Supplementary Material

Conformational control of bis-urea self-assembled supramolecular pH switchable low-molecular-weight hydrogelators

Adam D. O'Donnell,^a Alexander G. Gavriel,^a William Christie,^a Ann M. Chippindale,^a Ian M. German,^b and Wayne Hayes^{a*}

^aDepartment of Chemistry, University of Reading, Whiteknights, Reading, RG6 6DX, U.K. ^bKinectrics Inc., 17-18 Frederick Sanger Road, The Surrey Research Park, Guildford, Surrey, GU2 7YD, U.K. Email: <u>w.c.hayes@reading.ac.uk</u>

Table of Contents

Figure S 1. ¹ H NMR (400 MHz, DMSO-d ₆ , 298 K of compound 1)	S3
Figure S 2. ¹³ C{H} (100 MHz, DMSO-d ₆ , 298 K of compound 1)	S3
Figure S 3. ¹ H NMR (400 MHz, DMSO-d ₆ , 298 K of compound 2)	S4
Figure S 4. ¹³ C{H} (100 MHz, DMSO-d ₆ , 298 K of compound 2)	S4
Figure S 5. ¹ H NMR (400 MHz, DMSO-d ₆ , 298 K of compound 3)	S5
Figure S 6. ¹³ C{H} (100 MHz, DMSO-d ₆ , 298 K of compound 3).	S5
Figure S 7. ¹ H NMR (400 MHz, DMSO-d ₆ , 298 K of compound 4)	S6
Figure S 8. ¹³ C{H} (100 MHz, DMSO-d ₆ , 298 K of compound 4).	S6
Figure S 9. ¹ H NMR (400 MHz, DMSO-d ₆ , 298 K of compound 5).	S7
Figure S 10. ¹³ C{H} (100 MHz, DMSO-d ₆ , 298 K of compound 5)	S7
Figure S 11. ¹ H NMR (400 MHz, DMSO-d ₆ , 298 K of compound 6)	S8
Figure S 12. ¹³ C{H} (100 MHz, DMSO-d ₆ , 298 K of compound 6)	S8
Figure S 13. ¹ H NMR (400 MHz, DMSO-d ₆ , 298 K of compound 7)	
Figure S 14. ¹³ C{H} (100 MHz, DMSO-d ₆ , 298 K of compound 7)	
Figure S 15. ¹ H NMR (400 MHz, DMSO-d ₆ , 298 K of compound 8)	S10
Figure S 16. ¹³ C{H} (100 MHz, DMSO-d ₆ , 298 K of compound 8)	S10
Figure S 17. ¹ H NMR (400 MHz, DMSO-d ₆ , 298 K of compound 9)	S11
Figure S 18. ¹³ C{H} (100 MHz, DMSO-d ₆ , 298 K of compound 9)	S11
Figure S 19. ¹ H NMR (400 MHz, DMSO-d ₆ , 298 K of compound 10)	S12
Figure S 20. ¹³ C{H}(100 MHz, DMSO-d ₆ , 298 K of compound 10)	S12
Figure S 21. ¹ H NMR (400 MHz, DMSO-d ₆ , 298 K of compound 11).	S13
Figure S 22. ¹³ C{H} (100 MHz, DMSO-d ₆ , 298 K of compound 11)	S13
Figure S 23. ¹ H NMR (400 MHz, DMSO-d ₆ , 298 K of compound 12).	S14
Figure S 24. ¹³ C{H} (100 MHz, DMSO-d ₆ , 298 K of compound 12)	S14
Figure S 25. ¹ H NMR (400 MHz, DMSO-d ₆ , 298 K of compound 13).	S15
Figure S 26. ¹³ C{H} (100 MHz, DMSO-d6, 298 K of compound 13)	S15
Figure S 27. ¹ H NMR (400 MHz, DMSO-d ₆ , 298 K of compound 14).	S16
Figure S 28. ¹³ C{H} (100 MHz, DMSO-d ₆ , 298 K of compound 14).	S16

