Supplementary Material

Solid state aggregation of cyclic iodonium ylides

Guobi Li, Arnold L. Rheingold and John D. Protasiewicz*

Chemistry Department, Case Western Reserve University, Cleveland, OH, 44106 Chemistry and Biochemistry Department, University of California San Diego, La Jolla, CA, 92093 Email: <u>protasiewicz@case.edu</u>

Table of Contents

Experimental Procedures	S2
NMR Spectra	S4
Crystallographic Analysis	.S7
ReferencesS	11

Experimental Procedures

General Information. All starting materials, reagents, and solvents were purchased from commercial sources and used without further purification. ¹H NMR and ¹³C {¹H} NMR spectra were obtained on Bruker Avance III HD 500 MHz NMR Spectrometer. Chemical shifts (δ) are reported in parts per million (ppm) and referenced to residue solvent signals. Melting points were determined with Mel-Temp apparatus and are uncorrected. Compounds **1a-3a** and **1b-2b** were prepared as previously described and found to have matching NMR properties with those as reported.¹⁻⁵ The synthesis and handling of HVI compounds in general should be done carefully and on small scales, owing to reports of explosive decomposition under heating and/or extensive drying.⁶⁻⁷

Scheme S1. Synthesis of cyclic iodonium ylide compounds. (a: Z=H, b: Z=NO₂).

Compound 1a, 1-(2-Iodophenyl)-3-phenyl-1,3-propanedione³: 2-iodobenzoic acid (2.0 g, 8.08 mmol) was added into a 100 mL flame-dried Schlenk flask and was flushed with nitrogen. Thionyl chloride (30 mL) was injected via a syringe. The mixture was refluxed for 4h and then cooled down to r.t. and concentrated to obtain the yellow solid. LiHMDS (1.0 M in THF, 11.2 mL, 1.4 eq) was injected to a toluene solution of 10 mL acetophenone (0.96 g, 1.0 eq) under nitrogen at 0 °C and stirred at 0 °C for 3h. The resulting yellow solid was all added and the mixture was stirred at 0 °C for 5h. Hydrochloric acid (1.0 M, 20 mL) was added to quench the reaction. The mixture was extracted with ethyl acetate and dried over Na₂SO₄ and concentrated. Purified by column chromatography (DCM: Hexanes= 1:1) to obtain yellow oil. Yield: 1.29 g, 59.7%. ¹H NMR (500 MHz, Chloroform-d) δ = 8.02 – 7.96 (m, 4H), 7.64 – 7.54 (m, 2H), 7.56 – 7.43 (m, 5H), 7.17 (td, J = 7.7, 1.7 Hz, 1H), 6.60 (s, 1H), 2.64 (s, 2H).

Compound 2a, I-phenyl-I-(4'-benzoyl-2-iodobenzoyl)iodonium ylide⁴: KOH (0.35 g, 6.0 eq) and compound **1a** (0.35 g, 1.0 mmol) were added into a 50 mL Schlenk flask and was flushed with nitrogen. MeOH (10 mL) was injected via a syringe and stirred at 0 °C for 5 min. (Diacetoxyiodo)benzene (0.35 g, 1.1 eq) was added countering nitrogen flow and stirred at 0 °C for another 1h. Water (30 mL) was added and filtered to get the solid. The solid was washed with water and diethyl ether and dried. Yield: 0.48 g, 86.7%. ¹H NMR (500 MHz, Chloroform-*d*) δ 8.15 (s, 2H), 7.61 (d, *J* = 17.3 Hz, 1H), 7.46 (t, *J* = 7.8 Hz, 3H), 7.32 (d, *J* = 7.6 Hz, 2H), 7.06 (t, *J* = 7.3 Hz, 1H), 6.99 (s, 2H), 6.68 – 6.60 (m, 1H). Melting point: 115-117 °C.

Compound 3a, 2-benzoyl-3-oxo-2,3-dihydrobenzo[b]iodolyl ylide⁵: Compound **2a** (0.48 g, 0.86 mmol) and benzene (10 mL) were added into a 100 mL flask to make a solution. The solution was then added copper(II) acety-lacetonate (11.3 mg, 5 mmol%) and refluxed for 1h. Filtered to get the solid and washed with diethyl ether and dried. Yield: 0.34g, 70.8%. Recrystallized via vapor diffusion (hexanes into a solution of **3a** in DCM). ¹H NMR (500 MHz, Chloroform-d) δ = 8.41 (d, J = 8.2 Hz, 2H), 8.03 (d, J = 7.6 Hz, 1H), 7.72 – 7.59 (m, 3H), 7.58 – 7.43 (m, 3H). ¹³C NMR (126 MHz, Chloroform-d) δ = 186.04, 140.41, 137.11, 132.13, 130.99, 130.68, 130.17, 128.93, 128.56, 127.71, 127.01, 114.38. Melting point: 120 °C dec.

