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Abstract 

Benzothiazole 6 and benzoselenazole 7, which are closely related to the bisbenzimidazole radioprotector 

bisbenzimidazole M2PB 20, were prepared by reaction of a common amide intermediate 13O with Lawesson’s 

and Woolin’s reagents, respectively. A simpler tellurazole derivative 19 was prepared using a different synthetic 

strategy. The DNA binding affinity of the three chalcogenazoles 6, 7, 19 and the parent benzimidazole 20 were 

assessed by means of spectrophotometric DNA titration experiments using 16-mer oligonucleotides with and 

without a single binding site. While M2PB 20 shows clear binding to the oligonucleotide containing an AATT 

binding site, no strong conclusions can be made regarding the interactions of 6, 7 or 19 with DNA, either in the 

presence, or absence of an AATT binding site. Fluorescence microscopy studies with HeLa cells clearly shows 

nuclear localisation of M2PB (20); fluorescence is almost exclusively in nuclei. By contrast, for the 

benzoselenazole 7, fluorescence is excluded from the nuclei. These results suggest that the proposed chalcogen 

bonding interactions involving S, Se and Te in 6, 7, and 20 are not strong enough to impart the DNA binding 

behavior which is displayed by corresponding bis-benzimidazoles such as 20. 
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Introduction 

 

Some DNA minor groove binding bisbenzimidazoles are known to protect biological materials from the effects 

of ionising radiation. Such radioprotection was first demonstrated for Hoechst 33258 1 and Hoechst 33342 2 in 

early studies on isolated plasmid DNA1,2 and on the clonogenic survival of cultured cells, and in vivo, with the 

compounds present during and after irradiation.3,4,5 These molecules bind in the minor groove of DNA in regions 

of three or more consecutive AT base pairs,6,7,8 a mode of binding that is largely facilitated by hydrogen bonding 

of the benzimidazole N-H protons to hydrogen-bond acceptors at the floor of the minor groove in these 

regions.9,10 Subsequently we designed more potent bisbenzimidazole based radioprotectors, such as proamine 

3 and methylproamine 4. The report of improved radioprotection also included a crystal structure of the 

DNA/methylproamine complex.11 There is evidence that the mechanism of radioprotection by this class of DNA-

minor groove binding molecules involves the repair of transient oxidative lesions in the DNA, that are precursors 

of more permanent lesions.12 The mechanism of this repair is believed to involve proton-coupled electron 

transfer from the DNA-binding ligand to the DNA, and then charge transfer along DNA between the bound ligand 

and the transient lesion.13 The candidate transient lesions include guanidine radical cations G+ which results in 

formation of stable products such as 8-oxoguanine.14 This mode of protection is quite distinct from the indirect 

mode of radioprotection that is provided by the radioprotector amifostine 5, a prodrug of the corresponding 

aminothiol, which like many other aminothiols, act principally by hydroxyl radical scavenging.15 

 

 
 

As part of a program aimed at discovering more potent radioprotectors we considered the incorporation of 

the chalcogens S, Se and Te to replace one or both of the N-H groups in the bisbenzimidazole backbone of 1-4 

and related molecules. Heavier group VI elements in particular sulfur have been observed to behave similarly 

to a NH group in biological systems.16,17,18,19 A range of drugs have been developed that display this bioisosteric 

behavior. The origin of this behavior lies in the ability of certain S, Se and Te containing molecules to participate 

in a non-covalent attractive interaction known as Chalcogen bonding, which arises when a molecule contains a 

polarized -bond between S (or Se, Te) and an electronegative substituent.20 Along the extension of this bond 

lies a region of positive electrostatic potential on the surface of the chalcogen atom, referred to as a -hole. 

This can interact with Lewis basic molecules in a manner which is similar in directionality, and often in strength, 

to N-H hydrogen bonding (Figure 1). 
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Figure 1. Schematic of chalcogen bonding in chalcogen substituted analogues to benzimidazole. 

 

We aimed to exploit the chalcogen bonding properties of S, Se or Te to aid in binding of analogues of the 

bisbenzimidazoles 1-4 to DNA by replacement of the left-hand benzimidazole with a benzothiazole, 

benzoselenazole or benzotellurazole system (Figure 2), and to exploit the antioxidant properties of S, Se and Te 

containing functional groups in the design of potentially more potent radioprotectors. 

 

 
 

Figure 2. Proposed mode of binding of benzochalcogenazole-benzimidazole derivatives to the minor groove of 

DNA (X = S, Se or Te). 

 

 

Results and Discussion 
 

To test this proposal, we decided to prepare the morpholino-substituted benzothiazole and benzoselenazole 

analogues 6 and 7 which are based on the most active bisbenzimidazole radioprotectors that we have thus far 

prepared.21 The benzothiazole 6 was initially proposed to be synthesized by Jacobson’s cyclisation,22 an 

oxidative cyclisation via a thioamide precursor. 
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Thus, we embarked on the preparation of 6 as shown below in Scheme 1. Morpholino-substituted 

nitrobenzene 8 was reduced to the aniline 9 and then coupled to the acid chloride 10 to form an intermediate 

amide 11O which was then converted to the thioamide 11S by treatment with Lawesson’s reagent in refluxing 

chlorobenzene. The Jacobson’s cyclisation procedure uses stoichiometric potassium ferricyanide to oxidize the 

arene to a radical cation, which is captured by the sulfur atom to ultimately form the benzothiazole. When 

applied to this substrate, this procedure resulted in no reaction, even with heating. Other oxidants trialed 

include DDQ and sodium persulfate, neither of which gave the desired product. 

