A Platinum Open Access Journal for Organic Chemistry

DOAJ Seal
Arkivoc 2021, part x, 225-238

Facile conversion of 1,2-dicyanobenzene into chiral bisamidines

Mariano Goldberg, ${ }^{\text {a }}$ Masaki Nakajima, ${ }^{\text {a }}$ Michael Bolte, ${ }^{\text {b }}$ and Michael W. Göbel*a
${ }^{a}$ Institute for Organic Chemistry and Chemical Biology, Goethe University Frankfurt, Max-von-Laue-Str. 7, D-60438 Frankfurt am Main, Germany ${ }^{b}$ Institute for Inorganic and Analytical Chemistry, Goethe University Frankfurt, Max-von-Laue-Str. 7, D-60438 Frankfurt am Main, Germany
Email: M.Goebel@chemie.uni-frankfurt.de

Accepted Manuscript 02-19-2022
Published on line 03-02-2022

Abstract

Nucleophilic catalysis by N-acetyl cysteine permits the smooth reaction of 1,2-diarylethylene-1,2-diamines with 1,2-dicyanobenzene forming chiral bisamidines in yields up to 94% in a single step. Such bisamidines can be used as Br пnsted bases or, in the protonated state, as electrophilic catalysts to promote Diels-Alder reactions with medium levels of enantioselectivity.

Keywords: Anthrone, $\mathrm{BAr}^{\mathrm{F}} 4$ salts, Dane's diene, organocatalysis, steroid skeleton, thiol catalysis

Introduction

Chiral amidines and guanidines are versatile compounds that have been applied many times in studies on molecular recognition ${ }^{1-6}$ and enantioselective catalysis. ${ }^{7-24}$ Our group, for example, has introduced the bisamidines $\mathbf{1}$ and $\mathbf{2}$ (Figure 1). ${ }^{25,26}$ In the protonated state, these compounds promote Diels-Alder reactions as electrophilic catalysts. ${ }^{27}$ The geometry of compound 1 was designed to coordinate cyclic 1,2 diketones, carboxylates, or nitronates by hydrogen bonds. ${ }^{25}$ The monocation of compound 2, in contrast, has NH groups converging towards a single carbonyl oxygen. ${ }^{26}$ It is a weaker electrophile compared to the dication of 1. A second protonation of $\mathbf{2}$ occurs at the central carbon, a formal enamine. C-protonation interrupts conjugation and is thermodynamically unfavorable. Accordingly, the dication of $\mathbf{2}$ tends to react as a Brønsted acid. The chiral guanidine $\mathbf{3}$ has been used for enantioselective Brønsted base catalyzed reactions. ${ }^{28}$

Figure 1. Structures of the chiral bisamidines $\mathbf{1}$ and $\mathbf{2}$ and of the guanidine $\mathbf{3}$.

In the current study, we describe a one-step synthesis of bisamidines characterized by the general structure 6 (Figure 2). N-permethylated analogs of 6 have been previously described by Wilhelm. ${ }^{23,24}$ However, the cyclic amidines were prepared in a different way from aldehydes and diamines by subsequent oxidation of the aminal. ${ }^{19,20,29}$ Compared to compound 1, the new bisamidines are based on a 1,2-phenylene linker bringing the nitrogens closer together as in compound 2. However, due to a lack of direct conjugation, the bisamidines 6 can be doubly protonated without problems and isolated as their chloride or tetraaryl borate salts. Two preliminary examples show how the compounds may be used as chiral Brønsted bases or, in the dicationic states, as electrophilic catalysts.

Figure 2. Preparation of bisamidines 6a-e from phthalonitrile 4. 5a/6a: $\mathrm{Ar}=\mathrm{Ph}, R, R$ enantiomer (94% of $\mathbf{6 a}$ after 22 h); 5b/6b: Ar = 2-hydroxyphenyl, R, R enantiomer (64% of $\mathbf{6 b}$ after 8 h reflux $+15 \mathrm{hr.t}$); $\mathbf{5 c} / \mathbf{6 c}$: $\mathrm{Ar}=\mathbf{2 -}$ naphthyl, S, S enantiomer (20% of $\mathbf{6 c}$ after 26 h); $\mathbf{5 d} / 6 \mathrm{~d}$: Ar = p-biphenyl, S, S enantiomer (65% of $\mathbf{6 d}$ after 25 h); 5e/6e: $\mathrm{Ar}=1$-naphthyl, S, S enantiomer (36% of $\mathbf{6 e}$ after 37 h). Numbers $\mathbf{7 a} \mathbf{e}$ e refer to the hydrochlorides of $\mathbf{6 a} \mathbf{a}$ e and $8 \mathrm{a}-\mathrm{e}$ to the $\mathrm{BAr}_{4}{ }_{4}$ salts.

Results and Discussion

The obvious starting material for the synthesis of bisamidines 6 is 1,2-dicyanobenzene 4 (Figure 2). This compound, however, has a tendency to form phthalocyanines. In the presence of NaOMe , for example, we observed the formation of dark blue solutions. To avoid such byproducts, we used N-acetyl cysteine as a nucleophilic catalyst. ${ }^{30,31}$ In the presence of 1.2 equivalents of this thiol, the conversion of 4 into bisamidine $\mathbf{6 a}$ can be achieved in 94% yield simply by refluxing with 2.2 equivalents of diamine 5 a in dry methanol. No colored byproducts are formed. The yield of bisamidines however drops with increasing steric demand of the diamines (Figure 3). While diamines 5a and 5b are commercial compounds, $\mathbf{5 c} \mathbf{- e}$ had to be prepared by stereoselective reactions. ${ }^{32}$ In the present study, we have applied the method of Chin based on a $[3,3]$ sigmatropic rearrangement of bisimines formed from aldehydes and (R, R)-diamine $\mathbf{5 b}$ yielding the (S, S) configurated products $5 \mathrm{c}-\mathrm{e}$. ${ }^{33}$

(94 \%)

(64\%)

(36 \%)

Figure 3. Structures of bisamidines $\mathbf{6 a} \mathbf{- e}$ and yields when prepared from phthalonitrile $\mathbf{4}$ and bisamines 5a-e.

Crystals of high quality could be obtained by slow diffusion of n-pentane into a solution of bisamidine 6a in EtOAc. The crystal structure (Figure 4 and Supporting Information) shows the close proximity of the
amidine nitrogens that, in the doubly protonated form, may accommodate and activate a carbonyl guest molecule.

Figure 4. Crystal structure of bisamidine 6a.

Initially we speculated the OH groups present in bisamidine $\mathbf{6 b}$ might form additional hydrogen bonds with a substrate thus causing increased electrophilic activation. NMR evidence, however, does not support this idea: The NH signals of the other bisamidines in DMSO appear around 8.50 ppm and shift to 12.0 ppm upon protonation with HCl . In the 2-hydroxyphenyl analog, the NH signal moves from 9.61 (6b) to 11.26 ppm (7b). Interestingly, bisamidine protonation also induces a major shift of the OH signal from 3.17 (6b) to 10.28 ppm (7b) indicating hydrogen bonds between NH as donor and OH as acceptor. A similar type of intramolecular H-bonds is well known from TADDOLs. ${ }^{34}$ Thus, in contrast to other bisamidine hydrochlorides 7 and BAr_{4} salts 8, OH but no longer NH groups are expected to act as H -bond donors in the 2-hydroxyphenyl analogs $\mathbf{7 b}$ and $\mathbf{8 b}$.

The Diels-Alder reaction of Dane's diene 9 and diketone 10 has been suggested decades ago as a synthetic approach towards steroids (Figure 5). ${ }^{35}$ Depending on solvents, the cycloaddition may preferentially form the constitutional isomers rac-13 or rac-14 ${ }^{36}$ which slowly tautomerize forming compounds rac-15 and rac-16. In the presence of chiral Lewis acids, isomer 13 can be obtained with excellent constitutional and enantioselectivity. This reaction represents the key step in one of the total syntheses of estrone. ${ }^{37}$ Hydrogen bond mediated association of diketone $\mathbf{1 0}$ to amidinium ions also accelerated the cycloaddition with Dane's diene ${ }^{38}$ and low to medium levels of enantioselective control were observed in the presence of chiral amidines. ${ }^{39}$ The BAr_{4} salt of bisamidine $1(100 \mathrm{~mol} \%)$ for example selectively formed the correct constitutional isomer ent-15 with ee values ranging from 14% at $5^{\circ} \mathrm{C}, 25 \%$ at $-16^{\circ} \mathrm{C}$ and up to 47% at $-70^{\circ} \mathrm{C} .{ }^{25}$ Using a specifically designed axially chiral amidine, the reaction could be further optimized yielding 24% for the complete multistep synthesis from Dane's diene 9 to enantiopure (+)-estrone. ${ }^{40}$ In the present study, we have repeated this well established reaction in the presence of $\mathrm{BAr}_{4}{ }_{4}$ salt $8 \mathrm{aa}\left(20 \mathrm{~mol} \%\right.$): In toluene at $-20^{\circ} \mathrm{C}$ diketone ent-13 was formed in 65% yield with 28% ee. This result comes close to the selectivities observed for bisamidine 1. However, it is clearly inferior to the variant using the axially chiral amidine.

