Access to 2,5-disubstituted furans through a Passerini-Smiles/furyl rearrangement pathway

Chanté Summers, Christopher Perry, Whitney Friederich, Katlyn Hausman, and Sarah B. Luesse*

Department of Chemistry, Southern Illinois University Edwardsville, Edwardsville, Illinois, 62026
Email: sluesse@siue.edu

Received 11-01-2021
Accepted Manuscript 01-31-2022
Published on line 03-03-2022

Abstract

A one-pot tandem route to functionalized 2,5-disubstituted furans possessing 4-hydroxy-3-nitrophenyl substituents has been achieved through a standard Passerini-Smiles reaction, followed by an unexpected furyl cation-driven skeletal rearrangement. Substitution of the 2-furaldehyde or 2-nitrophenol component determines whether a standard Passerini-Smiles reaction (PS) is followed by rearrangement to produce a rearranged PS-R product. This rearrangement has been confirmed through isolation of the PS product, followed by microwave irradiation to obtain conversion to the PS-R product.

Keywords: Passerini-Smiles, multicomponent reaction, isocyanide, furaldehyde

Introduction

Isocyanide-based multicomponent coupling reactions (IMCRs) provide access to a range of molecularly diverse products from simple starting materials. ${ }^{1-3}$ These reactions are often combined with compatible secondary reactions in tandem processes, to prepare libraries of heterocycles. ${ }^{4-6}$ The three-component Passerini-Smiles coupling (PS-3CC) of an electron deficient phenol, an aldehyde, and isocyanide is an efficient method for the preparation of α-aryloxyamides. 7,8 While a range of aldehydes are tolerated, previous studies have shown limited success for reactions that used α, β-unsaturated aldehydes or 2 -furaldehyde as reaction components. ${ }^{9-}$ ${ }^{11}$ Optimized reaction conditions for the Passerini-Smiles reaction used neat conditions with DABCO or $\mathrm{N}, \mathrm{N}-$ dimethypiperazine as additives; ${ }^{12}$ however, α, β-unsaturated aldehydes remained unsuccessful. ${ }^{13}$ However, Dai reported successful Passerini-Smiles reactions with 2-furaldehyde and trans-cinnamaldehyde, in the presence of acetonitrile and $\mathrm{i}-\mathrm{Pr}_{2} \mathrm{NEt}(10 \mathrm{~mol} \%) .{ }^{14}$ We were interested in exploring furaldehyde-derived components to develop tandem processes that involved Passerini-Smiles reactions. During these studies, we observed an unexpected post-condensation rearrangement to generate 2,5-disubstituted furans possessing 4-hydroxy-3nitrophenyl substituents.

Results and Discussion

Application of Dai's optimized conditions ${ }^{14}$ led to good conversion into Passerini-Smiles products 1 (PS-3CC) for reactions that used substituted 2-nitrophenol components. 3-Furaldehyde was also successful as a reaction component under these conditions (entry 2). Several 4- and 5 -substituted nitrophenols were also competent phenols, but 2-hydroxy-3-nitropyridine provided only trace conversion to the desired Passerini-Smiles product (not shown).

Table 1. Synthesis of α-aryloxyamides from Passerini-Smiles reactions

Table 1. Continued

Entry	R^{1}	R2-CHO	Product	Yield (\%) ${ }^{\text {a,b }}$
4	$4-\mathrm{OCH}_{3}$		1d	31
5	4-F		1 e	60
6	$5-\mathrm{Br}$		1 f	77

a Reactions used 1:1.3:1.5 ratio phenol : aldehyde : isocyanide. ${ }^{\text {b }}$ Isolated
yield after column chromatography.

Table 2. Aldehyde and phenol variations to produce PS (1) and rearranged PS-R products (2)

	$\begin{aligned} & E N^{-} \\ & \circ \\ & { }^{-} \end{aligned}$	MeCN, 80 $10 \mathrm{~mol} \%$ Cyc = Суc			Cyc	
Entry	R^{1}	R^{2}	R^{3}	Products	$\begin{gathered} \text { PS (1) : PS-R } \\ \text { Ratio }^{\mathrm{a}} \end{gathered}$	Yield (\%
1	H	H	Br	1g	PS only	64
2	H	Cl	H	1h	PS only	31
3	H	1	H	1i: 2 b	7:2	25
4	H	CH_{3}	H	1j : 2c	1:17	18
5	H	CH_{3}	CH_{3}	2d	PS-R only	27
6	$5-\mathrm{Br}$	Cl	H	1k	PS only	7
7	$5-\mathrm{Br}$	1	H	11: 2e	7:2	17
8	$5-\mathrm{Br}$	CH_{3}	H	1m:2f	1:12	58
9	$5-\mathrm{Br}$	CH_{3}	CH_{3}	2g	PS-R only	26

[^0]However, an unexpected rearrangement was observed when substitution was examined for 2-furaldehyde components (Table 2). While the Passerini-Smiles reaction tolerated 4-bromo and 2-chloro substitutions on 2furaldehyde (31-64\%, entries 1 and 2), other substitutions at the 5 -position led to low conversions with
formation of a new rearranged product (2). Use of tert-butyl or benzyl isocyanide components led to lower overall yields (not shown).