 

 
 

Scheme 1. Attempted synthesis of benzothiazole via a Jacobson’s oxidative cyclisation route. 

 

A different strategy was then employed to construct the thiazole which involved the preparation of the 

fluorinated thioamide precursor 13S, by a similar pathway to that described in Scheme 1 for the synthesis of 11S. 

It was conceived that a ring closure by intramolecular displacement of the fluorine leaving group might provide 

a viable synthesis of the benzothiazole 6. 

Using this approach, the precursor amide 13O was prepared in a similar fashion to that described in Scheme 

1 but starting from fluoronitrobenzene 12. Upon treatment of 13O with Lawesson’s reagent the benzothiazole 

6 was formed directly, presumably via the intermediate thioamide 13S which appears to undergo an 

intramolecular nucleophilic aromatic substitution under the relatively forcing reaction conditions. 
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Scheme 2. Alternate route to targets 6 and 7. 

 

Crystals of 6 suitable for X-ray structure analysis were obtained by evaporation from methanol. A 

thermal ellipsoid plot of 6ꞏMeOH is presented in Figure 3.23 

 

 
 

Figure 3. Thermal ellipsoid plot of 6ꞏMeOH ellipsoids are at the 50% probability level. 

 

The benzoselenazole 7 was synthesized in a low yield in a similar fashion from the amide 13O, using Woollins’ 

reagent in a mixture of pyridine and chlorobenzene. Similarly, the intermediate selenoamide 13Se was presumed 

to have formed initially, which then cyclised under the reaction conditions (Scheme 2). Weakly diffracting 

crystals were grown from DMSO and the atom connectivity was established on a poor-quality crystal (Figure 4). 

 

 
 

Figure 4. Thermal ellipsoid plot of 7ꞏDMSO ellipsoids are at the 50% probability level. 
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Although heterocyclic systems containing tellurium are practically unheard of in drug development we were 

interested to prepare and compare the properties of a corresponding benzotellurazole analogue to the thiazole 

and selenazole 6 and 7, particularly given that tellurium is expected to form stronger chalcogen bonding 

interactions with Lewis bases. There is no analogous reagent to Lawesson’s or Woollins’ reagents for the 

incorporation of tellurium into an organic molecule, so an alternative approach was used to assemble the 

tellurium derivative 19 as outlined in Scheme 3. 

 

 
 

Scheme 3: Synthesis of benzotellurazole 19. 

 

Unfortunately, the exact Te analogue to the S, and Se heterocycles 6 and 7 could not be prepared as 

incorporation of morpholine into the aromatic ring, either from fluoronitrobenzene 14 or the tellurium 

derivative 16 resulted in failure of the reduction step (step c, Scheme 3). We have previously demonstrated that 

analogous 5’’ fluorinated bisbenzimidazole binds strongly to DNA,24 and therefore settled on 19 to investigate 

the interactions with DNA. 

Diazotisation of aniline 14 was followed by treatment with diethyl ditelluride to provide the nitrobenzene 

derivative 16 which was characterised by single crystal X-ray diffraction (Figure 5).25 Reduction of 16 to provide 

the aniline 17 was followed by reaction of the acid chloride 10 to afford the amide 18. Cyclisation of 18 provided 

a low yield of the benzotellurazole 19 after purification. 

 

 
 

Figure 5. Thermal ellipsoid plot of one of the two independent molecules of 2-ethyltellanyl-substituted 4-

fluoronitrobenzene 16. Ellipsoids are at the 50% probability level. 



Arkivoc 2022, iv, 80-98   Fellowes, T. et al. 

 

 Page 86  ©AUTHOR(S) 

 

 
 

DNA binding assay for 6, 7, 19 and 20. Binding of analogues 6, 7, 19 and the corresponding bisbenzimidazole 

derivative (M2PB, 20)21 to DNA was investigated using spectrophotometric titration with self-complementary 

16-mer synthetic oligodeoxynucleotides (GeneWorks, Thebarton, SA, Australia). Two oligodeoxynucleotides 

were used, one comprising the sequence 5’-CGCGCGAATTCGCGCG-3’ (DLB 16A) that incorporates a high affinity 

binding site for DNA minor-groove binding bisbenzimidazoles (AATT), and another comprising the sequence 5’-

(CG)8-3’ (DLB 16B) that served as a negative control for high affinity binding of bisbenzimidazoles. Solutions of 

investigated compounds at a concentration of 3 – 8 M in 1 mL of 20 mM Tris pH 7.2, 100 mM NaCl and 10% 

DMSO (TEN+DMSO) in a spectrophotometric cuvette were titrated with DLB 16A or DLB 16B up to a maximum 

DNA base pairs concentration of 600 – 800 M. The inclusion of DMSO was required to support solubility and 

to prevent adsorption to surfaces. The absorbance spectrum in the range from 300-400 nm was recorded 

following addition of each consecutive aliquot of DNA. Spectrophotometric measurements were performed on 

a Cary 300 UV-Vis spectrophotometer (Varian Australia Pty Ltd, Mulgrave, VIC, Australia). To compensate for 

the absorbance of DNA, the dual beam mode was employed. Referenced cuvette was filled with TEN+DMSO 

solution and titrated in parallel with same volumes of DNA solution. To calculate binding parameters Kd (binding 

dissociation constant) and N (frequency of binding sites), the set of absorbance spectra of DNA ligand solutions 

was analysed as described in detail in the Supplementary Information. 