Cycloadditions of Dane's diene and compounds 11 and 12 are further options to synthesize (+)-estrone from diene 9. Both reactions can be catalyzed with excellent stereoselectivities by protonated chiral oxazaborolidines. ${ }^{41,42}$ Although mono carbonyl groups should nicely fit into the cationic cleft of $\mathrm{BAr}^{\mathrm{F}}{ }_{4}$ salt 8a, we could not detect any product from the reaction of 9 and 11 . Similarly, even after 3 days at $40{ }^{\circ} \mathrm{C}(10 \mathrm{~mol} \%$ $8 \mathrm{a}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$) not more than 9% of the racemic cycloadduct could be isolated from a test reaction of 9 and cyclopentenone 12. Thus, in comparison to protonated oxazaborolidines, the bisamidinium salts seem to be less potent electrophilic catalysts.

13

14

15

16

$$
9+10 \longrightarrow 13+\text { ent-13 + } 14+\text { ent-14 } \longrightarrow 15+\text { ent-15 + } 16+\text { ent-16 }
$$

Figure 5. Dane's diene 9 and dienophiles 10-12 previously used in total syntheses of estrone.

Figure 6. The enolate of anthrone 17 reacts in a Brønsted base induced cycloaddition with dienophile 18.

Deprotonation of anthrone $\mathbf{1 7}$ forms an electron rich diene which readily undergoes Diels-Alder reactions with dienophils such as 18 (Figure 6). ${ }^{43}$ When conducted with a chiral Brønsted base in nonpolar solvents, chiral ion pairs are formed and the cycloaddition can show high levels of enantioselectivity. ${ }^{14,44-49} \mathrm{We}$ have previously used this reaction to evaluate the chiral guanidine $\mathbf{3}$ and observed ee values of product 19 around $30 \%{ }^{28}$ Based on this protocol, we have now tested bisamidine $6 \mathbf{a}$. In the presence of $10 \mathrm{~mol} \%$ of $6 \mathbf{a}$ in THF, 86% of product 19 with 46% ee could be isolated. No subsequent base induced retro aldol reaction occured as observed in the presence of guanidine 3. The ee of product 19 increased to 84% upon recrystallization.

Conclusions

By nucleophilic catalysis with N-acetyl cysteine, the conversion of 1,2-dicyano benzene 4 into chiral bisamidines becomes a simple and effective procedure. Recent advances in the synthesis of enantiopure 1,2disubstituted ethylene-1,2-diamines further increase the usefulness of this method. ${ }^{32,33}$ The resulting products 6a-e have some potential as chiral Brønsted bases. When converted into salts with non-coordinating counterions, BAr_{4} salts $8 \mathrm{a}-\mathrm{e}$ can also play a role as chiral hydrogen bond donors. Like Lewis acids, they can activate substrates for Diels-Alder reactions. However, they are clearly less potent as protonated oxazaborolidines. Furthermore, bisamidines 1 and 6 may be of interest as chiral ligands in coordination chemistry.

Experimental Section

General. Column chromatography: silica gel (60 Å pore size, $0.04-0.063 \mathrm{~mm}$ particle size). Proton nuclear magnetic resonance $\left({ }^{1} \mathrm{H} N M R\right)$ and carbon nuclear magnetic resonance spectra $\left({ }^{13} \mathrm{C}-\mathrm{NMR}\right)$ were recorded with Bruker AV $250\left({ }^{1} \mathrm{H}: 250 \mathrm{MHz}\right)$ or Bruker AV $300\left({ }^{1} \mathrm{H}: 300 \mathrm{MHz} ;{ }^{13} \mathrm{C}: 75.5 \mathrm{MHz}\right)$ or Bruker AV $500\left({ }^{1} \mathrm{H}: 500 \mathrm{MHz}\right.$; ${ }^{13} \mathrm{C}: 125.8 \mathrm{MHz}$) NMR spectrometers. Chemical shifts for protons are reported in parts per million (δ scale) and internally referenced to the proton resonances of the solvent ($\mathrm{CDCl}_{3}: \delta 7.26, d_{6}$-DMSO: $\delta 2.50$). Chemical shifts for carbon are reported in parts per million (δ scale) and referenced to the carbon resonances of the solvent ($\mathrm{CDCl}_{3}: \delta 77.00, d_{6}$-DMSO: $\delta 39.51$). Data are represented as follows: chemical shift, multiplicity (s singlet, bs broad singlet, d doublet, t triplet, q quartet, m multiplet, dd double doublet), coupling constants in Hz , and integration. ESI-MS spectra were obtained on a Fisons VG Plattform II. HRMS spectra were recorded on a MALDI LTQ Orbitrap mass spectrometer from Thermo Scientific.