A similar rearrangement to an alternate PS-R product (3) was observed when 2-allyl-6-nitrophenol was used in the Passerini-Smiles reaction (Figure 1), generating a 2,5-disubstituted furan possessing a functionalized 4-hydroxy-3-nitrophenyl substituent. When the reaction was performed in standard conditions, acetonitrile in the presence of $\mathrm{iPr}_{2} \mathrm{NEt}$, no product was isolated. In methanol at $50^{\circ} \mathrm{C}$ for 48 h , Passerini-Smiles product (1n) was the major product ($\mathbf{1 n}: \mathbf{3} \mathbf{2 6 : 3}$); however, $\mathbf{3}$ was the major product isolated for the reaction run at $65^{\circ} \mathrm{C}$ for 48 h .

Figure 1. Use of 2-allyl-6-nitrophenol in the Passerini-Smiles reaction.

Reaction monitoring by ${ }^{1} \mathrm{H}$ NMR supported our understanding that products PS-R $\mathbf{2}$ and $\mathbf{3}$ were generated from rearrangement of the initially formed Passerini-Smiles products (1). To support these observations, 1n was isolated and submitted to microwave irradiation $\left(120^{\circ} \mathrm{C}\right.$, methanol) to provide direct conversion to the PSR product $\mathbf{3}$ in 52% yield (Figure 2). The remainder of the recovered mass was composed of unreacted starting material and a small amount of the cleaved 2-allyl-6-nitrophenol component.

Figure 2. Microwave assisted rearrangement of isolated PS product (1n) to PS-R product (3).

This rearrangement can be understood to occur through furan participation in cleavage of the α-aryloxy group, generating a reactive furyl carbocation that can undergo reaction with the phenolate species at either the α-carbon to the amide (when $\mathrm{R}^{2}=\mathrm{CH}_{3}$ or I , product 2) or the 5-position of the furan (when $\mathrm{R}^{2}=\mathrm{H}, 3$) when a hindered 2,6 -substituted phenol was used (Figure 3).

Figure 3. Proposed pathway for furyl cation-derived rearrangement of Passerini-Smiles products.

Conclusions

In summary, we have reported successful use of substituted furaldehyde components in the Passerini-Smiles three-component coupling. Under the reaction conditions, we observed a rearrangement process that led to formation of 2,5-disubstituted furans possessing 4-hydroxy-3-nitrophenyl substituent.

Experimental Section

General: All reagents and solvents were commercial grade and purified prior to use when necessary. Methanol was distilled from CaH_{2} under N_{2} immediately before use. Thin layer chromatography (TLC) was performed using plastic-backed silica gel ($225 \mu \mathrm{~m}$) plates and flash chromatography utilized 230-400 mesh silica gel from Sigma-Aldrich. Products were visualized by UV light, and/or the use of ceric ammonium molybdate, p anisaldehyde, and potassium iodoplatinate solutions. IR spectra were recorded on a Nicolet ${ }^{\text {TM }}$ iS $^{\text {TM }} 5$ FT-IR Spectrometer and are reported in wavenumbers $\left(\mathrm{cm}^{-1}\right)$. Liquids and oils were analyzed as neat films on a NaCl plate (transmission), whereas solids were applied to a diamond plate (ATR). Nuclear magnetic resonance spectra (NMR) were acquired on a Bruker Ascend ${ }^{T M} 400(400 \mathrm{MHz})$. Chemical shifts are measured relative to residual solvent peaks as an internal standard set to $\delta 7.26$ and $\delta 77.1\left(\mathrm{CDCl}_{3}\right)$. HRMS FAB data was collected from a JEOL MStation [JMS-700] Mass Spectrometer at the University of Missouri-St Louis. A Biotage Initiator+ microwave synthesizer was used for irradiation studies. 2-Allyl-6-nitrophenol was prepared from 2nitrophenol at $175^{\circ} \mathrm{C} . .^{15,16}$

