Supplementary Material

Synthesis and some reactions of 5-carbmethoxymethylidene-4-oxo-1,3-thiazol-2-ylguanidine

Nadezhda V. Stolpovskaya,^a Do Van Quy,^a Alexey A. Kruzhilin,^a Evgeniya S. Shvetsova,^a Khidmet S. Shikhaliev,*^a and Fedor I. Zubkov^b

 ^a Department of Organic Chemistry, Voronezh State University, Universitetskaya pl. 1, Voronezh, 394006, Russia
^b Department of Organic Chemistry, Peoples' Friendship University of Russia, 6 Miklukho-Maklaya St., Moscow, 117198, Russian Federation Email: chocd261@chem.vsu.ru

Table of Contents

1. X-ray structural analysis data methyl (2Z)-[2[(diaminomethylene)amino]-4-oxothiazol-5(4H)-yl	lidene]acetate
9	S2
2. IR, ¹ H and ¹³ C NMR spectra and data LCMS for compounds 9, 17 a-f	S11

Figure S1. General view of the structure without the DMF solvate molecule (two versions of the image, ellipsoids of atomic displacements are given with a probability of 50%). There are two crystallographically independent molecules of the same structure in the structure; the second molecule is numbered atoms with the index A (not shown in the figure). Structural data deposited as CDCC: 2131042.

Figure S2. General view of structure 1 with a solvate DMF molecule (two versions of the image, ellipsoids of atomic displacements are given with a probability of 50%). Structural data deposited as CDCC: 2131042.

Figure S3. General view of the crystal packing 9.

Fable S1. Crystal data and	d structure refinement for 9
----------------------------	-------------------------------------

Identification code	1
Empirical formula	$C_{10}H_{15}N_{5}O_{4}S$
Formula weight	301.33
Temperature/K	120
Crystal system	triclinic
Space group	P-1
a/Å	8.5470(8)
b/Å	11.0867(10)
c/Å	15.3765(14)
α/°	91.309(2)
β/°	98.926(2)
γ/°	108.968(2)
Volume/ų	1357.0(2)
Z	4
$\rho_{calc}g/cm^3$	1.475
µ/mm⁻¹	0.261
F(000)	632.0
Crystal size/mm ³	$0.28 \times 0.24 \times 0.17$

Radiation	ΜοΚα (λ = 0.71073)
20 range for data collection/°	3.896 to 61.006
Index ranges	$-12 \le h \le 12, -15 \le k \le 15, -21 \le l \le 21$
Reflections collected	18774
Independent reflections	8275 [R _{int} = 0.0320, R _{sigma} = 0.0459]
Data/restraints/parameters	8275/0/367
Goodness-of-fit on F ²	1.009
Final R indexes [I>=2σ (I)]	R ₁ = 0.0424, wR ₂ = 0.1086
Final R indexes [all data]	$R_1 = 0.0655$, $wR_2 = 0.1227$
Largest diff. peak/hole / e Å ⁻³	0.61/-0.35

Table S2. Fractional Atomic Coordinates (×10⁴) and Equivalent Isotropic Displacement Parameters ($Å^2 \times 10^3$) for 1. U_{eq} is defined as 1/3 of of the trace of the orthogonalised U_{IJ} tensor

Atom	X	У	Z	U(eq)
S1	6926.4(5)	2750.9(3)	5396.1(2)	17.60(9)
01	6840.9(14)	6184.4(10)	5482.6(7)	23.9(2)
02	8471.2(14)	2819(1)	3851.4(7)	23.9(2)
03	9521.7(14)	4636.9(9)	3189.5(7)	22.7(2)
N1	6059.4(16)	4438.3(11)	6304.1(8)	17.9(2)
N2	5610.3(15)	2345.8(11)	6838.6(8)	17.5(2)
N3	4690.2(17)	3654.2(12)	7754.9(8)	24.3(3)
N4	4567.0(17)	1607.9(12)	8075.2(8)	23.2(3)
C1	6088.7(17)	3243.4(13)	6286.2(9)	16.4(3)
C2	6706.7(18)	5071.7(13)	5617.3(9)	18.0(3)
C3	7320.4(17)	4266.8(13)	5024.1(9)	16.4(3)
C4	8064.4(18)	4733.3(13)	4338.4(9)	18.8(3)
C5	8682.1(18)	3947.1(13)	3782.7(9)	18.0(3)
C6	10134(2)	3926.7(15)	2600.7(10)	25.1(3)
C7	4953.2(18)	2566.0(13)	7560.3(9)	18.1(3)
S1A	6418.5(5)	1393.9(3)	919.9(2)	17.77(9)
01A	6501.8(16)	4870.5(10)	1076.5(8)	29.0(3)
02A	8114.7(14)	1538.3(10)	-598.0(7)	23.6(2)
03A	8815.7(14)	3311.8(10)	-1352.1(7)	24.1(2)
N1A	5671.0(16)	3104.0(11)	1879.1(8)	19.2(2)
N2A	5127.7(15)	977.9(11)	2370.3(8)	17.4(2)
N3A	4264.5(16)	2283.0(12)	3322.6(8)	20.4(3)