Summary of the results. Supplementary Figure S1 illustrates the analysis of absorbance spectra and calculation 

of binding parameters for the parent bisbenzimidazole M2PB 20. Titration of the ligand with DLB 16A 

oligonucleotide results in the shift of the absorbance peak towards longer wavelength characteristic to the DNA 

minor groove binding.9 A single isosbestic point for the set of spectra indicates single binding mode.  

Absorbance spectra for titration with DLB 16A of compounds 6, 7, 19 and M2PB 20 for comparison are 

shown in Figure 5. For clarity, only spectra of the free ligand and its solution with the highest DNA concentration 

are shown. To assist in the interpretation of the results, absorbance spectra for titration with DLB 16B of the 

same compounds are shown in Figure 6. 

Analysis of the data presented in these Figures leads to the following interpretation (summarised also in 

Table 1). 

M2PB 20 shows clear DNA minor groove binding to a single binding site on DLB 16A molecule as evidenced 

by the difference in spectra of free ligand and DNA-ligand solution. Values of DNA binding parameters are: Kd = 

3.92 ± 0.30 M, N = 0.0451 ± 0.002 1/bp. The lack of change in the spectra following titration with DLB 16B 

oligonucleotide indicates the absence of different (non-specific) modes of binding and supports site specificity 

for minor groove binding. The theoretical value for N for DLB 16A, with a single central binding site, is 0.0625 

(1/16). 

For compound 6, the changes in spectra following titration with DLB 16A indicate a trend for minor groove 

binding. The extent of changes, however, is small and not sufficient to obtain quantitative results. It might 

indicate very weak minor groove binding. Following titration with DLB 16B, compound 6 shows an unusual 

increase of absorbance without any shift of wavelength. The changes of spectra can potentially be interpreted 
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as some sort of binding, however due to the conservation of spectrum shape (lack of shift, proportional 

absorbance change) quantitation is not possible. The lack of similar changes for titration with DLB 16A doesn’t 

support the involvement of binding in the observed changes. The changes might be a result of some 

experimental artefact. It is interesting, however, that similar changes were observed for titration of compound 

6 with DLB 16C oligonucleotide (data not shown) that contains a different binding site – ATAT. 

For compound 7, the spectrum of the free ligand shows two absorbance peaks, and the changes in spectra 

are similar for both titration experiments (DLB 16A and DLB 16B) that show a decrease in absorbance without 

detectable wavelength shift. This observation indicates the lack of (or very weak) high affinity binding. The 

changes, however, can be interpreted and quantitatively analysed as some sort of non-specific binding, given 

that the shape of the spectra changes as reflected by relatively different peak height for free ligand and DNA-

ligand solution for two peaks observed in spectra. The quantitative analysis was done assuming a fixed value for 

N = 1 bp-1, since otherwise it results in unreasonably high N values. It is worthwhile to note that N = 1 is also a 

high value since it means one binding site for each base pair (16 binding sites per oligonucleotide molecule). 

Large N-values indicate that a substantial amount of ligand is bound even at very low DNA concentrations. One 

of the interpretations for such observation is that ligand self-aggregates on the first DNA bound molecule.  

For tellurium derivative 19, the changes in spectra feature general decrease of absorbance for both titration 

experiments (DLB 16A and DLB 16B), however there is some trend for the increase at higher wavelength in case 

of DLB 16A. The latter observation might be interpreted as a contribution of minor groove binding, however the 

dominating mode of binding is non-specific binding that is observed for both oligonucleotides. The quantitative 

analysis is possible for both cases and results in large N values. In this context the result is similar to compound 

6, prompting for similar interpretation of this binding component. For DLB 16A however, the analysis results in 

somewhat more accurate values of parameters and N < 1. This result supports the assumption that some minor 

groove binding is present for this compound. 
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Figure 5. Absorbance spectra of M2PB 20 (A) and compound 6 (B) , 7 (C), and 19 (D) following titration with DLB 

16A oligonucleotide. Solid lines represent spectrum of free ligand and dashed lines – spectrum of ligand-DNA 

solution at the last titration point (highest DNA concentration). Full sets of spectra are shown in Supplementary 

Figure S2. 
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Figure 6. Absorbance spectra of M2PB (A) and compounds 6 (B), 7 (C), and 19 (D), following titration with DLB 

16B oligonucleotide. Solid lines represent spectrum of free ligand and dashed lines – spectrum of ligand-DNA 

solution at the last titration point (highest DNA concentration). Full sets of spectra are shown in Supplementary 

Figure S3. 
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Table 1. Summary of DNA binding for compounds 6, 7, 19 and 20 

Compound 
DLB 16A DLB 16B 

Spectrum change Parameters Spectrum change Parameters 

M2PB 20 
Peak shift 341-

350 nm 

Kd = 3.92 ± 0.30 M, 

N = 0.0451 ± 0.002 

1/bp 

No change N/A 

6 
Peak shift 352-

354 nm 
Ambiguous 

Abs increased, no 

peak shift 
N/A 

7  
Abs decreased, 

shape changed 

Ambiguous, 

Kd = 3.8 ± 6.2 M 

at N = 1.0 1/bp 

(fixed) 

Abs decreased, 

shape changed 

Ambiguous, 

Kd = 2.0 ± 1.2 M 

at N = 1.0 1/bp (fixed) 