General procedure for Passerini-Smiles reactions (Compounds 1a-2g). To a solution of substituted 2nitrophenol ($0.2 \mathrm{mmol}, 1$ equiv) in 0.50 mL acetonitrile, aldehyde ($0.26 \mathrm{mmol}, 1.3$ equiv), cyclohexyl isocyanide ($0.3 \mathrm{mmol}, 1.5$ equiv), and $\mathrm{i}-\mathrm{Pr}_{2} \mathrm{NEt}(10 \mathrm{~mol} \%)$ were added. The reaction was stirred for 72 h at $80^{\circ} \mathrm{C}$. Product was isolated via flash chromatography on silica gel, to afford compounds $\mathbf{1 a - 2 g}$ (7-77\%).
1a: $51.3 \mathrm{mg}, 74 \% ; \mathrm{R}_{f}=0.50(50: 50 \mathrm{EtOAc}: H e x) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.97(\mathrm{~d}, J 8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.56-7.51(\mathrm{~m}$, 2 H), $7.41(\mathrm{~d}, J 1.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.22(\mathrm{~d}, J 8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.12-7.08(\mathrm{~m}, 1 \mathrm{H}), 6.52(\mathrm{~d}, J 3.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.36$ (dd, J 3.1, 1.7 Hz, $1 \mathrm{H}), 5.76(\mathrm{~s}, 1 \mathrm{H}), 3.85-3.83(\mathrm{~m}, 1 \mathrm{H}), 2.03-1.89(\mathrm{~m}, 1 \mathrm{H}), 1.78-1.66(\mathrm{~m}, 2 \mathrm{H}), 1.62-1.59(\mathrm{~m}, 1 \mathrm{H}), 1.43-1.31(\mathrm{~m}, 4 \mathrm{H})$, 1.28-1.22 (m, 2H); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 165.3,150.4,148.4,143.8,139.6,135.2,126.7,122.2,116.3$, 111.3, 111.0, 74.8, 48.5, 32.8, 25.2; IR: (diamond plate: [cm^{-1}]): 3386 (m) [N-H], $2930(\mathrm{~m})$ [C-H], 1585 (m) [C=O], 1247 (s) [C-N]; HR-FAB MS [M+Na] ${ }^{+}$calcd for $\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{5} \mathrm{Na}^{+} 367.12644$; found 367.12698 .
1b: $178.7 \mathrm{mg}, 52 \% ; \mathrm{R}_{f}=0.50$ ($50: 50 \mathrm{EtOAc}: \mathrm{Hex}$); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.00(\mathrm{~d}, \mathrm{~J} 1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.57(\mathrm{~s}, 1 \mathrm{H})$, $7.51(\mathrm{dd}, J 15.9,7.8 \mathrm{~Hz}, 1 \mathrm{H}) 7.38-7.36(\mathrm{~m}, 2 \mathrm{H}), 7.12-7.07(\mathrm{~m}, 2 \mathrm{H}), 6.47(\mathrm{~d}, J 1.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.68(\mathrm{~s}, 1 \mathrm{H}), 3.81-3.74$ $(\mathrm{m}, 1 \mathrm{H})$ 1.91-1.86 (m, 2H), 1.72-1.69 (m, 2H), 1.61-1.58 (m, 1H), 1.40-1.31 (m, 3H), 1.30-1.20 (m, 2H); ${ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 167.0,150.4,143.9,141.0,139.5,135.1,126.6,121.9,120.9,116.0,108.7,74.9,48.3,32.8$, 32.7, 25.5, 24.7; IR: (diamond plate: [cm^{-1}]): 3389 (m) [$\left.\mathrm{N}-\mathrm{H}\right], 2931$ (m) [C-H], 1585 (s) [C=O], 1248 (m) [C-N]; HR-FAB MS [M+Na] ${ }^{+}$calcd for $\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{5} \mathrm{Na}^{+} 367.12644$; found 367.12698.
1c: $101.2 \mathrm{mg}, 50 \% ; \mathrm{R}_{f}=0.30$ ($40: 60 \mathrm{EtOAc}: \mathrm{Hex}$); ${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.23(\mathrm{~s}, 1 \mathrm{H}), 7.54(\mathrm{br} \mathrm{s}, \mathrm{NH}, 1 \mathrm{H})$, 7.37 (d, J $1.0 \mathrm{~Hz}, 1 \mathrm{H}$), $7.30(\mathrm{~d}, J 8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.06(\mathrm{~d}, J 8.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.48(\mathrm{~d}, J 3.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.32(\mathrm{~d}, \mathrm{~J} 2.72,1 \mathrm{H}), 5.69$ $(\mathrm{s}, 1 \mathrm{H}), 3.82-3.80(\mathrm{~m}, 1 \mathrm{H}), 2.30(\mathrm{~s}, 3 \mathrm{H}), 1.96-1.86(\mathrm{~m}, 3 \mathrm{H}), 1.72-1.56(\mathrm{~m}, 4 \mathrm{H}), 1.35-1.19(\mathrm{~m}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 165.3,148.5,148.2,143.7,135.7,132.3,126.5,116.4,111.1,110.8,74.9,48.4,32.8,31.0,25.5$, 24.7, 20.3; IR: (diamond plate: [cm^{-1}]): 3387 (m) [$\mathrm{N}-\mathrm{H}$], 2930 (m) [C-H], 1526 (s) [C=O], 1251 (s) [C-N]; HR-FAB $\mathrm{MS}[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{19} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{Na}^{+} 381.14209$; found 381.14264.
1d: $65.3 \mathrm{mg}, 31 \% ; \mathrm{R}_{f}=0.41$ ($40: 60$ EtOAc:Hex); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.49$ (br s, NH, 1H), 7.44 (d, J 2.1 $\mathrm{Hz}, 1 \mathrm{H}), 7.38(\mathrm{~s}, 1 \mathrm{H}), 7.09-7.04(\mathrm{~m}, 2 \mathrm{H}), 6.46(\mathrm{~d}, \mathrm{~J} 3.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.33(\mathrm{dd}, J 3.0,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.62(\mathrm{~s}, 1 \mathrm{H}), 3.83-3.76$ $(\mathrm{m}, 4 \mathrm{H}), 2.01-1.88(\mathrm{~m}, 3 \mathrm{H}), 1.73-1.57(\mathrm{~m}, 4 \mathrm{H}), 1.36-1.23(\mathrm{~m}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 165.4,154.3$, 148.7, 144.5, 143.8, 140.0, 121.7, 118.7, 111.3, 110.9, 110.4, 75.7, 56.2, 48.4, 32.8, 25.6, 24.8; IR: (diamond plate: [$\left.\mathrm{cm}^{-1}\right]$): 3388 (m) [N-H], 2930 (m) [C-H], 1524 (s) [C=O], 1218 (s) [C-N]; HR-FAB MS [M+Na] calcd for $\mathrm{C}_{19} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{6} \mathrm{Na}^{+} 397.13701$; found 397.13754 .
1e: $216.0 \mathrm{mg}, 60 \% ; \mathrm{R}_{f}=0.33$ ($40: 60$ EtOAc:Hex); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.71-7.69(\mathrm{~m}, 1 \mathrm{H}), 7.46(\mathrm{br} \mathrm{s}, \mathrm{NH}$, $1 \mathrm{H}), 7.40(\mathrm{~s}, 1 \mathrm{H}), 7.30-7.25(\mathrm{~m}, 1 \mathrm{H}), 7.26-7.19(\mathrm{~m}, 1 \mathrm{H}), 6.52(\mathrm{~d}, J 3.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.35(\mathrm{~d}, \mathrm{~J} 2.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.72(\mathrm{~s}, 1 \mathrm{H})$, 3.86-3.84 (m, 1H), 2.00-1.99 (m, 2H), 1.75-1.72 (m, 2H), 1.63-1.60 (m, 1H), 1.38-1.22 (m, 5H); ${ }^{13} \mathrm{C}$ NMR (100 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 164.9,157.4,154.9,148.1,146.8,143.6,139.4,122.0,118.3,113.6,110.6,75.4,48.3,32.7,32.6$, 26.0, 25.5, 24.6IR: (diamond plate: [$\left.\mathrm{cm}^{-1}\right]$): 3393 (m) [$\left.\mathrm{N}-\mathrm{H}\right], 2931$ (m) [C-H], 1526 (s) [C=O], 1266 (s) [C-N].