1,2-Bis((4R,5R)-4,5-diphenyl-4,5-dihydro-1H-imidazol-2-yl)-benzene (6a). To a solution of phthalonitrile 4 ($169 \mathrm{mg}, 1.32 \mathrm{mmol}, 1.0$ equiv.) and N-acetyl cysteine ($258 \mathrm{mg}, 1.58 \mathrm{mmol}, 1.2$ equiv.) in dry methanol (20 mL) at rt (argon atmosphere) was added ($1 R, 2 R$)-1,2-diphenylethylenediamine 5 a ($618 \mathrm{mg}, 2.91 \mathrm{mmol}, 2.2$ equiv.). The solution was stirred at rt for 2 h and then heated to reflux for 22 h . After the mixture was cooled to rt , the solution was evaporated under reduced pressure and the residue purified by silica gel chromatography ($\mathrm{EtOAc} / \mathrm{MeOH} 10: 1+1 \% \mathrm{NEt}_{3}$) to give 6a as a colourless solid ($645 \mathrm{mg}, 1.24 \mathrm{mmol}, 94 \%$). $\mathrm{R}_{f} 0.29$ (EtOAc/MeOH $10: 1+1 \%$ NEt $_{3}$); mp $210-212{ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}{ }^{20}+174(c 1.0, \mathrm{MeOH}) ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}, \delta$): 8.27 (bs, 2 H , exchange with $\mathrm{D}_{2} \mathrm{O}$), $7.91-7.89(\mathrm{~m}, 2 \mathrm{H}), 7.65-7.63(\mathrm{~m}, 2 \mathrm{H}), 7.30-7.23(\mathrm{~m}, 20 \mathrm{H}), 4.71$ (broad, 4 H); ${ }^{13} \mathrm{C}$ NMR (126 MHz, DMSO- d_{6}, δ): 164.1, 143.9, 130.8, 129.9, 129.8, 128.5, 127.2, 126.6, 79.9, 69.5; MS (ESI, m/z):
$519.25[M+]^{+}$; HRMS (MALDI, m / z): $[M+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{36} \mathrm{H}_{31} \mathrm{~N}_{4}, 519.25432$; found, 519.25383. Crystal structure: See Supporting Information.
($4 R, 4^{\prime} R, 5 R, 5{ }^{\prime} R$)-2,2'-(1,2-Phenylene)bis(4,5-diphenyl-4,5-dihydro-1H-imidazol-3-ium) chloride (7a). To a solution of bisamidine 6 a ($0.62 \mathrm{~g}, 1.20 \mathrm{mmol}, 1.0$ equiv.) in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$ at rt (argon atmosphere) was added hydrogen chloride solution ($1.26 \mathrm{~mL}, 2.52 \mathrm{mmol}, 2.1$ equiv., $2.0 \mathrm{M} \mathrm{in} \mathrm{Et}_{2} \mathrm{O}$). The clear solution was stirred at rt for 1.5 h , evaporated under reduced pressure and dried in vacuo to obtain 7 a as a light yellow solid ($0.71 \mathrm{~g}, 1.20 \mathrm{mmol}$, quant.). ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{DMSO}^{2} \mathrm{~d}_{6}$, δ): 12.00 (bs, 4 H), 8.25-8.22 (m, 2 H), 8.098.06 (m, 2 H), 7.46-7.29 (m, 20 H), 5.36 (s, 4 H); ${ }^{13} \mathrm{C}$ NMR (75 MHz , DMSO- $\mathrm{d}_{6}, ~ \delta$): 164.0, 137.1, 133.7, 132.1, 128.9, 128.8, 127.6, 122.9, 69.9.
(4R,4'R,5R,5'R)-2,2'-(1,2-Phenylene)bis(4,5-diphenyl-4,5-dihydro-1H-imidazol-3-ium) tetrakis(3,5-bis(trifluoromethyl)phenyl)borate (8a). To a solution of bisamidinium chloride $\mathbf{7 a}$ ($0.69 \mathrm{~g}, 1.17 \mathrm{mmol}, 1.0$ equiv.) in dry methanol (40 mL) at rt (argon atmosphere) was added sodium tetrakis[3,5bis(trifluormethyl)phenyl]borate ($2.07 \mathrm{~g}, 2.34 \mathrm{mmol}, 2.0$ equiv.). The clear solution was stirred at rt for 1.5 h and evaporated under reduced pressure. The residue was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, washed with brine and the aqueous phase was extracted several times with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic phase was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, evaporated under reduced pressure and dried in vacuo to obtain $8 \mathbf{a}$ as colourless foam ($2.51 \mathrm{~g}, 1.12 \mathrm{mmol}$, $96 \%) .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{DMSO}_{6} \mathrm{~d}_{6}, \delta$): 11.43 (bs, 4 H), 8.19 (bs, 2 H), 8.12 (bs, 2 H), 7.68 (bs, 8 H), 7.62-7.61 (bm, 16 H), 7.47-7.37 (m, 20 H), 5.48 (bs, 4 H); ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{DMSO}^{2} \mathrm{~d}_{6}, \delta$): 163.6, 160.9 ($\mathrm{q}, \mathrm{J}_{11 \mathrm{~B}-13 \mathrm{c}} 49.2 \mathrm{~Hz}$, BAr_{4}), 136.8, $134.0\left(\mathrm{BAr}_{4}\right), 132.0,129.0,128.4$ (qq, $J_{13 \mathrm{C}-19 \mathrm{~F}} 31.6,2.8 \mathrm{~Hz}^{2}, \mathrm{BArF}_{4}$), 127.7, 124.0 (q, $J_{13 \mathrm{c}-19 \mathrm{~F}} 272.5$ Hz , peaks at $129.4,125.8,122.2,118.6, \mathrm{BAr}^{\mathrm{F}}$), 117.6 (septet, $\mathrm{J}_{13 \mathrm{C}-19 \mathrm{~F}} 3.6 \mathrm{~Hz}, \mathrm{BAr}^{\mathrm{F}}$).
1,2-Bis((4R,5R)-4,5-di-(2'-hydroxyphenyl)-4,5-dihydro-1H-imidazol-2-yl)benzene (6b). To a solution of phthalonitrile 4 ($227 \mathrm{mg}, 1.77 \mathrm{mmol}, 1.0$ equiv.) and N-acetyl cysteine ($344 \mathrm{mg}, 2.11 \mathrm{mmol}, 1.2$ equiv.) in dry methanol (30 mL) at rt (argon atmosphere) was added ($1 R, 2 R$)-1,2-bis(2-hydroxyphenyl)ethylenediamine 5b ($950 \mathrm{mg}, 3.89 \mathrm{mmol}, 2.2$ equiv.). The solution was heated to reflux for 8 h and then stirred at rt overnight. The solution was evaporated under reduced pressure and the residue purified by silica gel chromatography ($\mathrm{EtOAc} / \mathrm{MeOH} 10: 1+2 \% \mathrm{NEt}_{3}$) to give $\mathbf{6 b}$ as light yellow solid ($658 \mathrm{mg}, 1.13 \mathrm{mmol}, 64 \%$). R_{f} 0.04-0.18 (EtOAc/MeOH 10:1 + 2\% NEt ${ }_{3}$); ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{DMSO}^{2} \mathrm{~d}_{6}, \delta$): 9.61 (bs, 2 H), 7.84-7.81 (m, 2 H), 7.64-7.62 (m, 2 H), 7.34 (d, J $7.2 \mathrm{~Hz}, 4 \mathrm{H}$), 7.03 (td, J $7.7,1.7 \mathrm{~Hz}, 4 \mathrm{H}$), 6.75 (dd, J 8.1, $0.9 \mathrm{~Hz}, 4 \mathrm{H}$), 6.67 (td, J 7.5, 1.0 Hz, 4 H), $5.22(\mathrm{~s}, 4 \mathrm{H}), 3.17(\mathrm{~s}, 4 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR (126 MHz, DMSO- $_{6}, \delta$): 163.3, 154.8, 130.0, 129.6, 127.8, 127.6, 119.0, 115.2, 48.6; MS (ESI, m / z): $583.17[M+H]^{+}$; HRMS (MALDI, m / z): $[M+H]^{+}$calcd for $\mathrm{C}_{36} \mathrm{H}_{31} \mathrm{~N}_{4} \mathrm{O}_{4}, 583.23398$; found, 583.23425.
(4R,4'R,5R,5'R)-2,2'-(1,2-Phenylene)bis(4,5-bis(2-hydroxy-phenyl)-4,5-dihydro-1H-imidazol-3-ium) chloride (7 b). To a solution of bisamidine $\mathbf{6 b}\left(0.57 \mathrm{~g}, 0.98 \mathrm{mmol}, 1.0\right.$ equiv.) in a mixture of dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(40 \mathrm{~mL})$ and dry methanol (5 mL) at rt (argon atmosphere) was added hydrogen chloride solution ($0.98 \mathrm{~mL}, 1.96 \mathrm{mmol}, 2.0$ equiv., 2.0 M in $\mathrm{Et}_{2} \mathrm{O}$). The clear solution was stirred at rt for 3 h , evaporated under reduced pressure and dried in vacuo to obtain 7b as light orange foam ($0.64 \mathrm{~g}, 0.98 \mathrm{mmol}$, quant.). ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}, \delta$): 11.26 (bs, 4 H), 10.28 (bs, 4 H), $8.04-7.94$ (m, 4 H), 7.34 (dd, J 7.7, $1.5 \mathrm{~Hz}, 4 \mathrm{H}$), 7.21 (td, J 7.5, $1.6 \mathrm{~Hz}, 4 \mathrm{H}$), 7.03 (dd, J 8.1, $0.9 \mathrm{~Hz}, 4 \mathrm{H}$), 6.79 (td, J 7.5, $1.0 \mathrm{~Hz}, 4 \mathrm{H}$), 5.47 (s, 4 H); ${ }^{13} \mathrm{C}$ NMR (75 MHz , DMSO-d ${ }_{6}$, δ): 162.8, 155.7, 133.1, 130.0, 129.9, 128.8, 124.7, 123.4, 119.1, 115.9, 64.7.
(4R,4'R,5R,5'R)-2,2'-(1,2-Phenylene)bis(4,5-bis(2-hydroxy-phenyl)-4,5-dihydro-1H-imidazol-3-ium) tetrakis-(3,5-bis(trifluoro-methyl)phenyl)borate (8b). To a solution of bisamidinium chloride $\mathbf{7 b}$ ($0.64 \mathrm{~g}, 0.98 \mathrm{mmol}$, 1.0 equiv.) in dry methanol (40 mL) at rt (argon atmosphere) was added sodium tetrakis[3,5-bis(trifluormethyl)-phenyl]borate ($1.74 \mathrm{~g}, 1.96 \mathrm{mmol}, 2.0$ equiv.). The clear solution was stirred at rt for 1.5 h and evaporated under reduced pressure. The residue was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, washed with brine and the
