110 \mu \mathrm{~L}, 1.0 \mathrm{mmol}$), 4-methylbenzoic acid ($283 \mathrm{mg}, 1.2 \mathrm{mmol}$) and TFAA ($705 \mu \mathrm{~L}, 5.0 \mathrm{mmol}$) in DCE (25 mL) at $70{ }^{\circ} \mathrm{C}$ for 48 h . The crude product was purified by column chromatography on silica gel (0.5% EtOAc in petroleum ether) to afford compound $\mathbf{3 i}$ ($179 \mathrm{mg}, 76 \%$) as a colorless solid: mp $74-75^{\circ} \mathrm{C}$; IR (neat, cm^{-1}): $v_{\max } 1755,1610,1575,1545 ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.97$ (d, $J 8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.72(\mathrm{~d}, J 7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.64(\mathrm{~d}, J 8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.52(\mathrm{~s}, 1 \mathrm{H}), 7.51(\mathrm{t}, J 7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.35-7.31(\mathrm{~m}, 3 \mathrm{H})$, 2.46 (s, 3H) ppm; ${ }^{13} \mathrm{C}$ NMR (100MHz, CDCl_{3}): $\delta 184.2,156.0,152.5,143.9,134.7,129.7,129.4,128.3,127.2$, 124.0, 123.4, 116.2, 112.6, 21.8 ppm ; HRMS (ESI): m / z calcd for $\mathrm{C}_{16} \mathrm{H}_{13} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+} 237.0910$; found 237.0912 .

Benzofuran-2-yl(2-bromophenyl)methanone (3j). The title compound was prepared according to the general procedure by stirring a mixture of benzofuran ($110 \mu \mathrm{~L}, 1.0 \mathrm{mmol}$), 2-bromobenzoic acid ($240 \mathrm{mg}, 1.2 \mathrm{mmol}$) and TFAA ($705 \mu \mathrm{~L}, 5.0 \mathrm{mmol}$) in DCE $(25 \mathrm{~mL})$ at $70{ }^{\circ} \mathrm{C}$ for 48 h . The crude product was purified by column chromatography on silica gel (0.5% EtOAc in petroleum ether) to afford compound 3 j ($240 \mathrm{mg}, 80 \%$) as a bright yellow oil: IR (neat, cm^{-1}): $v_{\max } 3425,2937,1665,1548,972 ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.71-7.67(\mathrm{~m}$, 2H), $7.64-7.60(\mathrm{~m}, 1 \mathrm{H}), 7.54-7.49(\mathrm{~m}, 2 \mathrm{H}), 7.48-7.37(\mathrm{~m}, 2 \mathrm{H}), 7.35-7.30(\mathrm{~m}, 2 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta 184.8,156.6 ; 151.7,139.5,133.6,131.9,129.4,129.1,127.3,127.1,124.3 ; 123.7,120.1,118.1,112.9$ ppm; HRMS (ESI): m / z calcd for $\mathrm{C}_{15} \mathrm{H}_{10}{ }^{79} \mathrm{BrO}_{2}[\mathrm{M}+\mathrm{H}]^{+} 300.9859$; found 300.9856 .
1-(5-Methylbenzofuran-2-yl)ethan-1-one (3k). The title compound was prepared according to the general procedure by stirring a mixture of 5 -methylbenzofuran ($132 \mathrm{mg}, 1.0 \mathrm{mmol}$), glacial acetic acid ($69 \mu \mathrm{~L}, 1.2$ $\mathrm{mmol})$ and TFAA ($705 \mu \mathrm{~L}, 5.0 \mathrm{mmol}$) in DCE (25 mL) at $70^{\circ} \mathrm{C}$ for 48 h . The crude product was purified by column chromatography on silica gel (0.2% EtOAc in petroleum ether) to afford compound $\mathbf{3 k}$ ($92 \mathrm{mg}, 53 \%$) as
a colorless solid: mp $74-75^{\circ} \mathrm{C}$; IR (neat, cm^{-1}): $v_{\max } 3101,2919,1668,1551,818 ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta$ $7.47-7.43(\mathrm{~m}, 2 \mathrm{H}), 7.41(\mathrm{~d}, J 0.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.28(\mathrm{dd}, J 8.6,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.58(\mathrm{~s}, 3 \mathrm{H}), 2.44(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 188.8,154.3,152.9,133.6,130.0,127.3,122.8,113.0,112.1,26.5,21.4 \mathrm{ppm} ;$ HRMS (ESI): m / z calcd for $\mathrm{C}_{11} \mathrm{H}_{11} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}: 175.0754$; found 175.0753.
(2-Bromophenyl)(5-methylbenzofuran-2-yl)methanone (3I). The title compound was prepared according to the general procedure by stirring a mixture of 5 -methylbenzofuran ($132 \mathrm{mg}, 1.0 \mathrm{mmol}$), 2-bromobenzoic acid ($240 \mathrm{mg}, 1.2 \mathrm{mmol}$) and TFAA ($705 \mu \mathrm{~L}, 5.0 \mathrm{mmol}$) in DCE $(25 \mathrm{~mL})$ at $70^{\circ} \mathrm{C}$ for 48 h . The crude product was purified by column chromatography on silica gel (1\% EtOAc in petroleum ether) to afford compound $3 \mathbf{I}$ (150 $\mathrm{mg}, 48 \%$) as a bright yellow oil: IR (neat, cm^{-1}): $v_{\max } 2915,1651,1429,1205,977 ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta$ $7.69-7.67(\mathrm{~m}, 1 \mathrm{H}), 7.51-7.48(\mathrm{~m}, 2 \mathrm{H}), 7.46-7.36(\mathrm{~m}, 3 \mathrm{H}), 7.33-7.30(\mathrm{~m}, 1 \mathrm{H}), 7.23(\mathrm{~d}, J 0.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.45(\mathrm{~s}$, $3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 184.7,155.1,151.9,139.6,133.9,133.6,131.9,130.8,129.4,127.3$, 127.2, 123.0, 120.1, 117.9, 112.4, 21.4 ppm ; HRMS (ESI): m / z calcd for $\mathrm{C}_{16} \mathrm{H}_{12}{ }^{79} \mathrm{BrO}_{2}[\mathrm{M}+\mathrm{H}]^{+}: 315.0015$; found 315.0017.