1f: $165.3 .0 \mathrm{mg}, 77 \% ; \mathrm{R}_{f}=0.60$ ($50: 50 \mathrm{EtOAc}: \mathrm{Hex}$); ${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.87$ (d, J $8.7 \mathrm{~Hz}, 1 \mathrm{H}$), 7.51 (br d, $J 7.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NH}$), 7.47-7.40 (m, 2H), $7.25(\mathrm{dd}, J 8.7,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.57(\mathrm{~d}, J 2.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.42-6.37(\mathrm{~m}, 1 \mathrm{H}), 5.76(\mathrm{~s}$, $1 \mathrm{H})$, 3.93-3.79 (m, 1H), 2.07-1.87 (m, 2H), 1.84-1.69 (m, 2H), 1.67-1.57 (m, 1H), 1.46-1.20 (m, 5H) ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 164.5,150.7,147.7,143.9,138.3,129.4,127.6,125.3,119.9,111.7,110.9,75.0,48.4,32.7$, 32.6, 25.4, 24.6 (2C).

1g: $276.2 \mathrm{mg}, 64 \% ; \mathrm{R}_{f}=0.53(40: 60 \mathrm{EtOAc}: H e x) ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.99(\mathrm{~d}, \mathrm{~J} 8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.56(\mathrm{~m}, 2 \mathrm{H})$, $7.41(\mathrm{~s}, 1 \mathrm{H}), 7.17-7.11(\mathrm{~m}, 1 \mathrm{H}), 6.58(\mathrm{~s}, 1 \mathrm{H}), 5.71(\mathrm{~s}, 1 \mathrm{H}), 3.84-3.82(\mathrm{~m}, 1 \mathrm{H}), 1.99-1.88(\mathrm{~m}, 2 \mathrm{H}), 1.75-1.59(\mathrm{~m}$, $4 \mathrm{H}), 1.40-1.22(\mathrm{~m}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 164.6,150.2,149.5,142.0,139.6,135.3,126.8,122.5$, 116.1, 114.3, 100.7, 74.4, 48.6, 32.9, 25.5, 24.8; IR: (diamond plate: [cm^{-1}]): 3382 (m) [N-H], $2930(\mathrm{~m})$ [C-H], 1585 (s) [C=O], 1247 (s) [C-N], 735 (w) [C-Br]; HR-FAB MS [M+Na] ${ }^{+}$calcd for $\mathrm{C}_{18} \mathrm{H}_{19} \mathrm{BrN}_{2} \mathrm{O}_{5} \mathrm{Na}^{+} 445.03696$; found 445.0315.