aqueous phase was extracted several times with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic phase was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, evaporated under reduced pressure and dried in vacuo to obtain $\mathbf{8 b}$ as colourless foam ($2.17 \mathrm{~g}, 0.94 \mathrm{mmol}$, $96 \%) .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{DMSO}^{2} \mathrm{~d}_{6}, \delta$): $11.00(\mathrm{~s}, 4 \mathrm{H}), 10.07(\mathrm{~s}, 4 \mathrm{H}), 8.07-8.04(\mathrm{~m}, 2 \mathrm{H}), 7.94-7.91(\mathrm{~m}, 2 \mathrm{H}), 7.70$ (bs, 8 H), 7.62 (bm, 16 H), 7.38 (dd, J $7.6,1.4 \mathrm{~Hz}, 4 \mathrm{H}$), 7.24 (td, J 7.2, $1.5 \mathrm{~Hz}, 4 \mathrm{H}$), 6.93 (dd, J $8.1,0.8 \mathrm{~Hz}, 4 \mathrm{H}$), 6.84 (td, J $7.3,0.7 \mathrm{~Hz}, 4 \mathrm{H}$), $5.52(\mathrm{~s}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR} \mathrm{(} 75 \mathrm{MHz}, \mathrm{DMSO}-d_{6}, \delta$): $162.9,161.0\left(\mathrm{q}, \mathrm{J}_{11 \mathrm{~B}-13 \mathrm{c}} 9.8 \mathrm{~Hz}, \mathrm{BAr}^{\mathrm{F}}\right.$), 155.6, $134.0\left(\mathrm{BAr}_{4}\right), 133.4,130.1,130.0,129.1,128.5$ (qq, $J_{13 \mathrm{C}-19 \mathrm{~F}} 31.4,2.8 \mathrm{~Hz}, \operatorname{BarF} 4$), $124.7,124.0$ (q, $J_{13 \mathrm{c}-19 \mathrm{~F}}$ 272.8 Hz , peaks at $129.4,125.8,122.2,118.6, \mathrm{BAr}_{4}$), $123.6,119.3,117.5$ (septet, $J_{13 \mathrm{C}-19 \mathrm{~F}} 3.4 \mathrm{~Hz}, \mathrm{BAr}_{4}$), 115.8 , 64.6; ${ }^{19}$ F NMR (471 MHz, DMSO- $\left.d_{6}, \delta\right):-61.86 ; \mathrm{MS}(E S I, m / z):[\mathrm{M}+\mathrm{H}]^{+} 583.20 ; \mathrm{MS}(E S I, m / z): 863.26\left[\left(\mathrm{BAr}^{\mathrm{F}}\right)^{-}\right]$; HRMS (MALDI, m / z): $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{36} \mathrm{H}_{31} \mathrm{~N}_{4} \mathrm{O}_{4}, 583.23398$, found, 583.23443.
(1S,2S)-1,2-Di(naphthalen-2-yl)ethane-1,2-diammonium chloride ($5 \mathbf{c} \cdot \mathbf{2} \mathbf{H C l}$). To a solution of ((R, R)-1,2-bis-(2-hydroxyphenyl)-1,2-diamino-ethane 5b ($1.22 \mathrm{~g}, 4.99 \mathrm{mmol}, 1.00$ equiv.) in DMSO (25 mL) was added naphthalene 2 -carbaldehyde ($1.87 \mathrm{~g}, 11.97 \mathrm{mmol}, 2.40$ equiv.), then stirred for 19 h at rt and then water (75 mL) and $\mathrm{Et}_{2} \mathrm{O}$ were added. The phases were separated, the combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporated under reduced pressure. The orange solid residue was dissolved in THF (70 mL) and concentrated $\mathrm{HCl}(37 \%, 1.5 \mathrm{~mL})$ was added. The reaction mixture was stirred for 19 h , the precipitate was filtered off and washed with cold THF. The residue was dried in vacuo to afford the hydrochloride of $\mathbf{5 c}$ as a colourless solid ($1.40 \mathrm{~g}, 3.63 \mathrm{mmol}, 73 \%$). mp $245-246{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR (300 MHz , DMSO- d_{6}, δ): $9.50(\mathrm{bs}, 6 \mathrm{H}$), 8.00 (d, J $1.1 \mathrm{~Hz}, 2 \mathrm{H}$), $7.83-7.75$ (m, 6 H), 7.55 (dd, J $7.8,1.7 \mathrm{~Hz}, 2 \mathrm{H}$), $7.51-7.45$ (m, 4 H), 5.42 (bs, 2 H); ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{DMSO}^{2} \mathrm{~d}_{6}, \delta$): 132.7, 132.2, 130.7, 128.8, 128.1, 127.9, 127.5, 126.9, 126.6, 125.5, 56.9; MS (ESI, $m / z): 296.14\left[\mathrm{M}+\mathrm{H}^{+}-\mathrm{NH}_{3}\right]$; HRMS (MALDI, m / z): $\left[\mathrm{M}+\mathrm{H}^{+}-\mathrm{NH}_{3}\right]$ calcd for $\mathrm{C}_{22} \mathrm{H}_{18} \mathrm{~N}, 296.14338$; found 296.14301.
(1S,2S)-1,2-Di(naphthalen-2-yl)ethane-1,2-diamine (5c). A suspension of $5 \mathbf{c} \cdot 2 \mathrm{HCl}(1.21 \mathrm{~g}, 3.14 \mathrm{mmol}, 1.00$ equiv.) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(50 \mathrm{~mL})$ was thoroughly mixed with aqueous $\mathrm{NaOH}(2 \mathrm{M}, 50 \mathrm{~mL})$. The phases were separated, the combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporated under reduced pressure. The residue was dried in vacuo to afford 5 c as light grey solid ($0.95 \mathrm{~g}, 3.04 \mathrm{mmol}, 97 \%$). mp $143-146{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H} \mathrm{NMR}(300 \mathrm{MHz}$, DMSO- $\left.d_{6}, \delta\right): 7.79-7.69(m, 8 H), 7.46(d d, J 8.4,1.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.42-7.36(\mathrm{~m}, 4 \mathrm{H}), 4.18(\mathrm{~s}, 2 \mathrm{H}), 2.13(\mathrm{bs}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (75 MHz, DMSO- $\left.d_{6}, \delta\right): 142.5,132.7,131.9,127.5,127.3,126.9,126.1,125.7,125.5,125.2,62.1$.
1,2-Bis((4S,5S)-4,5-di(naphthalen-2-yl)-4,5-dihydro-1H-imidazol-2-yl)benzene (6c). To a solution of phthalonitrile 4 ($0.18 \mathrm{~g}, 1.39 \mathrm{mmol}, 1.0$ equiv.) and N-acetyl cysteine ($0.27 \mathrm{~g}, 1.67 \mathrm{mmol}, 1.2$ equiv.) in dry methanol (40 mL) at rt (argon atmosphere) was added diamine 5 c ($0.91 \mathrm{~g}, 2.91 \mathrm{mmol}, 2.1$ equiv.). The solution was heated to reflux for 26 h . After the reaction was cooled to rt the solution was evaporated under reduced pressure and the residue purified by silica gel chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} 50: 1+0.1 \% \mathrm{NH}_{3}\right)$ to give $\mathbf{6 c}$ as a yellow solid (0.20 g , $0.28 \mathrm{mmol}, 20 \%$). $\mathrm{R}_{f} 0.20\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} 50: 1+1 \% \mathrm{NH}_{3}\right) ; \mathrm{mp} 225-227{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR (500
 $10 \mathrm{H}), 7.50(\mathrm{~d}, J 8.5 \mathrm{~Hz}, 4 \mathrm{H}), 7.46(\mathrm{t}, J 7.4 \mathrm{~Hz}, 4 \mathrm{H}), 7.39(\mathrm{t}, J 7.6 \mathrm{~Hz}, 4 \mathrm{H}), 5.01(\mathrm{bs}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (126 MHz , DMSO-d $\left.{ }_{6}, \delta\right): 164.3,141.2,132.9,132.4,130.9,130.0,129.9,128.3,127.7,127.5,126.1,125.8,125.1,54.9 ; \mathrm{MS}$ (ESI, m / z): $719.31\left[M+\mathrm{H}^{+}\right]$; HRMS (MALDI, m / z): $[M+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{52} \mathrm{H}_{39} \mathrm{~N}_{4}, 719.31692$; found, 719.31780 .
($4 S, 4$ 'S,5S,5'S)-2,2'-(1,2-Phenylene)bis(4,5-di(naphthalen-2-yl)-4,5-dihydro-1H-imidazol-3-ium) chloride (7c). To a solution of bisamidine $\mathbf{6 c}\left(0.18 \mathrm{~g}, 0.25 \mathrm{mmol}, 1.0\right.$ equiv.) in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(25 \mathrm{~mL})$ at rt (argon atmosphere) was added hydrogen chloride in $\mathrm{Et}_{2} \mathrm{O}(0.27 \mathrm{~mL}, 0.54 \mathrm{mmol}, 2.2$ equiv., 2.0 M$)$. The clear solution was stirred at rt for 2 h , evaporated under reduced pressure and dried in vacuo to obtain 7 c as a yellow solid ($0.20 \mathrm{~g}, 0.25$ mmol, quant.). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{DMSO}^{-d_{6}}, \delta$): 12.10 (bs, 4 H), 8.38 (bs, 2 H), 8.18 (bs, 2 H), 7.95 (s, 4 H), 7.77-7.75 (m, 8 H), 7.63 ($\mathrm{s}, 8 \mathrm{H}$), 7.51 (td, J 7.5, $1.1 \mathrm{~Hz}, 4 \mathrm{H}$), 7.44 (t, J $7.6 \mathrm{~Hz}, 4 \mathrm{H}$), 5.63 (bs, 4 H$)$; ${ }^{13} \mathrm{C}$ NMR (126