Issue in honor of Professor Girolamo Cirrincione

4108.8(16)	215.6(12)	3609.9(8)	22.1(3)
5636.2(17)	1891.5(13)	1837.2(9)	16.6(3)
6318.9(19)	3745.7(14)	1193.5(9)	20.0(3)
6852.3(18)	2923.5(13)	568.8(9)	17.6(3)
7571.7(19)	3397.9(14)	-121.9(9)	20.3(3)
8170.5(19)	2634.7(14)	-703.9(9)	19.1(3)
9512(2)	2658.1(16)	-1940(1)	27.7(3)
4510.3(17)	1194.8(13)	3110.0(9)	17.2(3)
7136.3(16)	8002.6(11)	10629.1(8)	31.1(3)
8180.9(16)	8054.6(12)	9352.2(8)	19.5(2)
7708.2(19)	8583.4(14)	10010.2(10)	21.3(3)
8917(2)	8807.2(15)	8664.9(10)	23.3(3)
8009(2)	6703.2(14)	9309.0(11)	25.8(3)
2692.7(15)	757(1)	4982.5(7)	26.4(2)
1291.8(16)	606.2(11)	6143.2(8)	19.7(2)
2098.9(19)	172.4(14)	5597.9(9)	20.9(3)
576(2)	-154.1(16)	6833.4(11)	27.3(3)
1045(2)	1829.1(15)	6039.1(11)	28.2(3)
	4108.8(16) 5636.2(17) 6318.9(19) 6852.3(18) 7571.7(19) 8170.5(19) 9512(2) 4510.3(17) 7136.3(16) 8180.9(16) 7708.2(19) 8917(2) 8009(2) 2692.7(15) 1291.8(16) 2098.9(19) 576(2) 1045(2)	4108.8(16)215.6(12)5636.2(17)1891.5(13)6318.9(19)3745.7(14)6852.3(18)2923.5(13)7571.7(19)3397.9(14)8170.5(19)2634.7(14)9512(2)2658.1(16)4510.3(17)1194.8(13)7136.3(16)8002.6(11)8180.9(16)8054.6(12)7708.2(19)8583.4(14)8917(2)6703.2(14)2692.7(15)757(1)1291.8(16)606.2(11)2098.9(19)172.4(14)576(2)-154.1(16)1045(2)1829.1(15)	4108.8(16)215.6(12)3609.9(8)5636.2(17)1891.5(13)1837.2(9)6318.9(19)3745.7(14)1193.5(9)6852.3(18)2923.5(13)568.8(9)7571.7(19)3397.9(14)-121.9(9)8170.5(19)2634.7(14)-703.9(9)9512(2)2658.1(16)-1940(1)4510.3(17)1194.8(13)3110.0(9)7136.3(16)8002.6(11)10629.1(8)8180.9(16)8054.6(12)9352.2(8)7708.2(19)8583.4(14)10010.2(10)8917(2)8807.2(15)8664.9(10)8009(2)6703.2(14)9309.0(11)2692.7(15)757(1)4982.5(7)1291.8(16)606.2(11)6143.2(8)2098.9(19)172.4(14)5597.9(9)576(2)-154.1(16)6033.4(11)1045(2)1829.1(15)6039.1(11)

Table S3. Anisotropic Displacement Parameters ($Å^2 \times 10^3$) for 1. The Anisotropic displacement factor exponent takes the form: $-2\pi^2[h^2a^{*2}U_{11}+2hka^*b^*U_{12}+...]$