1h: $108.5 \mathrm{mg}, 31 \%, \mathrm{R}_{f}=0.33$ ($40: 60 \mathrm{EtOAc}: \mathrm{Hex}$); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.99(\mathrm{~d}, \mathrm{~J} 8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.57(\mathrm{~m}$, 2 H), 7.21 (d, J $8.4 \mathrm{~Hz}, 1 \mathrm{H}$), 7.14 (dd, J $9.2,6.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.52(\mathrm{~d}, J 3.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.16(\mathrm{~d}, J 3.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.68(\mathrm{~s}, 1 \mathrm{H})$, 3.85-3.83 ($\mathrm{m}, 1 \mathrm{H}$), 2.01-1.89 (m, 2H), 1.79-1.60 (m, 4H), 1.42-1.23 (m, 4H); ${ }^{13} \mathrm{C} \mathrm{NMR} \mathrm{(100} \mathrm{MHz} ,\mathrm{CDCl}{ }_{3}$) ס 164.6, 150.3, 148.0, 139.7, 138.1, 135.2, 126.8, 122.4, 116.2, 113.7, 107.7, 74.6, 48.7, 32.8, 25.6, 24.8; IR: (diamond plate: $\left.\left[\mathrm{cm}^{-1}\right]\right): 3386(\mathrm{~m})[\mathrm{N}-\mathrm{H}], 2931(\mathrm{~m})$ [C-H], 1585 (s) [C=O], 1247 (s) [C-N], $740(\mathrm{w})$ [C-Cl].
$\mathbf{1 i}$ and $\mathbf{2 b}$ (Partially inseparable mixture : $105.8 \mathrm{mg}, 25 \%$), $\mathbf{1 i}: \mathrm{R}_{f}=0.41$ ($40: 60 \mathrm{EtOAc}: \mathrm{Hex}$); ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 7.98(\mathrm{~d}, J 8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.59-7.55(\mathrm{~m}, 2 \mathrm{H}), 7.20(\mathrm{~d}, J 8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.13(\mathrm{dd}, J 7.4,7.4 \mathrm{~Hz}, 1 \mathrm{H}) 6.52(\mathrm{~d}, J 3.3$ $\mathrm{Hz}, 1 \mathrm{H}), 6.4(\mathrm{~d}, J 3.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.73(\mathrm{~s}, 1 \mathrm{H}), 3.85-3.83(\mathrm{~m}, 1 \mathrm{H}), 2.00-1.88(\mathrm{~m}, 2 \mathrm{H}), 1.79-1.72(\mathrm{~m}, 3 \mathrm{H}), 1.62-1.60(\mathrm{~m}$, $2 \mathrm{H}), 1.41-1.22(\mathrm{~m}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 164.8,153.9,150.3,139.7,135.2,126.7,122.4,121.6$, $116.3,114.1,89.9,74.4,48.6,32.9,32.7,25.6,24.8$. Compound $\mathbf{2 b}$ observed as inseparable mixture of $\mathbf{1 i}$ and 2b. 2b: $\mathrm{R}_{f}=0.51$ ($40: 60$ EtOAc:Hex).
$\mathbf{1 j}$ and 2c (Partially inseparable mixture : $186.3 \mathrm{mg}, 18 \%$), $\mathbf{1 j}$: $\mathrm{R}_{f}=0.41$ ($40: 60 \mathrm{EtOAc}: H e x$); 2c: $\mathrm{R}_{f}=0.78$ (40:60 EtOAc:Hex); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 10.55(\mathrm{~s}, 1 \mathrm{H}), 8.03(\mathrm{~s}, 1 \mathrm{H}), 7.59(\mathrm{~d}, \mathrm{~J} 8.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.11(\mathrm{~d}, \mathrm{~J} 8.7,1 \mathrm{H})$, $6.06(\mathrm{~d}, J 2.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.92(\mathrm{~d}, J 2.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.79(\mathrm{br} \mathrm{s}, \mathrm{NH}, 1 \mathrm{H}), 4.77(\mathrm{~s}, 1 \mathrm{H}), 3.82-3.75(\mathrm{~m}, 1 \mathrm{H}), 2.26(\mathrm{~s}, 3 \mathrm{H})$, 1.93-1.84 (m, 2H), 1.66-1.57 (m, 3H), 1.40-1.29 (m, 2H), 1.19-1.10 (m, 3H); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 168.2$, 154.6, 153.0, 149.6, 138.3, 133.5, 130.2, 124.8, 120.3, 109.9, 106.8, 52.0, 48.8, 33.0, 25.6, 24.8, 13.8. 2c HRFAB MS $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{19} \mathrm{H}_{23} \mathrm{~N}_{2} \mathrm{O}_{4}{ }^{+} 359.1605$; found 359.16071.