MHz, DMSO-d ${ }_{6}$, δ): 164.1, 134.6, 134.1, 132.9, 132.6, 128.8, 127.8, 127.6, 127.1, 126.7, 126.5, 124.9, 123.1, 70.2 .
(4S,4'S,5S,5'S)-2,2'-(1,2-Phenylene)bis(4,5-di(naphthalen-2-yl)-4,5-dihydro-1H-imidazol-3-ium) tetrakis(3,5-bis(trifluoro-methyl)phenyl)borate (8c). To a solution of bisamidinium chloride 7c ($0.17 \mathrm{~g}, 0.21 \mathrm{mmol}, 1.0$ equiv.) in dry methanol (24 mL) at rt (argon atmosphere) was added sodium tetrakis[3,5-bis(trifluormethyl)phenyl]borate ($0.37 \mathrm{~g}, 0.42 \mathrm{mmol}, 2.0$ equiv.). The clear solution was stirred at rt for 2 h and evaporated under reduced pressure. The residue was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, washed with brine and the aqueous phase was extracted several times with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic phase was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, evaporated under reduced pressure and dried in vacuo to obtain 8 c as a light yellow foam ($0.46 \mathrm{~g}, 0.19 \mathrm{mmol}, 90 \%$). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}, \delta$): $9.53(\mathrm{bs}, 2 \mathrm{H}), 8.30-8.28(\mathrm{~m}, 2 \mathrm{H}), 8.12(\mathrm{bm}, 2 \mathrm{H}), 7.86-7.83(\mathrm{~m}, 12 \mathrm{H}), 7.75(\mathrm{~d}, J 8.1 \mathrm{~Hz}, 4$ H), 7.70 (bm, 16 H), 7.67 (bs, 8 H), $7.56-7.46$ (m, 12 H$), 5.67$ (bs, 4 H$)$) ${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}, \delta$): 165.4, 162.7 (q, $J_{118-13 \mathrm{C}} 49.8 \mathrm{~Hz}^{2} \mathrm{BArF}_{4}$), 135.7 (BArF_{4}), 134.5, $134.2,133.0,130.4,130.0$ (qq, $J_{13 \mathrm{C}-19 \mathrm{~F}} 31.5,2.9 \mathrm{~Hz}, \mathrm{BAr}_{4}$), $129.0,128.9,128.2,128.0,127.9,125.5$ ($q, J_{13 c-19 \mathrm{~F}} 271.8 \mathrm{~Hz}$, peaks at $128.8,126.6,124.5,122.3$, BAr $_{4}$), 125.3, 118.8 (septet, J $J_{13 \mathrm{C}-19 \mathrm{~F}} 3.8 \mathrm{~Hz}$, BAr $_{4}$), 118.4, 72.1.
(1S,2S)-1,2-Di(biphenyl-4-yl)ethane-1,2-diammonium chloride (5d $\mathbf{2} \mathbf{H C l}$). To a solution of ((R, R)-1,2-bis-(2-hydroxyphenyl)-1,2-diamino-ethane 5b ($0.710 \mathrm{~g}, 2.91 \mathrm{mmol}, 1.00$ equiv.) in DMSO (15 mL) was added 4phenylbenzaldehyde ($1.21 \mathrm{~g}, 6.65 \mathrm{mmol}, 2.40$ equiv.), then stirred for 12 h at rt . Workup and imine hydrolysis were carried out as described for $\mathbf{5 c}$ to yield the hydrochloride of $\mathbf{5 d}$ as a colorless solid ($1.22 \mathrm{~g}, 96 \%$). mp 236 $-238{ }^{\circ} \mathrm{C}$ (decomp.); $[\alpha]_{\mathrm{D}}{ }^{20}+63$ (c 1.0, MeOH); ${ }^{1} \mathrm{H}$ NMR (250 MHz , DMSO- d_{6}, δ): 9.14 (bs, 6 H), 7.69-7.58 (m, 8 H), 7.48-7.33 (m, 10 H), 5.10 (s, 2 H); ${ }^{13} \mathrm{C}$ NMR (75 MHz, DMSO- $_{6}$, δ): 140.6, 138.9, 134.0, 132.2, 129.5, 129.0, 127.9, 126.6, 56.3; MS (ESI, m / z): 348.3 [$\left.\mathrm{M}+\mathrm{H}^{+}-\mathrm{NH}_{3}\right], 365.0\left[\mathrm{M}+\mathrm{H}^{+}\right]$.
(1S,2S)-1,2-Di(biphenyl-4-yl)ethane-1,2-diamine (5d). Diamine 5d was prepared as described above for compound 5c. From 600 mg of hydrochloride $447 \mathrm{mg}(89 \%)$ of amine 5 d were obtained as a slightly colored solid. mp $190-192{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($250 \mathrm{MHz}, \mathrm{CDCl}_{3}, ~ \delta$): 7.60-7.53 (m, 8 H), 7,46-7.33 (m, 10 H), $4.21(\mathrm{~s}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta$): 142.7, 141.0, 140.1, 128.9, 127.5, 127.4,127.16, 127.12, 61.7.
1,2-Bis((4S,5S)-4,5-di([1,1'-biphenyl]-4-yl)-4,5-dihydro-1H-imidazol-2-yl)benzene (6d). To a solution of phthalonitrile 4 ($246 \mathrm{mg}, 1.92 \mathrm{mmol}, 1.0$ equiv.) and N-acetyl cysteine ($375 \mathrm{mg}, 2.30 \mathrm{mmol}, 1.2$ equiv.) in dry methanol (40 mL) at rt (argon atmosphere) was added diamine $5 \mathrm{~d}(1.54 \mathrm{~g}, 4.23 \mathrm{mmol}, 2.2$ equiv.). The solution was heated to reflux for 25 h . After the reaction was cooled to rt the solution was evaporated under reduced pressure and the residue purified by silica gel chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} 50: 1+0.1 \% \mathrm{NH}_{3}\right)$ to give $\mathbf{6 d}$ as light yellow foam ($1.03 \mathrm{~g}, 1.25 \mathrm{mmol}, 65 \%$). $\mathrm{R}_{f} 0.28\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} 25: 1\right.$); ${ }^{1} \mathrm{H}$ NMR ($\left.300 \mathrm{MHz}, \mathrm{DMSO}-d_{6}, \delta\right): 8.42$ (bs, 2 H), 7.99-7.96 (m, 2 H), 7.70-7.67 (m, 2 H), 7.61-7.57 (m, 16 H), 7.43-7.37 (m, 16 H), 7.36-7.30 (m, 4 H), 4.83 (bs, 4 H); ${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}, \delta$): 165.9, 143.5, 141.6, 141.0, 131.6, 131.3, 130.8, 129.5, 128.1, 128.0, 127.8, 127.7, 75.6; MS (ESI, m/z): $823.42[M+H]^{+}$; HRMS (MALDI, m / z): [$\left.M+\mathrm{H}\right]^{+}$calcd for $\mathrm{C}_{60} \mathrm{H}_{47} \mathrm{~N}_{4}$, 823.37952; found, 823.37916.