1-(7-Methoxybenzofuran-2-yl)ethan-1-one (3m). The title compound was prepared according to the general procedure by stirring a mixture of 7-methoxybenzofuran ($148 \mathrm{mg}, 1.0 \mathrm{mmol}$), glacial acetic acid ($69 \mu \mathrm{~L}, 1.2$ $\mathrm{mmol})$ and TFAA ($705 \mu \mathrm{~L}, 5.0 \mathrm{mmol}$) in DCE (25 mL) at $70{ }^{\circ} \mathrm{C}$ for 48 h . The crude product was purified by column chromatography on silica gel (1% EtOAc in petroleum ether) to afford compound 3 m ($163 \mathrm{mg}, 86 \%$) as a colorless solid: mp $92-93^{\circ} \mathrm{C}$; IR (neat, cm^{-1}): $v_{\max } 3136,2965,1655,1402,1273 ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta$ 7.79 (dd, J 8.4, 1.7 Hz, 1H), 7.73 (d, J $2.1 \mathrm{~Hz}, 1 \mathrm{H}$), 7.56 (dd, J $2.1,0.8 \mathrm{~Hz}, 1 \mathrm{H}$), 6.79 (dd, J 8.4, $1.5 \mathrm{~Hz}, 1 \mathrm{H}$), 4.07 (s, $3 \mathrm{H}), 2.63(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR (100MHz, CDCl_{3}): $\delta 197.3,149.4,147.1,144.4,128.8,127.9,123.7,108.7$, 105.3, 56.4, 27.3 ppm ; HRMS (ESI): m / z calcd for $\mathrm{C}_{11} \mathrm{H}_{11} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+}:$191.0703; found 191.0702.