Figure S 29. ¹ H NMR (400 MHz, DMSO-d ₆ , 298 K of compound 15)	S17
Figure S 30. ¹³ C{H} (100 MHz, DMSO-d ₆ , 298 K of compound 15)	S17
Figure S 31. ¹ H NMR (400 MHz, DMSO-d ₆ , 298 K of compound 16)	S18
Figure S 32. ¹³ C{H} (100 MHz, DMSO-d ₆ , 298 K of compound 16)	S18
Figure S 33. ¹ H NMR (400 MHz, DMSO-d ₆ , 298 K of compound 17)	S19
Figure S 34. ¹³ C{H} (100 MHz, DMSO-d6, 298 K of compound 17)	S19
Figure S 35. ¹ H NMR (400 MHz, DMSO-d ₆ , 298 K of compound 18)	S20
Figure S 36. ¹³ C{H} (100 MHz, DMSO-d ₆ , 298 K of compound 18)	S20
Figure S 37. ¹ H NMR (400 MHz, DMSO-d ₆ , 298 K of compound 19)	S21
Figure S 38. ¹³ C{H} (100 MHz, DMSO-d ₆ , 298 K of compound 19)	S21
Figure S 39. ¹ H NMR (400 MHz, DMSO-d ₆ , 298 K of compound 20)	S22
Figure S 40. ¹³ C{H} (100 MHz, DMSO-d ₆ , 298 K of compound 20)	S22
Figure S 41. Crystal structure of compound 10, ellipsoids drawn at 50% probability	S23
Table S 1. Crystallographic details for compound 10.	S23
Table S 2. Selected bond lengths (Å) and angles (°) for compound 10.	S24
Figure S 42. Crystal structure of compound 12, ellipsoids drawn at 50% probability	S244
Table S 3. Crystallographic details for compound 12.	S25
Table S 4. Selected bond lengths (Å) and angles (°) for compound 12.	S26
Figure S 43. CGC determination vial inversion of gelators 2 and 3 (20 mM).	S27
Figure S 44. CGC determination vial inversion of gelator 4. Mass of gelator in mg written below each	vialS27
Figure S 45. CGC determination vial inversion of gelator 6. Mass of gelator in mg written below each	vialS28
Figure S 46. CGC determination vial inversion of gelator 7. Mass of gelator in mg written below each	vialS28
Figure S 47. CGC determination via vial inversion of gelator 8. Mass of gelator in mg written below ea	ich vial.
	S29
Figure S 48. Continuous step-strain measurements of 6 at 25 °C	
Table S 5. Rheological properties of hydrogelators	
Figure S 49. Kinetics of formation of gelator networks 1 – 8	S31
Figure S 50. From left to right: methylene blue solution (3 mL, 4 mgL ⁻¹) without gelator, gelators 1, 4,	5, 6, 7, 8
(10 mM), gelled with HCl, within 12 hours after addition of methylene blue solution (3 mL, 4 mgL ⁻¹).	S31
Figure S 51. Absorbance maxima of methylene blue (664 nm) vs. time for hydrogelators 1, 4, 5, 6, 7 a	nd 8 S32

.07 Acetor

Figure S 2. ¹³C{H} (100 MHz, DMSO-d₆, 298 K of compound **1**).

Figure S 4. ¹³C{H} (100 MHz, DMSO-d₆, 298 K of compound **2**).

Figure S 6. ¹³C{H} (100 MHz, DMSO-d₆, 298 K of compound **3**).

Figure S 8. ¹³C{H} (100 MHz, DMSO-d₆, 298 K of compound **4**).

Figure S 10. ¹³C{H} (100 MHz, DMSO-d₆, 298 K of compound 5).

Figure S 12. ¹³C{H} (100 MHz, DMSO-d₆, 298 K of compound 6).

Figure S 14. ¹³C{H} (100 MHz, DMSO-d₆, 298 K of compound 7).

Figure S 16. ¹³C{H} (100 MHz, DMSO-d6, 298 K of compound 8).

220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 Figure S 18. ¹³C{H} (100 MHz, DMSO-d₆, 298 K of compound **9**).

[©]AUTHOR(S)

Figure S 20. ¹³C{H}(100 MHz, DMSO-d₆, 298 K of compound **10**).

Figure S 22. ¹³C{H} (100 MHz, DMSO-d₆, 298 K of compound **11**).

Figure S 24. ¹³C{H} (100 MHz, DMSO-d₆, 298 K of compound **12**).