Atom	U 11	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U ₁₂
S1	25.91(19)	15.42(16)	16.42(16)	1.59(12)	9.54(13)	10.82(14)
01	37.7(6)	17.0(5)	23.9(5)	2.5(4)	12.7(5)	14.8(5)
02	33.3(6)	18.3(5)	26.5(5)	3.4(4)	15.0(5)	12.6(4)
03	31.8(6)	18.5(5)	20.8(5)	0.7(4)	14.7(4)	8.0(4)
N1	23.3(6)	17.5(6)	16.2(5)	-0.1(4)	6.0(5)	10.0(5)
N2	23.7(6)	17.4(5)	15.0(5)	0.7(4)	8.8(5)	9.4(5)
N3	36.3(7)	23.8(6)	20.6(6)	0.8(5)	14.7(5)	16.4(6)
N4	34.6(7)	22.4(6)	18.2(6)	2.1(5)	14.1(5)	12.8(5)
C1	17.5(6)	18.9(6)	14.6(6)	-1.2(5)	3.6(5)	8.4(5)
C2	21.2(7)	17.5(6)	17.7(6)	-1.6(5)	5.5(5)	8.7(5)
C3	20.0(7)	15.1(6)	16.1(6)	-0.6(5)	4.3(5)	8.3(5)
C4	26.3(7)	14.3(6)	18.9(6)	1.0(5)	8.1(6)	8.9(5)
C5	21.4(7)	17.4(6)	17.1(6)	-0.2(5)	6.4(5)	7.7(5)
C6	29.0(8)	28.1(8)	20.0(7)	-3.9(6)	13.0(6)	8.3(7)
C7	20.4(7)	21.0(7)	15.2(6)	-1.6(5)	5.0(5)	9.1(6)

Issue in honor of Professor Girolamo Cirrincione

S1A	26.01(19)	15.84(16)	15.98(16)	0.92(12)	8.69(13)	10.75(14)
01A	47.1(7)	18.3(5)	31.0(6)	4.4(4)	19.7(5)	17.6(5)
O2A	35.8(6)	20.0(5)	22.1(5)	3.3(4)	12.0(5)	15.4(5)
03A	37.6(6)	23.3(5)	21.1(5)	7.0(4)	16.8(5)	17.7(5)
N1A	24.9(6)	17.7(6)	18.6(6)	-0.1(4)	8.2(5)	10.2(5)
N2A	21.6(6)	19.0(6)	14.8(5)	0.0(4)	7.0(5)	9.2(5)
N3A	26.9(6)	21.3(6)	17.2(5)	-1.8(4)	8.1(5)	11.8(5)
N4A	31.6(7)	22.3(6)	18.6(6)	2.3(5)	13.4(5)	12.9(5)
C1A	17.9(6)	19.2(6)	14.8(6)	-1.2(5)	4.9(5)	8.2(5)
C2A	26.0(7)	18.9(7)	19.6(7)	0.5(5)	8.0(6)	11.7(6)
C3A	23.5(7)	16.1(6)	16.8(6)	0.8(5)	5.5(5)	10.8(5)
C4A	28.7(8)	17.0(6)	20.3(7)	2.2(5)	9.1(6)	12.2(6)
C5A	24.6(7)	19.8(7)	16.6(6)	2.0(5)	6.7(5)	10.9(6)
C6A	40.1(9)	33.9(8)	21.3(7)	6.2(6)	18.5(7)	22.5(7)
C7A	18.8(7)	19.3(7)	14.9(6)	-1.8(5)	4.5(5)	8.0(5)
04	46.1(7)	33.8(6)	26.6(6)	9.7(5)	22.2(5)	23.6(6)
N5	26.6(6)	19.7(6)	16.9(6)	2.6(4)	8.6(5)	11.8(5)
C8	27.5(8)	21.9(7)	20.2(7)	1.4(5)	8.2(6)	13.9(6)
C9	28.1(8)	27.2(8)	18.0(7)	4.6(6)	8.7(6)	11.4(6)
C10	36.0(9)	20.3(7)	27.3(8)	1.3(6)	11.3(7)	15.0(7)
O4A	36.6(6)	26.5(6)	22.4(5)	2.9(4)	16.4(5)	14.0(5)
N5A	25.9(6)	18.8(6)	20.3(6)	4.4(4)	11.9(5)	11.4(5)
C8A	25.4(7)	19.2(7)	21.3(7)	0.2(5)	8.5(6)	9.7(6)
C9A	32.3(9)	28.9(8)	25.7(8)	9.2(6)	16.0(7)	11.5(7)
C10A	41.5(10)	22.6(7)	28.7(8)	2.8(6)	13.5(7)	18.5(7)