19 

Peak Abs 

decrease, at high 

WL some 

increase 

Kd = 7.9 ± 8.4 M, 

N = 0.77 ± 0.68 1/bp 
Abs decrease 

Ambiguous, 

Kd = 73 ± 500 M 

at N = 1.0 1/bp (fixed) 

 

Given the stark difference between the apparent DNA binding affinity of the selenium analogue 7 and the 

parent bis-benzimidazole 20 we were interested to compare the cell localisation of these two dyes by looking 

at their distributions in HeLa cells as examined by confocal laser scanning microscopy (CLSM) (Figure 7). Both 

M2PB 20 and 7 can be excited by 405 nm laser. The CLSM images clearly show that M2PB 20 localises in the 

nuclei of the cells. This is consistent with our other experimental results where 20 has a high affinity for the 

minor groove of DNA. Such binding mode drives the diffusion and accumulation of 20 into the nucleus. The 

known enhancement of fluorescence of bisbenzimidazoles such as 20 when bound to DNA, by approximately 

30-fold26 does however bias the apparent preference for the nucleus. For example, in the case of similar nuclear 

localisation for methylproamine, analysis of the ligand in isolated nuclei indicates that only few % of the total 

cellular ligand is in the nucleus.27 In contrast the selenium analogue7 appears to be completely excluded from 

the nucleus, consistent with the lack of apparent binding discussed above. Exclusion from the nucleus suggests 

that 7 perhaps has a higher affinity for binding sites in the cytoplasm. 
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Figure 7. Cell localization experiments. Confocal images of intracellular distribution of M2PB (20) and 7 stained 

HeLa cells. HeLa cells were stained with the respective dyes (green) at 5 µM concentration for 0.5 h before 

fixation. Scale bar, 20 µm. 

 

 

Conclusions 
 

Benzothiazole 6 and benzoselenazole 7 which are closely related to the radioprotector bisbenzimidazole M2PB 

20, were prepared by reaction of a common amide intermediate 13O with Lawesson’s and Woolin’s reagents 

respectively. The simpler tellurazole derivative 19 was prepared using a different synthetic strategy. The DNA 

binding affinity of the three chalcogenazoles 6, 7, 20 and the parent benzimidazole 20 were assessed using 

spectrophotometric DNA titration experiments using 16-mer oligonucleotides with and without a single binding 

site. While M2PB 20 shows clear binding to the nucleotide containing an AATT binding site no strong conclusions 

can be made regarding the interactions of 6, 7 or 19 with DNA, either in the presence, or absence of an AATT 

binding site. Cell localisation assays on HeLa cells with one of these derivatives (7) shows that this molecule does 

not enter the nucleus, in contrast to M2PB (20), a known DNA-minor groove binder which was assessed for 

comparison and shows significant nuclear uptake. These results suggest that the proposed chalcogen bonding 
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interactions involving S, Se and Te in 6, 7, and 20 are not strong enough to impart the DNA minor-groove binding 

behaviour which is displayed by corresponding bisbenzimidazoles such as 20. 

 

 

Experimental Section 
 

General. All chemicals were of analytical grade and used as received from commercial suppliers without further 

purification except where otherwise indicated. Anhydrous solvents were dispensed from Sigma-Aldrich 

SureSeal™ bottles by syringe. Air and moisture sensitive reactions were conducted in oven-dried glassware (140 

°C) under a nitrogen or argon atmosphere. Inert gases were dried by passage over activated 4 Å molecular 

sieves. 

 

Analytical thin layer chromatography (TLC) was performed on aluminium backed 2mm thick Merck Kieselgel 

silica gel 60 F254 sheets. The chromatograms were visualised under UV light (λ = 254 or 365 nm). Flash 

chromatography was carried out using a Biotage Isolera One with Reveleris silica gel cartridges, or manually 

using Merck silica gel 60 (230-400) mesh. 

Nuclear magnetic resonance (NMR) spectra for 1H and 13C nuclei were recorded as solutions in the stated solvent 

at ambient temperature (25 °C) using an Agilent 400-MR operating at 400 and 100 MHz, respectively, an Agilent 

DD2 system operating at 500 and 125 MHz, or a Bruker BIO600 operating at 600 and 150 MHz. 1H NMR spectra 

were referenced to residual solvent peaks; residual CD2HOD (δ 3.31) in methanol-d4, residual chloroform (δ 

7.26) in CDCl3, residual DMSO-d5 (δ 2.50) in DMSO-d6. The addition of a few drops of d-trifluoroacetic acid (TFA-

d) to solutions of the benzimidazole compounds was found to reduce peak broadening and enhance the 

resolution of multiplets in the aromatic region, and are designated (solvent + TFA-d). The 1H NMR chemical shifts 

(δ) are reported as parts per million (ppm), followed by multiplicity (s: singlet, br s: broad singlet, d: doublet, dd: 

doublet of doublets, ddd: doublet of doublet of doublets, t: triplet, td: triplet of doublets, m: multiplet), coupling 

constant(s) (J) given in Hertz (Hz), and integration. Proton-decoupled 13C NMR chemical shifts are referenced on 

the centre peak of the solvent used: methanol-d4 (δ 49.0), CDCl3 (δ 77.2), DMSO-d6 (δ 39.5) and the signals are 

reported as chemical shift (ppm), followed by any observed multiplicity and coupling constants. 

High-resolution mass measurements (HRMS:ESI) were performed using a Thermo NanoLC/Q Exactive Plus mass 

spectrometer. Melting points were determined using a Stanford Research Systems MPA120 EZMelt. 