(4S,4'S,5S,5'S)-2,2'-(1,2-Phenylene)bis(4,5-di([1,1'-biphenyl]-4-yl)-4,5-dihydro-1H-imidazol-3-ium) chloride (7 d). To a solution of bisamidine $6 \mathbf{d}\left(0.89 \mathrm{~g}, 1.08 \mathrm{mmol}, 1.0\right.$ equiv.) in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(40 \mathrm{~mL})$ at rt (argon atmosphere) was added hydrogen chloride solution ($1.14 \mathrm{~mL}, 2.28 \mathrm{mmol}, 2.1$ equiv., $2.0 \mathrm{M} \mathrm{in} \mathrm{Et}_{2} \mathrm{O}$). The clear solution was stirred at rt for 3 h , evaporated under reduced pressure and dried in vacuo to obtain 7d as yellow solid ($0.97 \mathrm{~g}, 1.08 \mathrm{mmol}$, quant.). ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{DMSO}_{6}$, δ): 11.95 (bs, 4 H), 8.26 (bs, 2 H), 8.13 (bs, 2 H), 7.67-7.59 (m, 24 H), 7.44-7.33 (m, 12 H), 5.55 (bs, 4 H); ${ }^{13} \mathrm{C}$ NMR (126 MHz, DMSO- d_{6}, δ): 164.3, 140.6, 139.2, 136.1, 133.9, 132.4, 129.0, 128.4, 127.7, 127.2, 126.6, 123.0, 69.5, 54.9.
($4 S, 4$ 'S,5S,5'S)-2,2'-(1,2-Phenylene)bis(4,5-di([1,1'-biphenyl]-4-yl)-4,5-dihydro-1H-imidazol-3-ium) tetrakis(3,5-bis(tri-fluoromethyl)phenyl)borate (8d). To a solution of bisamidinium chloride 7d ($0.94 \mathrm{~g}, 1.05$
mmol, 1.0 equiv.) in dry methanol (40 mL) at rt (argon atmosphere) was added sodium tetrakis[3,5-bis(trifluormethyl)-phenyl]borate ($1.86 \mathrm{~g}, 2.10 \mathrm{mmol}, 2.0$ equiv.). The clear solution was stirred at rt for 3 h and evaporated under reduced pressure. The residue was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, washed with brine and the aqueous phase was extracted several times with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic phase was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, evaporated under reduced pressure and dried in vacuo. After NMR-spectra showed only 1 equiv. of the BAr_{4} anion, the whole procedure was repeated with 1 equiv. of tetrakis[3,5-bis(trifluormethyl)phenyl]borate to obtain 8 d as colourless foam ($2.40 \mathrm{~g}, 0.94 \mathrm{mmol}, 90 \%$). ${ }^{1} \mathrm{H} \mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}, \delta\right): 8.17-815(\mathrm{~m}, 2 \mathrm{H}), 8.01-$ 7.99 (m, 2 H), 7.71 (bt, 16 H$), 7.67(\mathrm{~s}, 8 \mathrm{H}), 7.65(\mathrm{~s}, 8 \mathrm{H}), 7.61-7.59(\mathrm{~m}, 8 \mathrm{H}), 7.48(\mathrm{~d}, \mathrm{~J} 8.3 \mathrm{~Hz}, 8 \mathrm{H}), 7.44-7.40(\mathrm{~m}$, $8 \mathrm{H}), 7.38-7.35(\mathrm{~m}, 4 \mathrm{H}), 5.32(\mathrm{bs}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}, \delta$): 165.4, 162.7 ($\mathrm{q}, \mathrm{J}_{11 \mathrm{~B}-13 \mathrm{C}} 49.9 \mathrm{~Hz}, \mathrm{BAr}^{\mathrm{F}}$), $142.5,140.9,138.9,135.7\left(\mathrm{BAr}_{4}\right), 134.7,132.2,130.1,130.0$ (qq, $J_{13 \mathrm{C}-19 \mathrm{~F}} 31.5,2.9 \mathrm{~Hz}, \mathrm{BAF}_{4}$), 128.9, 128.8, $128.7,127.9,125.5$ ($q, J_{13 \mathrm{c}-19 \mathrm{~F}} 272.0 \mathrm{~Hz}$, peaks at $126.6,124.5,122.3$, BarF4), 118.8 (septet, $J_{13 \mathrm{c}-19 \mathrm{~F}} 3.8 \mathrm{~Hz}$, BAr_{4}), 118.4, 72.5 ppm .
1,2-Bis((4S,5S)-4,5-di(naphthalen-1-yl)-4,5-dihydro-1H-imidazol-2-yl)benzene (6e). To a solution of phthalonitrile 4 ($0.11 \mathrm{~g}, 0.87 \mathrm{mmol}, 1.0$ equiv.) and N -acetyl cysteine ($0.17 \mathrm{~g}, 1.04 \mathrm{mmol}, 1.2$ equiv.) in dry methanol (50 mL) at rt (argon atmosphere) was added ($1 S, 2 \mathrm{~S}$)-1,2-di(naphthalen-1-yl)ethane-1,2-diamine $\mathbf{5 e}$ ($0.60 \mathrm{~g}, 1.92 \mathrm{mmol}, 2.2$ equiv.). ${ }^{33}$ The solution was heated to reflux for 37 h . After the reaction was cooled to rt the solution was evaporated under reduced pressure and the residue purified by silica gel chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} 50: 1+1 \% \mathrm{NH}_{3}\right)$ to give $6 e$ as a yellow foam ($\left.0.22 \mathrm{~g}, 0.31 \mathrm{mmol}, 36 \%\right) . \mathrm{R}_{f} 0.14\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}\right.$ $50: 1+1 \% \mathrm{NH}_{3}$); ${ }^{1} \mathrm{H}$ NMR ($\left.300 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}, ~ \delta\right): 8.01-7.98(\mathrm{~m}, 2 \mathrm{H}), 7.77(\mathrm{bt}, \mathrm{J} 8.5 \mathrm{~Hz}, 8 \mathrm{H}), 7.58$ (dd, J $7.2,0.9 \mathrm{~Hz}$, 4 H), 7.43-7.34 (m, 10 H), 7.30 (ddd, J 8.1, 7.0, $1.0 \mathrm{~Hz}, 4 \mathrm{H}$), 6.99 (ddd, J 8.5, 7.0, $1.3 \mathrm{~Hz}, 4 \mathrm{H}$), 5.55 (bs, 4 H); ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}, \delta$): 165.1, 139.9, 134.5, 131.5, 131.02, 131.0, 130.8, 129.1, 128.5, 126.2, 126.1, 126.0, 124.8, 124.0, 71.0; MS (ESI, m / z): $719.39\left[M+\mathrm{H}^{+}\right]$; HRMS (MALDI, m / z): $[M+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{52} \mathrm{H}_{39} \mathrm{~N}_{4}, 719.31692$; found, 719.31648.
(4S,4'S,5S,5'S)-2,2'-(1,2-Phenylene)bis(4,5-di(naphthalen-1-yl)-4,5-dihydro-1H-imidazol-3-ium) chloride (7e). To a solution of bisamidine $6 \mathbf{e}\left(0.19 \mathrm{~g}, 0.26 \mathrm{mmol}, 1.0\right.$ equiv.) in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$ at rt (argon atmosphere) was added hydrogen chloride solution ($0.28 \mathrm{~mL}, 0.56 \mathrm{mmol}, 2.2$ equiv., $2.0 \mathrm{M} \mathrm{in} \mathrm{Et}_{2} \mathrm{O}$). The clear solution was stirred at rt for 1.5 h , evaporated under reduced pressure and dried in vacuo to obtain 7 e as colourless solid ($0.21 \mathrm{~g}, 0.26 \mathrm{mmol}$, quant.). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{DMSO}_{6}$, δ): 12.16 (bs, 4 H), 8.39 (bs, 2 H), 8.16 (bs, 2 H), 8.06 (bd, 4 H), 7.96 (d, J $8.1 \mathrm{~Hz}, 8 \mathrm{H}), 7.44-7.39(\mathrm{~m}, 8 \mathrm{H}), 7.34(\mathrm{t}, \mathrm{J} 7.5 \mathrm{~Hz}, 4 \mathrm{H}), 7.15(\mathrm{t}, \mathrm{J} 7.5 \mathrm{~Hz}, 4 \mathrm{H}), 6.40(\mathrm{bs}, 4 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{DMSO}_{6}$, δ): 164.0, 133.9, 133.4, 133.3, 131.8, 130.3, 129.4, 128.8, 126.5, 126.1, 125.7, 125.5, 123.2, 122.3, 65.5.