The preparation of compounds 4-7.

6H-Indeno[2, 1-b]benzofuran-6-one (4). ${ }^{33} \mathrm{PPh}_{3}(26.0 \mathrm{mg}, 0.1 \mathrm{mmol}), \mathrm{K}_{2} \mathrm{CO}_{3}(276.0 \mathrm{mg}, 0.1 \mathrm{mmol})$ and $\mathrm{Pd}(\mathrm{OAC})_{2}(22.5 \mathrm{mg}, 0.1 \mathrm{mmol})$ was added to a solution of $3 \mathrm{j}(300.0 \mathrm{mg}, 1.0 \mathrm{mmol})$ in DMF (10 mL). The resulting mixture was heated at $110{ }^{\circ} \mathrm{C}$ until the reaction was completed (reaction monitored by TLC). The mixture was poured into water (20 mL), then extracted with EtOAc ($3 \times 40 \mathrm{~mL}$). The combined organic extracts were washed with brine ($3 \times 40 \mathrm{~mL}$) and dried over anhydrous sodium sulfate, filtered, and then evaporated in vacuo. The crude product was purified by column chromatography on silica gel ($0.5 \% \mathrm{EtOAc}$ in petroleum ether) to afford $4(176 \mathrm{mg}, 80 \%)$ as a red solid: $\mathrm{mp} 97-98{ }^{\circ} \mathrm{C}$; IR (neat, cm^{-1}): $v_{\max } 1705,1610,1399,1141$, 1021; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.77(\mathrm{~d}, J 7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.57(\mathrm{~d}, J 8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.48(\mathrm{t}, \mathrm{J} 7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.43-7.32$ (m, 3H), $7.24(\mathrm{~d}, J 7.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.18(\mathrm{t}, J 7.5 \mathrm{~Hz}, 1 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 180.8,161.7,154.8$, 148.2, 141.5, 136.2, 135.1, 134.0, 128.8, 128.8, 125.0, 124.3, 122.1, 120.4, 114.0 ppm ; HRMS (ESI): m / z calcd for $\mathrm{C}_{15} \mathrm{H}_{9} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}: 221.0597$; found 221.0596 .
2-Methyl-6H-indeno[2, 1-b]benzofuran-6-one (5). PPh_{3} ($26.0 \mathrm{mg}, 0.1 \mathrm{mmol}$), $\mathrm{K}_{2} \mathrm{CO}_{3}(276.0 \mathrm{mg}, 0.1 \mathrm{mmol})$ and $\mathrm{Pd}(\mathrm{OAc})_{2}(22.5 \mathrm{mg}, 0.1 \mathrm{mmol})$ was added to a solution of $31(314 \mathrm{mg}, 1.0 \mathrm{mmol})$ in DMF (10 mL). The resulting mixture was heated at $110^{\circ} \mathrm{C}$ until the reaction was completed (reaction monitored by TLC). The mixture was poured into water (20 mL), then extracted with EtOAc ($3 \times 40 \mathrm{~mL}$). The combined organic extracts were washed with brine ($3 \times 40 \mathrm{~mL}$) and dried over anhydrous sodium sulfate, filtered, and then evaporated in vacuo. The crude product was purified by column chromatography on silica gel ($10 \% \mathrm{EtOAc}$ in petroleum ether) to afford 5 ($229 \mathrm{mg}, 98 \%$) as an orange solid: mp 129-130 ${ }^{\circ} \mathrm{C}$; IR (neat, cm^{-1}): $v_{\text {max }} 1705,1610,1550$, 1260, 1096; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.45(\mathrm{~s}, 1 \mathrm{H}), 7.39-7.34(\mathrm{~m}, 2 \mathrm{H}), 7.32-7.27(\mathrm{~m}, 1 \mathrm{H}), 7.25-7.21(\mathrm{~m}$, 1H), $7.16-7.10(\mathrm{~m}, 2 \mathrm{H}), 2.46(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 180.7,160.2,154.7,141.2,136 ., 135.1$, 134.6, 133.9, 130.3, 128.5, 124.0, 122.0, 121.6, 120.2, 113.3, 21.5 ppm ; HRMS (ESI): m / z calcd for $\mathrm{C}_{16} \mathrm{H}_{11} \mathrm{O}_{2}$ $[\mathrm{M}+\mathrm{H}]^{+}: 235.0754$; found 235.0755 .

