Supplementary Material

CO₂-activated NaClO-5H₂O enabled smooth oxygen transfer to iodoarene: a

highly practical synthesis of iodosylarene

Kazunori Miyamoto,^{1,*} Yuichiro Watanabe,¹ Taisei Takagi,¹ Tomohide Okada,² Takashi Toyama,² Shinji Imamura,³ and Masanobu Uchiyama^{1,4,5*}

¹Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
²Market Development Department, Nippon Light Metal Company, Ltd., 1-1-13 Shimbashi, Minato-ku, Tokyo, 105-8681, Japan
³R&D Department of Chemicals, Nippon Light Metal Company, Ltd., 480 Kambara, Shimizu-ku, Shizuoka 421-3203, Japan
⁴Cluster for Pioneering Research (CPR), RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
⁵Research Initiative for Supra-Materials (RISM), Shinshu University, 3-15-1 Tokida, Ueda, Nagano 386-8567, Japan
Email: kmiya@mol.f.u-tokyo.ac.jp, uchiyama@mol.f.u-tokyo.ac.jp

Table of Contents

Control experiments	S2
Spectroscopic study	S3
References	S7

Control experiments

Scheme S1. Attempted synthesis of 1a with sodium chlorate and sodium chlorite.

The disproportionation products NaClO₃ and NaClO₂ would not act as an efficient oxidant in our system.

Scheme S2. Control experiments with PhIO 1a prepared by classical procedure (hydrolysis with aqueous NaOH).^{S1}

These control experiments suggest that the oxidizing ability of the **1a** would depend on the preparation method.

Spectroscopic study

Figure S1. Raman spectra of (A) 30% aq. NaClO solution/rt/under air; (B) 30% aq. NaClO/rt/10 min/under CO₂; (C) 13% aq. NaClO and 10% aq. NaHCO₃/rt/10 min/under air; (D) NaClO-5H₂O/AcOH/rt/5 min/under air.

The Raman spectra of authentic Cl₂O were reported for either solid/gas/liquid state, in which Cl–O stretching vibration was observed in the range of v = 630–690 cm⁻¹ depending on the conditions.² In our system, a slightly blue shifted Cl–O stretching vibration was observed (conditions (B) and (C), in Figure S1), which was similar to the peak observed for NaClO-AcOH system (conditions (D)). It should be noted that the lack of carbonate/bicarbonate ions under CO₂ atmosphere (conditions (B) in Figure S1), indicating the lack of the equilibrium shown in eq 1. Further, the expected intermediate Cl₂ (v = 538 cm⁻¹) was not observed.

$$\begin{array}{rcl} \text{CO}_2 &+& \text{H}_2\text{O} & & & & \text{H}_2\text{CO}_3 &+& \text{NaCIO} & & & & \text{CIOH} &+& \text{NaHCO}_3 \\ & & & & & \text{NaHCO}_3 &+& \text{NaCIO} & & & & & \text{CIOH} &+& \text{Na}_2\text{CO}_3 \end{array} \tag{eq 1}$$

Reaction with NaClO-5H₂O-CO₂ (this work)

Figure S2. Trapping experiment with cyclohexene.

The products distribution of the reaction using NaClO-5H₂O under CO₂ is similar to the previously reported reaction using pure Cl₂O. The allyl chloride would be formed by ene-type chlorination of olefin with Cl₂O.^{S3}

Figure S3. Appearance of (A) Connected flask experiment. (B) Reaction mixture after 30 minutes.

The gaseous species formed by the reaction of NaClO and CO₂ in Flask A was moved to Flask B, which oxidize iodobenzene **4a**. The MeCN-insoluble pale yellow precipitate in Flask B indicates the formation of iodosylbenzene **1a**. Analytical data (FT-IR, mp) of the precipitate are consistent with those of a sample obtained by our optimized reaction conditions.

Figure S4. (A) ESI-MS spectrum (positive ion mode) of the reaction mixture (MeCN, desolvation temperature: 100 °C). A weak peak attributable to $[(PhIO)_3CI]^+$ (m/z = 679) was also detected. (B) ¹H NMR spectrum of the reaction mixture (CDCl₃, 500 MHz). A major peaks (filled square) attributable to hypervalent iodine(III) species disappeared after prolonged stirring at room temperature.

The presence of $PhICI_2$ and oligomeric μ -oxo species in an early stage of the reaction mixture was confirmed by ¹H NMR and ESI-MS analyses.

References

- 1. Saltzman H.; Sharefkin, J. G. Org. Synth. 1963, 43, 60.
- 2. Renard, J. J.; Bolker, I. Chem. Rev. 1976, 76, 587.
- 3. Torii S.; Tanaka H.; Tada N.; Nagao S.; Sasaoka M. Chem. Lett. 1984, 877.