(4S,4'S,5S,5'S)-2,2'-(1,2-Phenylene)bis(4,5-di(naphthalen-1-yl)-4,5-dihydro-1H-imidazol-3-ium) tetrakis(3,5-bis(trifluoro-methyl)phenyl)borate (8e). To a solution of bisamidinium chloride $7 \mathrm{e}(0.18 \mathrm{~g}, 0.23 \mathrm{mmol}, 1.0$ equiv.) in dry methanol (20 mL) at rt (argon atmosphere) was added sodium tetrakis[3,5bis(trifluormethyl)phenyl]borate ($0.41 \mathrm{~g}, 0.46 \mathrm{mmol}, 2.0$ equiv.). The clear solution was stirred at rt for 3 h and evaporated under reduced pressure. The residue was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, washed with brine and the aqueous phase was extracted several times with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic phase was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, evaporated under reduced pressure and dried in vacuo. After NMR-spectra showed only 1 equiv. of the $\mathrm{BAr}_{4}{ }_{4}$ anion, the whole procedure was repeated with 1 equiv. of tetrakis[3,5-bis(trifluormethyl)phenyl]borate to obtain $8 \mathbf{e}$ as a yellow foam ($0.56 \mathrm{~g}, 0.23 \mathrm{mmol}$, quant.). ${ }^{1} \mathrm{H} \mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}, \delta\right): 8.29-8.27(\mathrm{~m}, 2 \mathrm{H}), 8.03$ (bm, 2 H), 7.89 (d, J $8.2 \mathrm{~Hz}, 4 \mathrm{H}$), 7.86 (d, J $8.2 \mathrm{~Hz}, 4 \mathrm{H}$), 7.76 (bd, J $7.0 \mathrm{~Hz}, 4 \mathrm{H}), 7.70(\mathrm{bm}, 16 \mathrm{H}), 7.67$ (bs, 8 H$)$, 7.46 (dd, J 8.4, $7.7 \mathrm{~Hz}, 4 \mathrm{H}$), 7.34 (t, J $7.5 \mathrm{~Hz}, 4 \mathrm{H}$), 7.25 (bd, J $8.5 \mathrm{~Hz}, 4 \mathrm{H}$), 7.03 (bt, J $7.4 \mathrm{~Hz}, 4 \mathrm{H}), 5.96$ (bs, 4 H$)$; ${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}, \delta$): 165.2, 162.7 (q, $\mathrm{J}_{11 \mathrm{~B}-13 \mathrm{C}} 49.8 \mathrm{~Hz}, \mathrm{BAr}_{4}$), $135.7\left(\mathrm{BAr}_{4}\right), 135.0,132.4,131.4,130.4$,
129.99 (qq, $J_{13 \mathrm{C}-19 \mathrm{~F}} 31.5,2.9 \mathrm{~Hz}, \mathrm{BAr}_{4}$), 129.97, $127.5,127.2,126.7,125.7,125.5$ (q, $J_{13 \mathrm{c}-19 \mathrm{~F}} 271.8 \mathrm{~Hz}$, peaks at $128.8,126.6,124.5,122.3, \mathrm{BAr}_{4}$), 123.4, 118.8 (septet, $J_{13 \mathrm{C}-19 \mathrm{~F}} 3.9 \mathrm{~Hz}, \mathrm{BAr}_{4}$), 118.4, 68.6.
Cycloaddition of compounds 9 and 10 forming estrone precursor 13/ent-13 (Figure 5). The reaction was run in a closed 50 mL polyethylene vessel. To a solution of dienophile 10 ($28.6 \mathrm{mg}, 0.26 \mathrm{mmol}, 1.0$ equiv.) and $\mathrm{BAr}^{\mathrm{F}} 4$ salt 8 a ($117 \mathrm{mg}, 0.052 \mathrm{mmol}, 0.2$ equiv.) in dry toluene (5 mL , argon atmosphere) at $-20^{\circ} \mathrm{C}$, a spatula tip of molecular sieves ($3 \AA$ Å) was added. After stirring for 30 min , a solution of Dane's diene 9 ($54.0 \mathrm{mg}, 0.29$ $\mathrm{mmol}, 1.1$ equiv.) in toluene (5 mL) was added to the mixture in one portion. The solution was stirred for 21 h at $-20^{\circ} \mathrm{C}$ and then the molecular sieves were filtered off. The solvent was removed in vacuo and the residue purified by flash column chromatography (c-hexane/EtOAc 10:1 $\rightarrow 4: 1$) to afford 13/ent-13 as light yellow foam ($50.0 \mathrm{mg}, 0.17 \mathrm{mmol}, 65 \%, 28 \%$ ee, Daicel OJ, n-hexane $/ \mathrm{i}-\mathrm{PrOH} 10: 4,0.8 \mathrm{~mL} / \mathrm{min}, 254 \mathrm{~nm}$. Retention time of 13: 10.8 min (disfavored), of ent-13: 18.0 min (favored). The products were identified by comparison with authentic samples. ${ }^{40}$
Base induced cycloaddition of anthrone 17 and maleimide 18 forming compound 19 (Figure 6). The reaction was run in a closed 50 mL polyethylene vessel. To a solution of anthrone 17 ($42.0 \mathrm{mg}, 0.22 \mathrm{mmol}, 1.0$ equiv.) in dry THF (6 mL) at $-40^{\circ} \mathrm{C}$, the catalyst 6 a ($11.4 \mathrm{mg}, 0.022 \mathrm{mmol}, 0.1$ equiv.) was added. After stirring for 30 min , maleimide 18 ($38.0 \mathrm{mg}, 0.22 \mathrm{mmol}, 1.0$ equiv.) was added to the mixture in one portion. The solution was allowed to warm up to $-15{ }^{\circ} \mathrm{C}$ for 16 h and stirred for two more days at rt . The mixture was then purified by flash column chromatography (c-hexane/EtOAc 10:1) to afford product 19/ent-19 as a colourless solid (70.0 $\mathrm{mg}, 0.19 \mathrm{mmol}, 86 \%, 46 \%$ ee). Single recrystallization from c-hexane $/ \mathrm{CH}_{2} \mathrm{Cl}_{2}$ improved the ee to $84 \%(19.7 \mathrm{mg}$, $0.05 \mathrm{mmol}, 23 \%$, Chiralpak IA, $0.46 \times 25 \mathrm{~cm}$, n-hexane/i-PrOH $10: 3+20 \% \mathrm{CH}_{2} \mathrm{Cl}_{2}, 0.7 \mathrm{~mL} / \mathrm{min}, 254 \mathrm{~nm}$. Retention time of 19: 11.6 min (favored), of ent-19: 13.2 min (disfavored). The products were identified by comparison with authentic samples. ${ }^{28,46}$