2,2'-Bibenzofuran (6). ${ }^{34} \mathrm{FeCl}_{3}(16.2 \mathrm{mg}, 0.1 \mathrm{mmol})$, TMHD ($36.9 \mathrm{mg}, 0.2 \mathrm{mmol}$) was added to a solution of $\mathbf{3 f}$ ($314 \mathrm{mg}, 1.0 \mathrm{mmol}$) in DMF (10 mL). The resulting mixture was heated at $120{ }^{\circ} \mathrm{C}$ until the reaction was completed (reaction monitored by TLC). The mixture was poured into water (20 mL), then extracted with EtOAc ($3 \times 40 \mathrm{~mL}$). The combined organic extracts were washed with brine ($3 \times 40 \mathrm{~mL}$) and dried over anhydrous sodium sulfate, filtered, and then evaporated in vacuo. The crude product was purified by column chromatography on silica gel (0.5% EtOAc in petroleum ether) to afford $6(89 \mathrm{mg}, 38 \%$) as a colorless solid: mp $196-197{ }^{\circ} \mathrm{C}$; IR (neat, cm^{-1}): $v_{\max } 1468,1299,1217,1171 ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.77-7.63(\mathrm{~m}, 2 \mathrm{H}), 7.58$ - $7.54(\mathrm{~m}, 2 \mathrm{H}), 7.36-7.32(\mathrm{~m}, 2 \mathrm{H}), 7.30-7.26(\mathrm{~m}, 2 \mathrm{H}), 7.17(\mathrm{~s}, 2 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{DMSO}$): $\delta 154.5$, 146.8, 128.1, 125.6, 123.8, 121.8, 111.3, 104.3 ppm ; HRMS (ESI): m / z calcd for $\mathrm{C}_{16} \mathrm{H}_{10} \mathrm{O}_{2} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}: 257.0573$; found 257.0569 .
3-Methyl-2,2'-bibenzofuran (7). $\mathrm{FeCl}_{3}(16.2 \mathrm{mg}, 0.1 \mathrm{mmol})$, TMHD ($36.9 \mathrm{mg}, 0.2 \mathrm{mmol}$) was added to a solution of $3 \mathrm{~g}(328 \mathrm{mg}, 1.0 \mathrm{mmol})$ in DMF (10 mL). The resulting mixture was heated at $120{ }^{\circ} \mathrm{C}$ until the reaction was completed (reaction monitored by TLC). The mixture was poured into water (20 mL), then extracted with EtOAc ($3 \times 40 \mathrm{~mL}$). The combined organic extracts were washed with brine ($3 \times 40 \mathrm{~mL}$) and dried over anhydrous sodium sulfate, filtered, and then evaporated in vacuo. The crude product was purified by column chromatography on silica gel (0.5% EtOAc in petroleum ether) to afford 7 ($94 \mathrm{mg}, 38 \%$) as a colorless solid: mp $123-124^{\circ} \mathrm{C}$; IR (neat, cm^{-1}): $v_{\max } 1442,1311,1269,1221,1165 ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta$ $7.66-7.65(\mathrm{~m}, 1 \mathrm{H}), 7.60-7.56(\mathrm{~m}, 2 \mathrm{H}), 7.53(\mathrm{~d}, \mathrm{~J} 8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.37-7.32(\mathrm{~m}, 2 \mathrm{H}), 7.31-7.26(\mathrm{~m}, 2 \mathrm{H}), 7.11(\mathrm{~s}$, 1 H), $2.62(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 155.0,154.5,148.8,143.1,130.5,128.5,125.3,124.8$, 123.4, 122.9, 121.3, 119.7, 114.4, 111.4, 111.3, 104.0, 8.9 ppm ; HRMS (ESI): m / z calcd for $\mathrm{C}_{17} \mathrm{H}_{13} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}$: 249.0910; found 249.0909.