Nitrobenzene derivatives 8, 12, and 14 were prepared as previously described in the literature or obtained 

commercially.28 Diethyl ditelluride was prepared according to the method of Levanova et al.29 

General procedure for the catalytic reduction of nitrobenzenes 8 and 12. Palladium on carbon (5% w/w, 0.30 

g) was added to a solution of the appropriate nitrobenzene (7.4 mmol) in ethanol (100 mL) and stirred under 

hydrogen (1 atm) for 18 h. The mixture was filtered through celite under an argon atmosphere, rinsing with 

ethanol. The filtrate was concentrated and dried in vacuo affording the crude aniline, which was used without 

purification. 

4-Morpholinoaniline 9 (from 8). lavender crystals yield 98%, mp 103.2–103.7 °C. 1H NMR (400 MHz, CDCl3) δ 

2.97–3.06 (m, 4H), 3.44 (br s, 2H), 3.81–3.89 (m, 4H), 6.67 (d, J 8.6 Hz, 2H), 6.80 (d, J 9.0 Hz, 2H). 

2-Fluoro-4-morpholinoaniline (from 12). purple crystals, yield 97%. 1H NMR (400 MHz, CDCl3) δ 2.95–3.05 (m, 

4H), 3.78–3.88 (m, 4H), 6.55 (d, J 8.6 Hz, 1H), 6.63 (dd, J 13.5, 2.2 Hz, 1H), 6.72 (t, J 9.4 Hz, 1H). 
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Preparation of 2-(pyrid-2-yl)benzimidazole carbonyl chloride hydrochloride (10). 2-(Pyrid-2-yl)benzimidazole 

carboxylic acid30 was prepared from 3,4-diaminobenzoic acid and 2-pyridinecarboxaldehyde following a 

literature procedure. The carboxylic acid (2.788 g, 8.815 mmol) was then converted to the acid chloride 10 by 

refluxing in thionyl chloride (20 mL) for 18 h, followed by removal of the excess thionyl chloride in vacuo giving 

10 as a light brown powder (2.266 g, 66%) which was used without further purification. 1H NMR (500 MHz, 

DMSO-d6) δ 7.76 (ddd, J 7.8, 4.8, 1.2 Hz, 1H), 7.88 (d, J 8.4 Hz, 1H), 8.08 (dd, J 8.4, 1.8 Hz, 1H), 8.21 (td, J 7.8, 1.8 

Hz, 1H), 8.33 (d, J 0.6 Hz, 1H), 8.73 (d, J 7.8 Hz, 1H), 8.90 (d, J 4.2 Hz, 1H). 

General procedure for the preparation of amides 11O and 13O. Acid chloride 10 (7.7 mmol, 1.05 equiv) was 

dissolved in anhydrous N,N-dimethylacetamide (40 mL) under nitrogen. To this was added a solution of the 

appropriate crude aniline (7.3 mmol) in a further 20 mL of anhydrous N,N-dimethylacetamide. The mixture was 

stirred at room temperature under nitrogen for 18 h, then diluted with water (100 mL), the pH adjusted to 8 

using 0.8 M aqueous NaHCO3, and the resulting precipitate filtered off and dried in vacuo, affording the amide. 

N-(4-Morpholinophenyl)-2-(pyrid-2-yl)-1H-benzo[d]imidazole-6-carboxamide 11O (from aniline 9); brown-grey 

solid, yield 85%, mp 220 °C (dec). 1H NMR (400 MHz, DMSO-d6 + TFA-d) δ 2.96-3.16 (m, 4H), 3.63-3.82 (m, 4H), 

6.94 (d, J 9.0 Hz, 2H), 7.50-7.59 (m, 1H), 7.60-7.78 (m, 3H), 7.89 (d, J 8.2 Hz, 1H), 8.02 (t, J 7.2 Hz, 1H), 8.29 (br s, 

1H), 8.37 (d, J 7.8 Hz, 1H), 8.76 (d, J 3.9 Hz, 1H), 10.13 (s, 1H). 13C NMR (100 MHz, DMSO-d6 + TFA-d) δ 49.5, 66.5, 

115.8, 122.0, 122.3, 123.1, 125.7, 130.2, 132.3, 138.2, 147.6, 148.2, 150.0, 152.9, 165.8. MS (ESI +ve) m/z 

400.1807 (MH+) C23H22N5O2
+ requires 400.1768 (Δ = 9 ppm).  N-(2-Fluoro-4-morpholinophenyl)-2-(pyrid-2-yl)-

1H-benzo[d]imidazole-6-carboxamide 13O (from 2-fluoro-4-morpholinoaniline); grey solid, yield 42%. 1H NMR 

(400 MHz, DMSO-d6 + TFA-d) δ 3.13 (br s, 4H), 3.73 (br s, 4H), 6.77 (d, J 8.6 Hz, 1H), 6.86 (d, J 13.3 Hz, 1H), 7.35 

(t, J 8.8 Hz, 1H), 7.52-7.62 (m, 1H), 7.71 (d, J 8.2 Hz, 1H) 7.90 (d, J 8.2 Hz, 1H), 8.04 (t, J 7.4 Hz, 1H), 8.29 (br s, 

1H), 8.37 (d, J 7.4 Hz, 1H), 8.77 (d, J 3.5 Hz, 1H), 9.91 (s, 1H). 13C NMR (100 MHz, DMSO-d6) + TFA-d) δ 48.6, 66.4, 

102.7 (d, J 24 Hz), 110.6, 117.1, 117.2, 122.4, 123.2, 125.8, 128.6 (d, J 4 Hz), 129.3, 138.2, 148.0, 150.0, 150.75, 

150.84, 152.8, 157.5 (d, J 244 Hz), 166.1. MS (ESI +ve) m/z 418.1676 (MH+) C23H21FN5O2
+ requires 418.1674 (Δ = 

0.5 ppm). 