Table S4. Bond Lengths for 9

Atom	Atom	Length/Å	Atom	Atom	Length/Å
S1	C1	1.7912(14)	O3A	C5A	1.3403(17)
S1	C3	1.7324(14)	O3A	C6A	1.4540(17)
01	C2	1.2268(17)	N1A	C1A	1.3347(17)
02	C5	1.2139(17)	N1A	C2A	1.3724(18)
03	C5	1.3454(16)	N2A	C1A	1.3225(17)
03	C6	1.4475(17)	N2A	C7A	1.3735(17)
N1	C1	1.3328(17)	N3A	C7A	1.3321(17)
N1	C2	1.3700(17)	N4A	C7A	1.3286(18)
N2	C1	1.3271(18)	C2A	C3A	1.5255(18)

N2	C7	1.3698(17)	C3A	C4A	1.3419(19)
N3	C7	1.3329(18)	C4A	C5A	1.4724(19)
N4	C7	1.3250(18)	04	C8	1.2357(17)
C2	C3	1.5228(18)	N5	C8	1.3359(17)
C3	C4	1.3426(19)	N5	C9	1.4542(18)
C4	C5	1.4743(18)	N5	C10	1.4559(18)
S1A	C1A	1.7995(13)	04A	C8A	1.2394(17)
S1A	C3A	1.7320(14)	N5A	C8A	1.3367(17)
01A	C2A	1.2264(17)	N5A	C9A	1.4555(18)
O2A	C5A	1.2167(17)	N5A	C10A	1.4469(19)

Table S5. Bond Angles for 9

Atom	Atom	Atom	Angle/°	Atom	Atom	Atom	Angle/°
C3	S1	C1	89.18(6)	N1A	C1A	S1A	116.07(10)
C5	03	C6	115.13(11)	N2A	C1A	S1A	113.48(10)
C1	N1	C2	111.86(11)	N2A	C1A	N1A	130.45(12)
C1	N2	C7	121.32(12)	01A	C2A	N1A	125.47(13)
N1	C1	S1	116.32(10)	01A	C2A	C3A	121.29(13)
N2	C1	S1	113.68(10)	N1A	C2A	C3A	113.23(12)
N2	C1	N1	130.00(12)	C2A	C3A	S1A	109.46(10)
01	C2	N1	125.25(12)	C4A	C3A	S1A	128.64(11)
01	C2	C3	121.43(12)	C4A	C3A	C2A	121.88(12)
N1	C2	C3	113.30(11)	C3A	C4A	C5A	122.51(13)
C2	C3	S1	109.31(9)	O2A	C5A	O3A	124.49(13)
C4	C3	S1	128.29(11)	O2A	C5A	C4A	124.17(13)
C4	C3	C2	122.39(12)	03A	C5A	C4A	111.33(12)
C3	C4	C5	121.59(13)	N3A	C7A	N2A	124.14(13)
02	C5	03	123.90(12)	N4A	C7A	N2A	115.39(12)
02	C5	C4	124.50(13)	N4A	C7A	N3A	120.44(12)
03	C5	C4	111.61(12)	C8	N5	C9	121.50(12)
N3	C7	N2	124.10(13)	C8	N5	C10	120.95(12)
N4	C7	N2	115.64(12)	C9	N5	C10	117.54(12)
N4	C7	N3	120.27(13)	04	C8	N5	124.29(14)
C3A	S1A	C1A	89.20(6)	C8A	N5A	C9A	121.30(12)
C5A	03A	C6A	115.47(11)	C8A	N5A	C10A	120.66(12)
C1A	N1A	C2A	112.02(11)	C10A	N5A	C9A	117.99(12)
C1A	N2A	C7A	121.31(12)	O4A	C8A	N5A	124.36(14)

Table S6. Hydrogen Bonds for 9

D	н	Α	d(D-H)/Å	d(H-A)/Å	d(D-A)/Å	D-H-A/°
N3	H3A	01A ¹	0.88	2.18	2.9085(16)	140.3
N3	H3B	N1	0.88	2.06	2.7091(17)	129.9
N4	H4A	O4 ²	0.88	1.88	2.7467(16)	166.4
N3A	НЗАА	01 ¹	0.88	2.21	2.9317(15)	138.6
N3A	НЗАВ	N1A	0.88	2.07	2.7220(17)	129.7
N4A	H4AA	O4A	0.88	1.87	2.7362(16)	167.0
¹ 1-X,	1-Y,1-Z	Z; ² 1-X	,1-Y,2-Z			