Compound 1b, 1-(2-lodophenyl)-3-(4-nitrophenyl)-1,3-propanedione³: 2-iodobenzoic acid (2.0 g, 8.08 mmol) was added into a 100 mL flame-dried Schlenk flask and flushed with nitrogen. Thionyl chloride (30 mL) was injected via a syringe. The mixture was refluxed for 4h and then cooled down to r.t. and concentrated to obtain yellow solid. LiHMDS (1.0 M in THF, 11.2 mL, 1.4 eq) was injected to a toluene solution of 10 mL 4'-Nitroaceto-phenone (1.3 g, 1.0 eq) under nitrogen at 0 °C and stirred at 0 °C for 3h. The resulting yellow solid was all added

and the mixture was stirred at 0 °C for 5h. Hydrochloric acid (20 mL, 1.0 M) was added to quench the reaction. The mixture was extracted with ethyl acetate and dried over Na₂SO₄ and concentrated. Purified by column chromatography (DCM: Hexanes= 7:3) to obtain yellow solid. Yield: 1.02 g, 49.8%. ¹H NMR (500 MHz, Chloroform-d) δ = 8.33 (d, J = 8.9 Hz, 2H), 8.11 (d, J = 8.9 Hz, 2H), 7.99 (d, J = 9.1 Hz, 1H), 7.58 – 7.43 (m, 2H), 7.18 (t, J = 8.5 Hz, 1H), 6.65(s, 1H). ¹³C NMR (126 MHz, Chloroform-d) δ = 192.92, 179.33, 141.59, 140.16, 132.97, 131.60, 130.10, 128.90, 127.53, 124.78, 123.35, 99.84, 98.52, 92.99, 53.84. Melting point: 145-147 °C.

Compound 2b, I-phenyl-I-(2-iodobenzoyl-4'-nitrobenzoyl)iodonium ylide⁴: KOH (0.35 g, 6.0 eq) and compound **2a** (0.84 g, 1.5 mmol) was added into a 100 mL Schlenk flask and flushed with nitrogen. MeOH (30 mL) was injected via a syringe and stirred at 0 °C for 5 min. (Diacetoxy-iodo)benzene (1.77 g, 1.1 eq) was added countering nitrogen flow and stirred at 0 °C for another 1h. Water (30 mL) was added and filtered to get the solid. The solid was washed with water and diethyl ether and dried. Yield: 0.61 g, 68.1%. ¹H NMR (500 MHz, Chloroform-d) δ = 8.14 (d, J = 7.2 Hz, 2H), 7.81 (d, J = 8.2 Hz, 2H), 7.66 – 7.59 (m, 1H), 7.49 – 7.33 (m, 5H), 6.91 (d, J = 15.2 Hz, 2H), 6.66 (s, 1H). ¹³C NMR (126 MHz, Chloroform-d) δ = 147.71, 144.59, 139.28, 137.63, 135.88, 132.21, 131.79, 130.39, 130.05, 129.01, 127.61, 122.46. Melting point: 122 °C dec.

Compound 3b, 2-(4-nitrobenzoyl)-3-oxo-2,3-dihydrobenzo[b]iodolyl ylide⁵: Compound **2b** (0.60 g, 1.0 mmol) and benzene (30 mL) was added into a 100 mL flask to make a solution. The solution was then added copper(II) acetylacetonate (13.1 mg, 5 mmol%) and refluxed for 1h. Filtered to get the solid and washed with diethyl ether and dried. Recrystallized via vapor diffusion (diethyl ether into a solution of **3b** in DMF). Yield: 0.24 g, 61.5%. ¹H NMR (500 MHz, DMSO-d₆) δ = 8.31 (s, 4H), 8.19 (d, J = 7.9 Hz, 1H), 7.82 – 7.71 (m, 3H). ¹³C NMR (126 MHz, DMSO-d₆) δ = 177.58, 172.12, 148.71, 144.28, 142.71, 134.08, 131.30, 130.38, 130.29, 130.10, 122.97, 112.01, 108.96. Melting point: 205 °C dec.

NMR Spectra

Figure S1. ¹H NMR spectrum of compound 3b (CDCl₃, 500 MHz, 298K).

Figure S2. ¹³C NMR spectrum of compound 3b (CDCl₃, 126 MHz, 298K).

Figure S3. ¹³C NMR spectrum (zoom in for aromatic rings) of compound 3b (CDCl₃, 126 MHz, 298K).

Crystallographic Analysis

Figure S4. ORTEP representation of 3a (ellipsoids drawn at 50% probability). Selected bond .lengths (Å) and angles I1-C8, 2.090(3); I1-C15 2.099(3); O2'-I1-C8, $166.3(2)^{\circ}$.