2d: $103.2 \mathrm{mg}, 27 \%, \mathrm{R}_{f}=0.74$ (40:60 EtOAc:Hex); ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 10.54(\mathrm{~s}, 1 \mathrm{H}), 8.03(\mathrm{~s}, 1 \mathrm{H}), 7.58(\mathrm{~d}$, $J 8.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.10(\mathrm{~d}, \mathrm{~J} 8.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.94(\mathrm{~s}, 1 \mathrm{H}), 5.86(\mathrm{br} \mathrm{s}, \mathrm{NH}, 1 \mathrm{H}), 4.72(\mathrm{~s}, 1 \mathrm{H}), 3.78-3.77(\mathrm{~m}, 1 \mathrm{H}), 2.15(\mathrm{~s}, 3 \mathrm{H})$, 2.04-1.89 (m, 5H), 1.84-1.66 (m, 3H), 1.65-1.39 (m, 2H), 1.37-1.18 (m, 3H); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 168.3$, $154.5,148.2,138.2,133.4,130.4,124.8,120.2,115.2,112.4,51.9,48.8,33.0,32.8,25.6,24.8,11.5,10.0$.
1k: $16.1 \mathrm{mg}, 7 \% ; \mathrm{R}_{f}=0.56$ ($33: 67 \mathrm{EtOAc}: H e x$); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.89$ (d, J $8.8 \mathrm{~Hz}, 1 \mathrm{H}$), 7.50 (br d, J 8.0 $\mathrm{Hz}, \mathrm{NH}, 1 \mathrm{H}), 7.39(\mathrm{~d}, J 1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.29(\mathrm{dd}, J 8.7,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.58(\mathrm{~d}, J 3.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.19(\mathrm{~d}, J 3.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.68$ $(\mathrm{s}, 1 \mathrm{H}), 3.91-3.81(\mathrm{~m}, 1 \mathrm{H}), 2.05-1.98(\mathrm{~m}, 1 \mathrm{H}), 1.96-1.89(\mathrm{~m}, 1 \mathrm{H}), 1.83-1.71(\mathrm{~m}, 2 \mathrm{H}), 1.67-1.58(\mathrm{~m}, 1 \mathrm{H}), 1.44-1.22$ (m, 5H); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 164.0,150.6,147.2,138.4,138.3,129.5,127.7,125.6,119.7,114.1$, 107.1, 74.7, 48.6, 32.7, 32.6, 25.4, 24.6 (2C).
$\mathbf{1 I}$ and $\mathbf{2 e}$: Inseparable mixture of compounds $\mathbf{1 I}$ and $\mathbf{2 e}\left(47.1 \mathrm{mg}, \mathbf{1 7 \%}\right.$). $\mathbf{1 I}: \mathrm{R}_{f}=0.56$ ($33: 67 \mathrm{EtOAc}: \mathrm{Hex}$). $\mathbf{2 e}$: R_{f} $=0.50$ ($33: 67 \mathrm{EtOAc}: \mathrm{Hex}$); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 10.53(\mathrm{~s}, 1 \mathrm{H}), 8.05(\mathrm{~s}, 1 \mathrm{H}), 7.48(\mathrm{~s}, 1 \mathrm{H}), 6.57(\mathrm{~d}, \mathrm{~J} 3.2 \mathrm{~Hz}$, $1 \mathrm{H}), 6.27(\mathrm{~d}, J 3.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.87(\mathrm{~d}, J 3.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.25(\mathrm{~s}, 1 \mathrm{H}), 3.87-3.77(\mathrm{~m}, 1 \mathrm{H}), 2.00-1.86(\mathrm{~m}, 2 \mathrm{H}), 1.77-1.70$ (m, 4H), 1.43-1.31 (m, 2H), 1.24-1.13 (m, 2H).
$\mathbf{1 m}$ and $\mathbf{2 f}$: ($128.0 \mathrm{mg}, 58 \%$). Compound $\mathbf{1 m}$ observed as inseparable mixture of $\mathbf{1 m}$ and $\mathbf{2 f} . \mathbf{1 m}: \mathrm{R}_{f}=0.40$ (33:67 EtOAc:Hex), 2f: $\mathrm{R}_{f}=0.38$ ($33: 67$ EtOAc:Hex); ${ }^{1} \mathrm{H} N M R\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 10.87(\mathrm{~s}, 1 \mathrm{H}), 8.06(\mathrm{~s}, 1 \mathrm{H}), 7.45$ (s, 1H), $6.15(\mathrm{~d}, J 3.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.97(\mathrm{dd}, J 3.0,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.67(\mathrm{br} \mathrm{d}, J 7.6 \mathrm{~Hz}, \mathrm{NH}, 1 \mathrm{H}), 5.18(\mathrm{~s}, 1 \mathrm{H}), 3.88-3.78(\mathrm{~m}$, $1 \mathrm{H}), 2.27(\mathrm{~s}, 3 \mathrm{H}), 1.99-1.86(\mathrm{~m}, 2 \mathrm{H}), 1.73-1.57(\mathrm{~m}, 4 \mathrm{H}), 1.39-1.31(\mathrm{~m}, 2 \mathrm{H}), 1.21-1.10(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 167.2,153.8,153.0,134.4,130.9,130.1,128.8,126.0,123.9,110.4,106.8,68.2,51.5,48.7,32.7$, 29.7, 25.4, 24.6, 13.6.