N-(4-Morpholinophenyl)-2-(pyrid-2-yl)-1H-benzo[d]imidazole-6-carbothioamide (11S). Lawesson’s reagent 

(1.661 g, 4.11 mmol, 1.6 equiv) was added to a stirred suspension of the amide 11O (2.025 g, 5.07 mmol) in 

chlorobenzene (20 mL), and the mixture heated to reflux for 90 min. The mixture was cooled, diluted with 

methanol (200 mL) and the insoluble material removed by hot filtration. The filtrate was evaporated and the 

residue recrystallized from hot ethanol to give 11S as a mustard-yellow solid (1.203 g, 57%), mp 170 °C (dec). 1H 

NMR (400 MHz, DMSO-d6 + TFA-d) δ 3.08-3.17 (m, 4H), 3.70-3.78 (m, 4H), 6.98 (d, J 9.2 Hz, 2H), 7.48-7.89 (m, 

5H), 8.02 (dd, J 7.6 Hz, 1H), 8.09 (br s, 1H), 8.35 (d, J 7.8 Hz, 1H), 8.75 (d, J 4.3 Hz, 1H), 11.55 (s, 1H). 13C NMR 

(100 MHz, DMSO-d6 + TFA-d) δ 48.8, 66.5, 113.9, 113.96, 114.04, 114.1, 114.3, 114.4, 114.9, 115.8, 122.0, 122.2, 

123.7, 125.5, 125.6, 126.9, 127.5, 128.8, 130.7, 132.6, 132.8, 132.9, 133.3, 133.4, 133.5, 137.9, 138.2, 148.3, 

149.5, 150.0, 152.9, 161.6, 162.2, 196.7. Additional 13C NMR signals are attributed to a phosphorus containing 

impurity which was unable to be removed. MS (ESI +ve) m/z 416.1543 (MH+) C23H22N5OS+ requires 416.1540 (Δ 

= 0.7 ppm). 

4-{2-[2-(Pyrid-2-yl)-1H-benzo[d]imidazol-6-yl]benzo[d]thiazol-6-yl}morpholine (6). Lawesson’s reagent (2.107 

g, 5.21 mmol, 1.6 equiv) was added to a stirred suspension of the amide 13O (2.881 g, 6.51 mmol) in 

chlorobenzene (30 mL), and the mixture heated to reflux for 3 h. The mixture was then cooled, diluted with 

ethanol (200 mL), filtered through a plug of silica gel and the filtrate evaporated in vacuo. The solid residue was 

triturated with methanol (10 mL) to give a friable yellow solid, which was filtered off and washed with water. 

This solid was applied to a Reveleris silica cartridge and eluted with a dichloromethane/methanol gradient to 
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give one major fraction. Evaporation of the solvent followed by trituration with ether (2 mL) afforded 6 as a pale 

yellow solid (0.785 g, 29%) 270 °C (dec). 1H NMR (400 MHz, DMSO-d6 + TFA-d) δ 3.20-3.31 (m, 4H), 3.75-3.84 

(m, 4H), 7.3 (dd, J 9.2, 1.9 Hz, 1H), 7.63-7.78 (m, 2H), 7.83-7.98 (m, 2H), 8.08 (d, J 8.4 Hz, 1H), 8.19 (dd, J 8.0 Hz, 

1H), 8.33 (s, 1H), 8.63 (d, J 7.6 Hz, 1H), 8.84 (d, J 2.8 Hz, 1H).13C NMR (100 MHz, DMSO-d6) δ 49.3, 66.5, 106.9, 

113.9, 114.1, 116.6, 122.4, 122.6, 123.1, 125.9, 128.8, 132.8, 132.9, 136.6, 138.2, 147.7, 147.9, 149.7, 150.1, 

152.8, 164.7. MS (ESI +ve) m/z 414.1407 (MH+) C23H20N5OS+ requires 414.1383 (Δ 5.8 ppm). 

4-{2-[2-(Pyrid-2-yl)-1H-benzo[d]imidazol-6-yl]benzo[d][1,3]selenazol-6-yl}morpholine (7). Woollins’ reagent 

(107.9 mg, 0.203 mmol) was stirred in pyridine (0.5 mL) at room temperature under nitrogen for 30 min. 