Figure S 26. ¹³C{H} (100 MHz, DMSO-d6, 298 K of compound 13).

Figure S 28. ¹³C{H} (100 MHz, DMSO-d₆, 298 K of compound **14**).

Figure S 30. ¹³C{H} (100 MHz, DMSO-d₆, 298 K of compound **15**).

Figure S 32. ¹³C{H} (100 MHz, DMSO-d₆, 298 K of compound **16**).

^{δ (ppm)} Figure S 34. ¹³C{H} (100 MHz, DMSO-d6, 298 K of compound 17).

Figure S 36. ¹³C{H} (100 MHz, DMSO-d₆, 298 K of compound **18**).

Figure S 38. ¹³C{H} (100 MHz, DMSO-d₆, 298 K of compound **19**).

Figure S 40. ¹³C{H} (100 MHz, DMSO-d₆, 298 K of compound **20**).

Figure S 41. Crystal structure of compound **10**, ellipsoids drawn at 50% probability. Symmetry code: (a) 1 - x, y, 1.5 - z. **Table S 1.** Crystallographic details for compound **10**

Formula	$C_{10} H_{11} Cl_2 N O_2$
Mr	248.11
Crystal system	monoclinic
Space group	C 2/c
Z	4
<i>a</i> /Å	15.72720(2)
b/Å	8.273769(15)
<i>c</i> /Å	8.583140(18)
β/°	95.913(3)
V / Å ³	1110.923(7)
$ ho_{ m calc}$ / g cm ⁻³	1.483
Crystal habit	Colourless block
Crystal dimensions /mm	0.017 × 0.031 × 0.136
Radiation	Cu K _α (1.54180 Å)
т /к	100
μ /mm ⁻¹	5.101
R(F), Rw(F) /%	4.50, 6.89
CCDC cif deposition number	CCDC 2085509

 Table S 2. Selected bond lengths (Å) and angles (°) for compound 10

O(8) – N(7)	1.213(2)	$O(8) - N(7) - O(8)^{a}$	124.7(3)
N(7) – C(6)	1.477(3)	O(8) – N(7) – C(6)	117.65(14)
C(2) – C(3)	1.497(3)	CI(1) - C(2) - C(3)	110.70(16)
C(3) – C(4)	1.393(2)	C(2) - C(3) - C(4)	119.42(19)
C(3) – C(5)	1.404(3)	C(2) – C(3) – C(5)	121.17(18)
C(5) – C(6)	1.390(2)	C(4) - C(3) - C(5)	119.41(18)
C(5) – C(9)	1.507(3)	$C(3) - C(4) - C(3)^{a}$	122.6(3)
		C(3) – C(5) – C(6)	116.12(18)
		C(3) – C(5) – C(9)	122.03(18)
		C(6) – C(5) – C(9)	121.85(19)
		N(7) – C(6) – C(5)	116.86(13)
		$C(5) - C(6) - C(5)^{a}$	126.3(3)

Symmetry code: (a) 1 - x, y, 1.5 - z.

Figure S 42. Crystal structure of compound 12, ellipsoids drawn at 50% probability.

Table S 3. Crystallographic details for compound 12

Formula	C ₁₂ H ₁₃ N O ₆
Mr	267.24
Crystal system	monoclinic
Space group	P 21/n
Z	4
a /Å	7.94120(1)
b/Å	17.09118(2)
<i>c</i> /Å	9.16055(1)
β/°	102.051(2)
V / Å ³	1215.910(11)
$ ho_{calc}$ / g cm ⁻³	1.460
Crystal habit	Colourless block
Crystal dimensions /mm	0.030 × 0.066 × 0.098
Radiation	Cu Kα (1.54180 Å)
т /к	100
μ /mm ⁻¹	1.015
R(F), Rw(F) /%	3.86, 5.32
CCDC cif deposition number	CCDC 2089501