2g : $54.0 \mathrm{mg}, 26 \% ; \mathrm{R}_{f}=0.58$ ($33: 67 \mathrm{EtOAc}: \mathrm{Hex}$); ${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 10.49(\mathrm{~s}, 1 \mathrm{H}), 8.07(\mathrm{~s}, 1 \mathrm{H}), 7.43(\mathrm{~s}$, $1 \mathrm{H}), 6.01(\mathrm{~s}, 1 \mathrm{H}), 5.65(\mathrm{br} \mathrm{s}, \mathrm{NH}, 1 \mathrm{H}), 5.12(\mathrm{~s}, 1 \mathrm{H}), 3.87-3.77(\mathrm{~m}, 1 \mathrm{H}), 2.17(\mathrm{~s}, 3 \mathrm{H}), 1.91(\mathrm{~s}, 3 \mathrm{H}), 1.74-1.56(\mathrm{~m}$, $5 \mathrm{H}), 1.44-1.32(\mathrm{~m}, 3 \mathrm{H}), 1.21-1.06(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 167.3,153.8,148.2,147.0,134.4,133.0$, $130.2,126.0,123.8,115.2,112.8,51.5,48.8,32.81,32.76,29.7,25.5,24.7,11.4,9.9$.
1n and 3. To a solution of 2-allyl-6-nitrophenol ($86.5 \mathrm{mg}, 0.48 \mathrm{mmol}$) in methanol (0.50 mL), 2-furaldehyde $(40.0 \mu \mathrm{~L}, 0.48 \mathrm{mmol})$ and cyclohexyl isocyanide ($60.5 \mu \mathrm{~L}, 0.49 \mathrm{mmol}$) were added. The reaction was stirred for 48 h at $65^{\circ} \mathrm{C}$. Product was isolated via flash chromatography ($\mathrm{SiO}_{2}, 20 \%$ ethyl acetate in hexanes) to afford compounds 1 n ($12.9 \mathrm{mg}, 7 \%$) and 3 ($29.5 \mathrm{mg}, 16 \%$). Under alternate conditions ($50^{\circ} \mathrm{C}$ for 48 h), to afford
compounds $\mathbf{1 n}$ ($48.0 \mathrm{mg}, 26 \%$) and $\mathbf{3}$ ($5.6 \mathrm{mg}, 3 \%$). $\mathbf{1 n}$: $\mathrm{R}_{f}=0.51$ ($40: 60 \mathrm{EtOAc}: \mathrm{Hex}$); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $7.68(\mathrm{~d}, \mathrm{~J} 8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.41(\mathrm{~d}, J 7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.32(\mathrm{~s}, 1 \mathrm{H}), 7.20-7.14(\mathrm{~m}, 2 \mathrm{H}), 6.23(\mathrm{~s}, 2 \mathrm{H}), 5.90-5.78(\mathrm{~m}, 1 \mathrm{H}), 5.43$ $(\mathrm{s}, 1 \mathrm{H}), 5.16(\mathrm{~d}, \mathrm{~J} 10.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.08(\mathrm{~d}, J 17.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.00-3.90(\mathrm{~m}, 1 \mathrm{H}), 3.34(\mathrm{dd}, J 16.0,6.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.17$ (dd, J $16.0,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.09-2.02(\mathrm{~m}, 2 \mathrm{H}), 1.84-1.76(\mathrm{~m}, 2 \mathrm{H}), 1.69-1.62(\mathrm{~m}, 1 \mathrm{H}), 1.50-1.25(\mathrm{~m}, 5 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 167.1,146.9,144.7,144.0,143.3,136.7,135.4,135.0,124.7,123.8,119.5,117.6,108.9,77.8$, $48.2,34.0,33.0,32.8,25.5,24.7$ (2C).
3 (Conversion from 1n): A solution of $1 \mathbf{n}(20.5 \mathrm{mg}, 0.053 \mathrm{mmol})$ in 0.50 mL methanol was submitted to microwave irradiation ($120^{\circ} \mathrm{C}, 40$ minutes). Volatiles were removed in vacuo and crude reaction mixture submitted to flash chromatography ($\mathrm{SiO}_{2}, 20 \%$ ethyl acetate in hexanes) to afford hydroxyphenyl furan 3 (10.7 $\mathrm{mg}, 52 \%$): $\mathrm{R}_{\mathrm{f}}=0.29$ (40:60 EtOAc:Hex) ; $\mathrm{R}_{f}=0.29$ ($40: 60 \mathrm{EtOAc}: \mathrm{Hex}$); ${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 10.96(\mathrm{~s}, 1 \mathrm{H})$, $8.21(\mathrm{~d}, \mathrm{~J} 1.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.69(\mathrm{~s}, 1 \mathrm{H}), 6.58(\mathrm{~d}, \mathrm{~J} 3.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.31(\mathrm{~d}, \mathrm{~J} 3.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.06-5.94(\mathrm{~m}, 1 \mathrm{H}), 5.54(\mathrm{br} \mathrm{s}, \mathrm{NH}$, $1 \mathrm{H}), 5.17(\mathrm{~s}, 1 \mathrm{H}), 5.14(\mathrm{~d}, J 4.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.84-3.74(\mathrm{~m}, 1 \mathrm{H}), 3.64(\mathrm{~s}, 2 \mathrm{H}), 3.51(\mathrm{~d}, \mathrm{~J} 6.4 \mathrm{~Hz}, 2 \mathrm{H}), 1.94-1.85(\mathrm{~m}, 2 \mathrm{H})$, 1.70-1.53 (m, 4H), 1.41-1.28 (m, 2H), 1.16-1.06 (m, 2H); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 167.3,152.5,151.3$, $149.2,134.8,132.6,132.1,128.8,122.9,117.4,117.2,110.7,106.6,48.5,36.7,33.8,32.9,29.7,25.5,24.9$, 19.2.