Acknowledgements

We are grateful to the NSFC (No. 81330075) for financial support.

Supplementary Material

Copies of the ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}-\mathrm{NMR}$ spectra are provided in the supplementary material file.

References

1. Takasugi M.; Nagao S.; Ueno S.; Masamune S.; Shirata A.; Takahashi K. Chem. Lett. 1978, 7, 1239-1240. https://doi.org/10.1246/cl.1978.1239
2. Kawasaki K.; Masubuchi M.; Morikami K.; Sogabe S.; Aoyama T.; Ebiike H.; Niizuma S.; Hayase M.; Fujii T.; Sakata K.; Shindoh H.; Shiratori Y.; Aoki Y.; Ohtsukaa T.; Shimma N. Bioorg. Med. Chem. Lett. 2003, 13, 8791. https://doi.org/10.1016/S0960-894X(02)00844-2
3. Rida S.; El-Hawash S.; Pharmacal H F.; Hazza A.; El-Meligy M. Pharmacal Res. 2006, 29, 16-25. https://doi.org/10.1007/BF02977463
4. Somaia S.; Manal M.; Neama A.; Nasr T.; Elseginy S. Bioorg. Chem. 2015, 63, 1-12.
https://doi.org/10.1016/i.bioorg.2015.08.006
5. Boonyaketgoson S.; Rukachaisirikul V.; Phongpaichit S.; Trisuwan K. Tetrahedron Lett. 2017, 58, 1585-1589. https://doi.org/10.1016/j.tetlet.2017.03.020
6. Chen H.; Li K. J. Pharm. Pract . 2013, 31, 5-10.
https://doi.org/10.3969/j.issn.1006-0111.2013.01.002
7. Modukuri R.; Choudhary D.; Gupta S.; Bhaskara K.; Adhikary S.; Sharma T.; Siddiqi M.; Trivedi R.;

Sashidhara K. Bioorg. Med. Chem. Lett. 2017, 27, 6450-6466.
https://doi.org/10.1016/j.bmc.2017.10.018
8. Byun J.; Kim H.; Kim Y.; Mook-Jung I.; Jin D.; Lee W.; Yoo K. Bioorg. Med. Chem. Lett. 2008, 18, 5591-5593. https://doi.org/10.1016/j.bmcl.2008.08.111
9. Iqbal N.; Iqbal N.; Maiti D.; Cho E J. Angew. Chem. Int. Ed. 2019, 58, 15808-15812.
https://doi.org/10.1002/anie.201909015
10. Sashidhara K.; Modukuri R.; Jadiya P.; Dodda R.; Kumar M.; Sridhar B.; Kumar V.; Haque R.; Siddiqi M.;