Chlorobenzene (1.5 mL) and amide 13O (212.0 mg, 0.508 mmol) were then added, and the mixture heated to 

130 °C in a sealed tube for 48 h. The mixture was diluted with water (5 mL), stirred for 2 min, diluted with a 

further 20 mL of brine, and extracted into n-butanol (30 mL). The organic phase was dried (MgSO4), filtered 

through silica, then applied to a SNAP silica cartridge and eluted with a dichloromethane/methanol gradient to 

give 7 as the first major fraction. Evaporation of the solvent afforded 7 as a light yellow solid (30.0 mg, 13%), mp 

240 °C (dec). 1H NMR (400 MHz, DMSO-d6 + TFA-d) δ 3.09-3.27 (m, 4H), 3.63-3.84 (m, 4H), 7.16 (dd, J 8.8, 2.0 

Hz, 1H), 7.53-7.62 (m, 1H), 7.66 (d, J 2.0 Hz, 1H), 7.75 (d, J 8.8 Hz, 1H), 7.89 [d, J 8.9 Hz, 2H (overlapping)], 8.04 

(dd, J 7.6, 7.6 Hz, 1H), 8.19 (s, 1H), 8.37 (d, J 7.6 Hz, 1H), 8.77 (d, J 3.6 Hz, 1H). 13C NMR (100 MHz, DMSO-d6) δ 

49.1, 66.5, 110.5, 114.1, 116.0, 117.0, 122.4, 123.4, 124.5, 125.9, 131.5, 138.3, 138.9, 139.8, 141.2, 147.7, 149.2, 

149.4, 150.1, 152.7, 168.6. MS (ESI +ve) m/z 462.0826 (MH+) C23H20N5OSe+ requires 462.0828 (Δ = 0.4 ppm). 

Ethyl(5-fluoro-2-nitrophenyl)tellane (16). To a stirred solution of the aniline 14 (0.997 g, 6.39 mmol) and boron 

trifluoride etherate (1.92 mL, 7.6 mmol, 1.2 equiv) in dichloromethane (20 mL) at 0 °C, was added slowly t-butyl 

nitrite (1.14 mL, 9.5 mmol, 1.5 equiv) to form a yellow gum. This was warmed to room temperature and stirred 

under argon for a further 30 min. The light yellow supernatant was decanted off, and the residue triturated with 

ether (5 min) before briefly drying in vacuo to give the diazonium salt 15 (the salt was able to be stored at -20 

°C for up to 18 h before use). The diazonium salt 15 was dissolved in chloroform (20 mL), cooled to 0° C, 18-

crown-6 (0.040 g, 0.15 mmol) added, followed by ethereal diethyl ditelluride (43%, 3.33 g, 4.57 mmol). 

Potassium acetate (1.28 g, 13.1 mmol) was then added, and the mixture stirred protected from light at room 

temperature for 4 h. The mixture was then filtered through celite and the filtrate concentrated to afford a dark 

brown oil. The oil was applied to a Reveleris 80 g silica cartridge and eluted with a petroleum ether (b.p. 40-60 

°C)/dichloromethane gradient over four runs to give 16 as orange needles (665 mg, 35%), mp 54.5-55.2 °C. 1H 

NMR (400 MHz, CDCl3) δ 1.64-1.76 (m, 3H), 2.81 (q, J 7.8 Hz, 2H), 7.01-7.09 (m, 1H), 7.33 (dd, J 8.6, 2.6 Hz), 8.41 

(dd, J 9.4, 5.1 Hz). 13C NMR (100 MHz, CDCl3) δ 3.0, 14.6, 114.0 (d, J 25 Hz), 119.5 (d, J 25 Hz), 123.4, 123.5, 129.1 

(d, J 10 Hz), 165.1 (d, J 261 Hz). 

2-(Ethyltellanyl)-4-fluoroaniline (17). The nitrobenzene 16 (1.013 mmol) was dissolved in methanol (10 mL) and 

placed in a water bath (20 °C) under argon. Sodium borohydride (236.5 mg, 6.25 mmol, 6 equiv) and cobalt (II) 

sulfate hexahydrate (36.8 mg, 0.131 mmol, 0.1 equiv) was then added and the mixture stirred for 30 min. The 

solvent was then removed in vacuo and the residue suspended in ether (20 mL). The suspension was filtered 

through celite, washing with ether (2 × 30 mL), and the filtrate concentrated to give the aniline 17 as an orange 

solid (628 mg, quantitative). 1H NMR (500 MHz, CDCl3) δ 1.21 (t, J 7.5 Hz, 3H), 2.81 (q, J 7.5 Hz, 2H), 4.1 (br s, 

2H), 6.73 (dd, J 6.7, 3.9 Hz, 1H), 6.88 (ddd, J 8.4, 8.4, 2.8 Hz, 1H), 7.43 (dd, J 6.4, 2.8 Hz, 1H). MS (ESI +ve) m/z 

269.9928 (MH+) C8H11FNTe+ requires 269.9932 (Δ = 1.5 ppm). 

N-{2-(Ethyltellanyl)-4-fluorophenyl}-2-(pyrid-2-yl)-1H-benzo[d]imidazole-6-carboxamide (18). To a solution of 

the aniline 17 (270 mg, 1.01 mmol) and triethylamine (1.0 mL, distilled from CaH2) in anhydrous N,N-

dimethylacetamide (10 mL) was added the acid chloride 10 (404 mg, 1.37 mmol, 1.4 equiv), and the mixture 
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stirred at room temperature under argon for 40 h. The solution was then diluted with water (200 mL) and the 

pH adjusted to 5-6 with saturated NH4Cl solution. The resulting precipitate was filtered off and dried in vacuo, 

affording 18 as a brown powder (265 mg, 54%), mp 102 °C (dec.), which was used without further purification. 
1H NMR (500 MHz, MeOH-d4 + TFA-d) δ 1.86 (t, J 7.6 Hz, 3H), 3.11 (q, J 7.6 Hz, 2H), 7.32-7.36 (m, 1H), 7.74-7.83 

(m, 2H), 8.03-8.13 (m, 2H), 8.23-8.30 (m, 2H), 8.58-8.66 (m, 2H), 9.03 (d, J 4.5 Hz, 1H). MS (ESI +ve) m/z 491.0525 

(MH+) C21H18FN4OTe+ requires 491.0521 (Δ = 0.8 ppm). 