Acknowledgements

The authors would like to acknowledge the support, in part, received from the Illinois LSAMP STEM Pathway and Research Alliance (ILSPRA) at SIUE for Chanté Summers, NSF-HRD 1911341 through Chicago State University. Special thanks to Kyle McClary, Alan Jefferson, and Andres Mancilla for preparation of phenol and furaldehyde starting materials.

Supplementary Material

Detailed experimental procedures and ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra associated with compounds reported in this article are available as supplementary information.

References

1. Dömling, A. Chem. Rev. 2006, 106, 17-89. https://doi.org/10.1021/cr0505728
2. Touré, B. B.; Hall, D. G. Chem. Rev. 2009, 109, 4439-4486. https://doi.org/10.1021/cr800296p
3. El Kaïm, L. ; Grimaud, L. Tetrahedron 2009, 65, 2153-2171. https://doi.org/10.1016/j.tet.2008.12.002
4. Jia, S.; El Kaïm, L. Eur. J. Org. Chem. 2018, 6457-6464. https://doi.org/10.1002/ejoc.201800958
5. El Kaïm, L.; Grimaud, L.; Le Goff, X. F.; Schiltz, A. Org. Lett. 2011, 12, 534-536.
https://doi.org/10.1021/ol1028817
6. Dömling, A.; Wang, W.; Wang, K. Chem. Rev. 2012, 112, 3083-3135.
https://doi.org/10.1021/cr100233r
7. El Kaïm, L.; Gizolme, M.; Grimaud, L.; Oble, J. J. Org. Chem. 2007, 72, 4169-4180.
https://doi.org/10.1021/jo070202e
8. El Kaïm, L. ; Grimaud, L. ; Oble, J. Angew. Chem. Int. Ed. 2005, 44, 7961-7964.
https://doi.org/10.1002/anie.200502636
9. El Kaïm, L.; Gizolme, M.; Grimaud, L.. Org. Lett. 2006, 8, 5021-5023.
https://doi.org/10.1021/ol0617502
10. Richey, B.; Mason, K. M.; Meyers, M. S.; Luesse, S. B. Tetrahedron Lett. 2016, 57, 492-494. https://doi.org/10.1016/i.tetlet.2015.12.068
11. Mason, K. M.; Meyers, M. S., Fox, A. M.; Luesse, S. B. Beilstein J. Org. Chem. 2016, 12, 2032-2037. https://doi.org/10.3762/bjoc.12.191
12. Martinand-Lurin, E.; El Kaïm, L. ; Grimaud, L. Tetrahedron Lett. 2014, 55, 5144-5146. https://doi.org/10.1016/i.tetlet.2014.07.088
13. Martinand-Lurin, E.; Dos Santos, A.; Robineau, E.; Retailleau, P.; Dauban, P.; Grimaud, L.; El Kaïm, L. Molecules 2016, 21, 1257.
https://doi.org/10.3390/molecules21091257
14. Dai, W.-M.; Li, H. Tetrahedron 2007, 63, 12866-12876.
https://doi.org/10.1016/j.tet.2007.10.050
15. Bromidge, S. M.; Bertani, B.; Borriello, M.; Bozzoli, A.; Faedo, S.; Gianotti, M.; Gordon, L. J.; Hill, M.; Zucchelli, V.; Watson, J. M.; Zonzini, L. Bioorg. Med. Chem. Lett., 2009, 19, 2338-2342.
https://doi.org/10.1016/i.bmcl.2009.02.056
16. Rao, K.; Sirohi, R.; Shorey, M.; Kishore, D. Int. J. Chem. Sci. 2009, 7, 1667.

This paper is an open access article distributed under the terms of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/)

[^0]: ${ }^{a}$ Ratio calculated from ${ }^{1} \mathrm{H}$ NMR analysis when products could not be separated. ${ }^{\mathrm{b}}$ Reactions used 1:1.3:1.5 ratio phenol : aldehyde : isocyanide. ${ }^{c}$ Isolated yield after column chromatography.