O(1) - C(2)	1.3375(18)	C(2) – O(1) – C(19)	114.98(11)
O(1) – C(19)	1.4461(17)	O(1) - C(2) - O(3)	123.55(13)
C(2) – O(3)	1.2121(18)	O(1) - C(2) - C(4)	111.14(12)
C(2) - C(4)	1.4912(19)	O(3) - C(2) - C(4)	125.28(13)
C(4) – C(5)	1.392(2)	C(2) – C(4) – C(5)	118.75(12)
C(4) – C(13)	1.4070(19)	C(2) - C(4) - C(13)	121.47(13)
C(5) – C(6)	1.390(2)	C(5) – C(4) – C(13)	119.77(13)
C(6) – C(7)	1.4959(19)	C(4) - C(5) - C(6)	122.56(13)
C(6) – C(11)	1.4058(19)	C(5) – C(6) – C(7)	118.11(12)
C(7) – O(8)	1.3400(18)	C(5) - C(6) - C(11)	120.03(13)
C(7) – O(10)	1.2075(18)	C(7) - C(6) - C(11)	121.83(13)
C(8) – C(9)	1.4504(18)	C(6) – C(7) – O(8)	110.58(12)
C(11) – C(12)	1.397(2)	C(6) – C(7) – O(10)	125.55(13)
C(11) – C(18)	1.5043(19)	O(8) - C(7) - O(10)	123.86(13)
C(12) – C(13)	1.393(2)	C(7) – O(8) – C(9)	116.11(12)
C(12) – N(15)	1.4783(18)	C(6) - C(11) - C(12)	115.18(13)
C(13) – C(14)	1.5109(19)	C(6) - C(11) - C(18)	124.66(13)
N(15) – O(16)	1.2215(19)	C(12) - C(11) - C(18)	120.09(13)
N(15) – O(17)	1.2214(19)	C(11) - C(12) - C(13)	127.03(13)
		C(11) - C(12) - N(15)	116.40(12)
		C(13) - C(12) - N(15)	116.57(12)
		C(4) - C(13) - C(12)	115.42(12)
		C(4) - C(13) - C(14)	123.62(13)
		C(12) - C(13) - C(14)	120.96(12)
		C(12) – N15) – O(16)	117.58(13)
		C(12) - N(15) - O(17)	117.75(13)
		O(16) - N(15) - O(17)	124.67(13)

Figure S 43. CGC determination vial inversion of gelators 2 and 3 (20 mM).

Figure S 44. CGC determination vial inversion of gelator 4. Mass of gelator in mg written below each vial.

Figure S 45. CGC determination vial inversion of gelator 6. Mass of gelator in mg written below each vial.

Figure S 46. CGC determination vial inversion of gelator 7. Mass of gelator in mg written below each vial.

Figure S 47. CGC determination via vial inversion of gelator 8. Mass of gelator in mg written below each vial.

Figure S 48. Continuous step-strain measurements of **6** at 25 °C (high-amplitude oscillatory parameters: strain $\gamma = 250\%$, frequency = 1 Hz, low-amplitude oscillatory parameters: strain $\gamma = 0.1\%$, frequency = 1 Hz) with increasing low shear interval until complete network recovery.

Table S 5.	Rheological	properties	of hydrogelators
------------	-------------	------------	------------------

	(1)	(4)	(6)	(7)
G' ^a (Pa)	1.780E+004	2.135E+003	4.653E+003	4.935E+003
G" ^a (Pa)	2.085E+003	211.9	206.8	228.5
γ γ% ^b	6.77±1.48	77.14±2.60	41.02±11.15	22.56±6.88
$\sigma_{ m y}$ (Pa) ^c	373.40±28.17	72.65±4.87	118.35±57.60	92.21±32.69
γ _y % ^c	3.71±0.70	40.61±1.63	11.36±2.96	9.85±2.17

a = observed after equilibrating for 12 hours, measured at 1Hz and 0.1% shear strain, b = determined as the % strain at the inversion of G' and G'', c = determined from peak analysis of elastic stress vs. shear strain data.

Figure S 49. Kinetics of formation of gelator networks 1 - 8 as monitored by ¹H NMR spectroscopy.

Figure S 50. From left to right: methylene blue solution (3 mL, 4 mgL⁻¹) without gelator, gelators **1**, **4**, **5**, **6**, **7**, **8** (10 mM), gelled with HCl, within 12 hours after addition of methylene blue solution (3 mL, 4 mgL⁻¹).

Figure S 51. Absorbance maxima of methylene blue (664 nm) vs. time for hydrogelators 1, 4, 5, 6, 7 and 8.