Supplementary Material

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra, determination of enantiomeric purities by HPLC, and crystallographic information concerning bisamidine 6a. Crystallographic data in cif format were deposited with the Cambridge Crystallographic Data Centre (deposition number 2032917) and can be obtained from the CCDC homepage (https://www.ccdc.cam.ac.uk/structures/).

References

The results described in this article originate from the PhD thesis of Dr. Mariano Goldberg: http://publikationen.ub.uni-frankfurt.de/frontdoor/index/index/docld/55098

1. Schug, K. A.; Lindner, W. Chem. Rev. 2005, 105, 67-113. https://doi.org/10.1021/cr040603j
2. Coles, M. P. Chem. Commun. 2009, 3659-3676. https://doi.org/10.1039/b901940e
3. Blondeau, P.; Segura, M.; Pérez-Fernández, R.; de Mendoza, J. Chem. Soc. Rev. 2007, 36, 198-210. https://doi.org/10.1039/b603089k
4. Mosquera, J.; Sánchez, M. I.; Valero, J.; de Mendoza, J.; Vázquez, M. E.; Mascareñas, J. L. Chem. Commun. 2015, 51, 4811-4814. https://doi.org/10.1039/c4cc09525a
5. Kurzmeier, H.; Schmidtchen, F. P. J. Org. Chem. 1990, 55, 3749-3755. https://doi.org/10.1021/jo00299a013
6. Jadhav, V.; Schmidtchen, F. P. J. Org. Chem. 2008, 73, 1077-1087.
https://doi.org/10.1021/jo7021026
7. Ishikawa, T.; Kumamoto, T. Synthesis 2006, 38, 737-752. https://doi.org/10.1055/s-2006-926325
8. Selig, P. Synthesis 2013, 45, 703-718. https://doi.org/10.1055/s-0032-1318154
9. Turočkin, A.; Honecker, R.; Raven, W.; Selig, P. J. Org. Chem. 2016, 81, 4516-4529. https://doi.org/10.1021/acs.joc.6b00283
10. Turočkin, A.; Raven, W.; Selig, P. Eur. J. Org. Chem. 2017, 296-305. https://doi.org/10.1002/ejoc.201601154
11. Davis. A. P.; Dempsey, K. J. Tetrahedron Asymmetry 1995, 6, 2829-2840. https://doi.org/10.1016/0957-4166(95)00374-X
12. Kita, T.; Georgieva, A.; Hashimoto, Y.; Nakata, T.; Nagasawa, K. Angew. Chem. Int. Ed. 2002, 41, 2832-2834. https://doi.org/10.1002/1521-3773(20020802)41:15\<2832::AID-ANIE2832\>3.0.CO;2-Q
13. Corey, E. J.; Grogan, M. J. Org. Lett. 1999, 1, 157-160.
https://doi.org/10.1021/ol9906231
14. Shen, J.; Nguyen, T. T, Goh, Y.-P.; Ye, W.; Fu. X.; Xu, J.; Tan, C.-H. J. Am. Chem. Soc. 2006, 128, 1369213693.
https://doi.org/10.1021/ja064636n
15. Leow, D.; Tan, C.-H. Chem. Asian J. 2009, 4, 488-507. https://doi.org/10.1002/asia.200800361
16. Misaki, T.; Takimoto, G.; Sugimura, T. J. Am. Chem. Soc. 2010, 132, 6286-6287. https://doi.org/10.1021/ja101216x
17. Terada, M.; Ube, H.; Yaguchi, Y. J. Am. Chem. Soc. 2006, 128, 1454-1455. https://doi.org/10.1021/ja057848d
18. .Gómez-Torres, E.; Alonso, D. A.; Gómez-Bengoa, E.; Nájera, C. Org. Lett. 2011, 13, 6106-6109. https://doi.org/10.1021/ol202599h
19. Fujioka, H.; Murai, K.; Ohba, Y.; Hiramatsu, A.; Kita, Y. Tetrahedron Lett. 2005, 46, 2197-2199. https://doi.org/10.1016/j.tetlet.2005.02.025
20. Murai, K.; Fukushima, S.; Hayashi, S.; Takahara, Y.; Fujioka, H. Org. Lett. 2010, 12, 964-966. https://doi.org/10.1021/ol902958m
21. Uyeda, C.; Jacobsen, E. N. J. Am. Chem. Soc. 2011, 133, 5062-5075. https://doi.org/10.1021/ja110842s
22. Nakamura, S.; Hyodo, K.; Nakamura, Y.; Shibata, N.; Toru, T. Adv. Synth. Catal. 2008, 350, 1443-1448. https://doi.org/10.1002/adsc. 200800189
23. Jurčík, V.; Wilhelm, R. Tetrahedron Asymmetry 2006, 17, 801-810 https://doi.org/doi:10.1016/j.tetasy.2006.02.021
24. Sereda, O.; Clemens, N.; Heckel, T.; Wilhelm, R. Beilstein J. Org. Chem. 2012, 8, 1798-1803. https://doi.org/10.3762/bjoc.8.205
25. Tsogoeva, S. B.; Dürner, G.; Bolte, M.; Göbel, M. W. Eur. J. Org. Chem. 2003, 1661-1664. https://doi.org/10.1002/ejoc. 200200635
26. Akalay, D.; Dürner, G.; Bats, J. W.; Bolte, M.; Göbel, M. W. J. Org. Chem. 2007, 72, 5618-5624. https://doi.org/10.1021/io070534j
27. Walvoord, R. R.; Huynh, P. N. H.; Kozlowski, M. C. J. Am. Chem. Soc. 2014, 136, 16055-16065. https://doi.org/10.1021/ia5086244
28. Goldberg, M.; Sartakov, D.; Bats, J. W.; Bolte, M.; Göbel, M. W. Beilstein J. Org. Chem. 2016, 12, 1870-1876. https://doi.org/10.3762/bjoc.12.176
29. Salerno, A.; Caterina, C.; Perillo, I. A. Synth. Commun. 2000, 30, 3369-3382. https://doi.org/10.1080/00397910008086977
30. Moser, H.; Fliri, A.; Steiger, A.; Costello, G.; Schreiber, J.; Eschenmoser, A. Helv. Chim. Acta 1986, 69, 12241262.
https://doi.org/10.1002/hlca. 19860690530
31. Lange, U. E. W.; Schäfer, B.; Baucke, D.; Buschmann, E.; Mack, H. Tetrahedron Lett. 1999, 40, 7067-7071. https://doi.org/10.1016/S0040-4039(99)01460-4
32. Zhou, M.; Li, K.; Chen, D.; Xu, R.; Xu, G.; Tang, W. J. Am. Chem. Soc. 2020, 142, 10337-10342. https://dx.doi.org/10.1021/jacs.0c04558
33. Kim, H.; Nguyen, Y.; Yen, C. P. H.; Chagal, L.; Lough, A. J.; Kim, B. M.; Chin, J. J. Am. Chem. Soc. 2008, 130, 12184-12191.
https://dx.doi.org/10.1021/ja803951u
34. Seebach, D.; Beck, A. K.; Heckel, A. Angew. Chem. Int. Ed. 2001, 40, 92-138. https://doi.org/10.1002/1521-3773(20010105)40:1<92::AID-ANIE92>3.0.CO;2-K
35. Dane. E.; Schmitt, J. Liebigs Ann. Chem. 1939, 537, 246-249. https://doi.org/10.1002/jlac. 19395370120
36. Singh, G. J. Am. Chem. Soc. 1956, 78, 6109-6115. https://doi.org/10.1021/ja01604a043
37. Quinkert, G.; Del Grosso, M.; Döring, A.; Döring, W.; Schenkel, R. I.; Bauch, M.; Dambacher, G. T.; Bats, J. W.; Zimmermann, G.; Dürner, G. Helv. Chim. Acta 1995, 78, 1345-1391.
https://doi.org/10.1002/HLCA. 19950780524
38. Schuster, T.; Kurz, M.; Göbel, M. W. J. Org. Chem. 2000, 65, 1697-1701.
https://doi.org/10.1021/jo991372x
39. Schuster, T.; Bauch, M.; Dürner, G.; Göbel, M. W. Org. Lett. 2000, 2, 179-181. https://doi.org/10.1021/ol991276i
40. Weimar, M.; Dürner, G.; Bats, J. W.; Göbel, M. W. J. Org. Chem. 2010, 75, 2718-2721. https://doi.org/10.1021/jo100053i
41. Hu, Q.-Y.; Rege, P. D.; Corey, E. J. J. Am. Chem. Soc. 2004, 126, 5984-5986. https://doi.org/10.1021/ja048808x
42. Canales, E.; Corey, E. J. Org. Lett. 2008, 10, 3271-3273. https://doi.org/10.1021/ol8011502
43. Koerner, M.; Rickborn, B. J. Org. Chem. 1990, 55, 2662-2672. https://doi.org/10.1021/jo00296a024
44. Riant, O.; Kagan, H. B.; Ricard, L. Tetrahedron 1994, 50, 4543-4554. https://doi.org/10.1016/S0040-4020(01)89385-6
45. Uemae, K.; Masuda, S.; Yamamoto, Y. J. Chem. Soc. Perkin Trans. 1 2001, 1002-1006.
https://doi.org/10.1039/b100961n
46. Akalay, D.; Dürner, G.; Bats, J. W.; Göbel, M. W. Beilstein J. Org. Chem. 2008, 4, No. 28. https://doi.org/10.3762/bjoc.4.28
47. Zea, A.; Valerao, G.; Alba, A.; Moyano, A.; Rios, R. Adv. Synth. Catal. 2010, 352, 1102-1106. https://doi.org/10.1002/adsc. 201000031
48. Bai, J. F.; Guo, Y. L.; Peng, L.; Jia, L. N.; Xu, X. Y.; Wang, L. X. Tetrahedron 2013, 69, 1229-1233.
https://doi.org/10.1016/j.tet.2012.11.011
49. Kumagai, J.; Otsuki, T.; Reddy, U. V.; Kohari, Y.; Seki, C.; Uwai, K.; Okuyama, Y.; Kwon, E.; Tokiwa, M.;

Takeshita, M.; Nakano, H. Tetrahedron Asymmetry 2015, 26, 1423-1429.
https://doi.org/10.1016/j.tetasy.2015.10.022

This paper is an open access article distributed under the terms of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/)