6-Fluoro-2-{2-(pyrid-2-yl)-1H-benzo[d]imidazol-6-yl}benzo[d][1,3]tellurazole (19). To a solution of the amide 

18 (105 mg, 0.216 mmol) in dioxane (5.0 mL, distilled from Na) and triethylamine (0.7 mL, distilled from CaH2) 

was added distilled POCl3 (0.1 mL, 1 mmol) and the mixture refluxed for 2 h. After cooling to room temperature, 

the mixture was diluted with water (20 mL), the pH adjusted to 7 with solid NH4Cl, then extracted into n-butanol. 

The organic phase was washed with brine, dried (MgSO4) and evaporated to give a brown oil which was applied 

to a Reveleris 40 g silica cartridge. Elution with a dichloromethane/methanol gradient afforded the 

benzotellurazole 19 as the first major fraction (yellow powder, 8.3 mg, 8.7%), mp 224.2-227.3 °C. 1H NMR (600 

MHz, MeOH-d4/CDCl3 + TFA-d) δ 7.15-7.18 (m, 1H), 7.43-7.45 (m, 1H), 7.55-7.57 (m, 1 H), 7.70 (d, J 6.9 Hz, 1H), 

7.80-7.82 (m, 1H), 7.90-7.93 (m, 1H), 8.05-8.07 (m, 1H), 8.12 (s, 1H), 8.32 (d, J 5.6 Hz, 1H), 8.69 (d, J 2.8 Hz, 1H). 
13C NMR (125 MHz, MeOH-d4/CDCl3 + TFA-d) δ 118.6, 119.0, 119.4 (d, J 62 Hz), 121.4, 121.6, 126.1, 128.9, 129.5, 

129.7, 130.2, 130.3, 138.68, 138.75, 141.4 (d, J 46 Hz), 150.0, 155.9 (d, J 265 Hz), 162.4, 164.4, 177.0. MS (ESI 

+ve) m/z 445.0102 (MH+) C19H12FN4Te+ requires 445.0103 (Δ = 0.2 ppm). 

Crystallography. Intensity data for 6, 7, and 16 were collected on a Rigaku SuperNova at 130.0(1) K using Mo-

K radiation. The temperature was maintained using an Oxford Cryostream cooling device. The structures were 

solved by direct methods and difference Fourier synthesis.31 Thermal ellipsoid plot were generated using the 

program Mercury32 integrated within the WINGX33 suite of programs. Structures 6 and 16 have been published 

as private communications in the CSD19,21Crystal data for 7. C23H19N5OSe.(DMSO), M = 538.52, T = 130.0 K,  = 

0.70173 Å, Monoclinic, space group P21/c a = 15.436(3) b = 11.5965(7), c =15.058(2) Å,  = 117.72(2)° V = 

2386.0(7) Å3, Z = 4, Dc = 1.499 mg M-3 (Mo-K) 1.695 mm-1, F(000) = 1104 crystal size 0.39 × 0.36 × 0.06 mm3, 

17835 reflections measured max = 30.19°, 6190 independent reflections [R(int) = 0.0463], the final R was 0.0972 

[I > 2 (I), 3498 data] and wR(F2) was 0.2548 (all data), GOF 1.036. CCDC code 2117581. 

DNA Binding assays. A Cary Bio 300 UV-Vis Spectrophotometer was used with quartz cuvettes to measure the 

absorbance spectra at each DNA concentration. Stock solutions were prepared as per table 1. A baseline is 

measured with 1050 μL TEN DMSO ×1, then the ligand is added to give a concentration of 1 mgꞏmL-1. DNA 

solutions are then added sequentially as per Table 1. Measurements are repeated at each concentration after 

mixing by pipette to give concordant spectra. 

Cell Culture. HeLa cells were cultured in phenol-red free DMEM (Gibco, Catalog Number: A18967-01) 

supplemented with 10% fetal bovine serum (Sigma, Australia origin, Catalog Number: F9423) and 4 mM 

glutamine (Sigma, Catalog Number: 59202C) at 37 °C in 5% CO2 air with humidification. 

Cell Staining. M2PB and 7 were dissolved in DMSO at 5 mM stock concentration. Stock solution of dye were 

kept at -20 °C in the dark. HeLa cells (1.4  × 104) were plated on an ibidi µSlide 8 Well, ibiTreat (ibidi, Catalog 

number: 80826) 24 h prior to dye application. Plated cells were treated with freshly diluted dye (5 µM for M2PB 

and 7 in DMEM) for 30 min at 37 °C. Cells were rinsed with PBS and then fixed on plate with 4% (w/v) 

paraformaldehyde (PFA) in PBS for 10 min at room temperature.  

Confocal Laser Scanning Microscopy. After staining, HeLa cells were fixed with 4% (w/v) paraformaldehyde in 

PBS for 10 min at room temperature. Images were acquired on a Zeiss Elyra LSM880 microscope using a 63× oil-

immersion objective 1.4 NA, with a pixel frame size set at 512 × 512 and a pixel dwell time of 16.38 μs. For MP2B 
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20 and selenium analog 7 (excitation: 405 nm; emission: 490 – 590 nm, 405 nm dichroic). Laser power for 405 

nm excitation source was set at 1.0%. 
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