Nazir A. ChemMedChem. 2014, 9, 2671-2684.
https://doi.org/10.1002/cmdc. 201402291
11. Xia S.; Wang X.; Liu J.; Liu C.; Chen J.; Zuo H.; Xie Y.; Dong W.; Shin D. Bull. Korean Chem. Soc. 2014, 35, 1743-1748. https://doi.org/10.5012/bkcs.2014.35.6.1743
12. Garrison R.; Tjutrins J.; Torres G.; Liu N.; Kulkarni O.; Arndtsen B. Nat. Chem. 2018, 10, 193-199. https://doi.org/10.1038/NCHEM. 2903
13. Rao X.; Ishitani H.; Yoo W.; Kobayashi S. Asian J. Org. Chem. 2019, 8, 316-319. https://doi.org/10.1002/ajoc. 201900012
14. Tran H.; Nguyen T.; Hansen E.; Le N. RSC. Adv. 2016, 6, 37031-37038. https://doi.org/10.1039/c6ra03551e
15. Richard F.; Carreyre H.; Pkrot G. J. Mol. Catal. A-Chem. 1995, 101, L167-L169. https://doi.org/10.1016/1381-1169(95)00125-5
16. Huang H.; Song C.; Chang J. Prog. Chem. 2019, 31, 1-9. https://doi.org/10. 7536 / PC181037
17. Smyth T.; Corby B. J. Org. Chem. 1998, 63, 8946-8951.
https://doi.org/10.1021/jo981264v
18. Bindu P.; Naini S.; Rao K.; Dubey P.; Pal S. J. Heterocyclic Chem. 2014, 51, 586-593. https://doi.org/10.1002/jhet. 1106
19. Galli C.; Illuminati G.; Mandolini L. J. Org. Chem. 1980, 45, 311-315. https://doi.org/10.1021/jo01290a022
20. Beshara C.; Thompson A. J. Org. Chem. 2005, 70, 10607-10610.
https://doi.org/10.1021/jo051906w
21. Kolli S.; Prasad S.; Babu P.; Ashfaq M.; Ehtesham N.; Raju R.; Pal M. Org. Biomol. Chem. 2014, 12, 60806084.
https://doi.org/10.1039/c4ob00686k
22. Andicsova-Eckstein A.; Kozma E. J.; Vegh D. J. Heterocyclic Chem. 2016, 53, 1945-1949. https://doi.org/10.1002/jhet. 2511
23. Song C.; Knight D. W. ; Whatton M. A. Tetrahedron Lett. 2004, 45, 9573-9576. https://doi.org/10.1016/i.tetlet.2004.10.133
24. Chang J.; Sun L.; Dong J.; Shen Z.; Zhang Y.; Wu J.; Wang R.; Wang J.; Song C. Synlett. 2012, 23, 2704-2706.
https://doi.org/10.1055/s-0032-1317347
25. Wang S.; Yang Q.; Dong J.; Li C.; Sun L.; Song C.; Chang J. Eur. J. Org. Chem. 2013, 7631-7634. https://doi.org/10.1002/ejoc.201300737
26. Pei X.; Li X.; Xu Y.; Panicker R.; Srinivasan R. Org. Biomol. Chem. 2019, 17, 5703-5707. https://doi.org/10.1039/c9ob00995g
27. Matsuda S.; Takahashi M.; Monguchi D.; Mori A. Synlett. 2009; 20, 1941-1944. https://doi.org/10.1055/s-0029-1217537
28. Thielges S.; Meddah E.; Bisseret P.; Eustache J. Tetrahedron Lett. 2004, 45, 907-910. https://doi.org/10.1016/j.tetlet.2003.11.118
29. Wu F.; Bai R.; Gu Y. Adv. Synth. Catal. 2016, 358, 2307-2316.
https://doi.org/10.1002/adsc. 201600048
30. Morizur V.; Daphné Hector.; Olivero S.; Desmurs J R.; Duach E. Eur. J. Org. Chem. 2016, 18: 3126-3129. https://doi.org/10.1002/ejoc.201600266
31. Melvyn; Gill. Tetrahedron. 1984, 40, 621-626.
https://doi.org/10.1016/0040-4020(84)85067-X
32. Khan M W.; Alam M J.; Rashid M A.; Chowdhury R. Bioorgan. Med. Chem. 2005, 13, 4796-4805. https://doi.org/10.1016/i.bmc.2005.05.009
33. Campo M A.; Larock R C. J. Org. Chem. 2002. 37, 5616-5620. https://doi.org/10.1021/jo020140m
34. Li Y.; Cheng L.; Liu X.; Li B.; Sun N. Beilstein J. Org. Chem. 2014, 10, 2886-2891.
https://doi.org/10.3762/bjoc.10.305

This paper is an open access article distributed under the terms of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/)