Table S7. H	ydrogen Atom	Coordinates (Å×1	⁴) and Isotro	pic Displacement	Parameters	(Ų×10³)) for 9
-------------	--------------	------------------	---------------------------	------------------	------------	---------	----------------

Atom	x	У	Z	U(eq)
H3A	4258	3739	8227	29
H3B	4948	4288	7411	29
H4A	4135	1689	8548	28
H4B	4742	891	7945	28
H4	8196	5591	4208	23
H6A	10717	4501	2191	38
H6B	9185	3233	2267	38
H6C	10914	3566	2947	38
НЗАА	3834	2357	3797	25
НЗАВ	4533	2928	2989	25
H4AA	3677	283	4085	27
H4AB	4274	-501	3466	27
H4AC	7699	4259	-240	24
H6AA	10458	2460	-1603	42
H6AB	9903	3211	-2405	42
H6AC	8645	1863	-2208	42
H8	7819	9464	10002	26
H9A	10085	8837	8703	35
H9B	8886	9678	8744	35
H9C	8278	8413	8085	35
H10A	7255	6272	8764	39
H10B	7541	6316	9819	39
H10C	9113	6613	9315	39
H8A	2226	-638	5688	25

Issue in honor of Professor Girolamo Cirrincione

H9AA	855	-944	6839	41
H9AB	-647	-366	6719	41
H9AC	1039	336	7407	41
H10D	-160	1702	5920	42
H10E	1563	2227	5545	42
H10F	1566	2387	6582	42

Experimental

Single crystals of C₁₀H₁₅N₅O₄S were prism. A suitable crystal was selected, and X-ray dataset was collected on a 'Bruker APEX-II CCD' diffractometer. The crystal was kept at 120 K during data collection. Using Olex2 [Dolomanov, O.V., Bourhis, L.J., Gildea, R.J, Howard, J.A.K. & Puschmann, H. (2009), J. Appl. Cryst. 42, 339-341], the structure was solved with the ShelXT [Sheldrick, G.M. (2015). Acta Cryst. A71, 3-8] structure solution program using Intrinsic Phasing and refined with the ShelXL [Sheldrick, G.M. (2015). Acta Cryst. C71, 3-8] refinement package using Least Squares minimisation.

Crystal structure determination of [Dolomanov, O.V., Bourhis, L.J., Gildea, R.J, Howard, J.A.K. & Puschmann, H. (2009), J. Appl. Cryst. 42, 339-341]

Crystal Data for C₁₀H₁₅N₅O₄S (*M* =301.33 g/mol): triclinic, space group P-1 (no. 2), a = 8.5470(8) Å, b = 11.0867(10) Å, c = 15.3765(14) Å, $a = 91.309(2)^\circ$, $b = 98.926(2)^\circ$, $\gamma = 108.968(2)^\circ$, V = 1357.0(2) Å³, Z = 4, T = 120 K, μ (MoK α) = 0.261 mm⁻¹, *Dcalc* = 1.475 g/cm³, 18774 reflections measured (3.896° ≤ 2 Θ ≤ 61.006°), 8275 unique ($R_{int} = 0.0320$, $R_{sigma} = 0.0459$) which were used in all calculations. The final R_1 was 0.0424 (I > 2 σ (I)) and wR_2 was 0.1227 (all data). Structural data deposited as CDCC: 2131042.

IR, ¹H and ¹³C NMR spectra and data LCMS for compounds 9, 17 a-f

Data LCMS for compound 9

¹H NMR spectra for compound **9**

¹³C NMR spectra for compound **9**

Data LCMS for compound 17 a

IR spectra for compound 17 a

¹H NMR spectra for compound **17 a**

¹³C NMR spectra for compound **17 a**

IR spectra for compound 17 b

¹H NMR spectra for compound **17 b**

IR spectra for compound **17 c**

¹H NMR spectra for compound **17 c**

¹³C NMR spectra for compound **17 c**

Data LCMS for compound **17 d** User Chromatograms

IR spectra for compound 17d

¹H NMR spectra for compound **17 d**

Data LCMS for compound 17 e

IR spectra for compound **17** e

¹H NMR spectra for compound **17 e**

Data LCMS for compound 17 f

IR spectra for compound **17 f**

¹H NMR spectra for compound **17 f**

¹³C NMR spectra for compound **17** f