Identification code	Compound 3a
Empirical formula	C ₁₅ H ₉ IO ₂
Formula weight	348.12
Temperature	100.0 К
Wavelength	0.71073 Å
Crystal system	Orthorhombic
Space group	Pna21
Unit cell dimensions	a = 18.3859(12) Å a= 90°.
	b = 5.3759(4) Å b= 90°.
	c = 12.0862(9) Å g = 90°.
Volume	1194.61(15) Å ³
Z	4
Density (calculated)	1.936 Mg/m ³
Absorption coefficient	2.670 mm ⁻¹
F(000)	672
Crystal size	0.29 x 0.2 x 0.15 mm ³
Theta range for data collection	2.215 to 26.744°.
Index ranges	-17<=h<=23, -6<=k<=6, -14<=l<=15
Reflections collected	13671
Independent reflections	2509 [R(int) = 0.0275]
Completeness to theta = 25.000°	100.0 %
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	0.2607 and 0.1957
Refinement method	Full-matrix least-squares on F ²
Data / restraints / parameters	2509 / 1 / 163
Goodness-of-fit on F ²	1.096
Final R indices [I>2sigma(I)]	R1 = 0.0147, wR2 = 0.0358
R indices (all data)	R1 = 0.0157, wR2 = 0.0363
Absolute structure parameter	-0.015(11)
Extinction coefficient	n/a
Largest diff. peak and hole	0.393 and -0.284 e.Å ⁻³

Figure S5. ORTEP representation of 3b (ellipsoids drawn at 50% probability). Selected bond lengths (Å) and angles (°):I1—C1, 2.103(3); I1—C8, 2.101(3); O4'—I1—C1, 119.5(2)°; O4''—I1—C8, 158.8(9)°.

Identification code	Compound 3b
Empirical formula	C ₁₅ H ₈ INO ₄
Formula weight	393.12
Temperature	100.0 К
Wavelength	0.71073 Å
Crystal system	Triclinic
Space group	P1
Unit cell dimensions	a = 3.9123(4) Å a= 86.478(5)°.
	b = 6.9163(7) Å b= 86.434(5)°.
	c = 12.0794(12) Å g = 75.993(5)°.
Volume	316.16(6) Å ³
Z	1
Density (calculated)	2.065 Mg/m ³
Absorption coefficient	2.548 mm ⁻¹
F(000)	190
Crystal size	0.29 x 0.25 x 0.08 mm ³
Theta range for data collection	1.691 to 27.158°.
Index ranges	-5<=h<=5, -8<=k<=8, -15<=l<=15
Reflections collected	8582
Independent reflections	2624 [R(int) = 0.0205]
Completeness to theta = 25.242°	100.0 %
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	0.7455 and 0.6338
Refinement method	Full-matrix least-squares on F ²
Data / restraints / parameters	2624 / 3 / 184
Goodness-of-fit on F ²	1.073
Final R indices [I>2sigma(I)]	R1 = 0.0112, wR2 = 0.0271
R indices (all data)	R1 = 0.0112, wR2 = 0.0271
Absolute structure parameter	0.015(8)
Extinction coefficient	n/a
Largest diff. peak and hole	0.359 and -0.309 e.Å ⁻³

References

- 1. Z. Ge, X. Fe, T. Tang, Y. Zhu, J. Shen, *J. Org. Chem.* **2012**, 77, 5736–5743. <u>https://pubs.acs.org/doi/10.1021/jo300916s</u>
- 2. H. Wolfgang, S. Bernd, Archiv der Pharmazie (Weinheim, Germany), **1987**, 320(7), 666-669. https://doi.org/10.1002/ardp.19873200718
- 3. Azuma, T. Kobayashi, Y. Sakata, K. Sasamori, T. Tokitoh, N. Takemoto, Y. J. Org. Chem. **2014**, 79, 1805–1817. http://dx.doi.org/10.1021/jo4028775
- 4. Gondo, K. Kitamura, T. *Molecules*, **2012**, 17, 6625-6632. http://dx.doi:10.3390/molecules17066625.
- 5. Yang, R. Dai, L. Chen, C. *J. Chem. Soc., Chem. Commun*, **1992**, 1487-1488. https://doi.org/10.1039/C39920001487
- 6. Macikenas, D.; Skrzypczak-Jankun, E.; Protasiewicz, J.D, J. Am. Chem. Soc. **1999**, 121(30), 7164–7165. https://doi.org/10.1021/ja991094j
- Plumb, J.B.; Harper, D.J, Chem. Eng. News, 1990, 68(29), 2–3, 45. https://doi.org/10.1021/cen-v068n029.p002