Supplementary Material

Catechol-based macrocyclic aromatic ether-sulfones: Synthesis, characterization and ring-opening polymerization

Fabio Aricò*a and Howard M. Colquhoun*b

^aDepartment of Environmental Sciences, Informatics and Statistics, Ca' Foscari University, Via Torino 155, 30172 Venice, Italy ^bDepartment of Chemistry, University of Reading, Whiteknights, Reading, RG6 6AD, UK Email: <u>fabio.arico@unive.it</u>; <u>h.m.colquhoun@rdq.ac.uk</u>

Table of Contents

Chart S1: Labelled structures for ¹ H NMR assignments	
Figure S1: ¹ H NMR spectrum of macrocycle 2	
Figure S2: ¹³ C NMR spectrum of macrocycle 2	
Figure S3: MALDI-TOF mass spectrum of macrocycle 2	
Figure S4: ¹ H NMR spectrum of macrocycle 3	S5
Figure S5: ¹³ C NMR spectrum of macrocycle 3	S5
Figure S6: MALDI-TOF mass spectrum of macrocycle 3	S6
Figure S7: ¹ H NMR spectrum of macrocycle 4	
Figure S8: ¹³ C NMR spectrum of macrocycle 4	S7
Figure S9: MALDI-TOF mass spectrum of macrocycle 4	
Figure S10: ¹ H NMR spectrum of macrocycle 5	
Figure S11: ¹³ C NMR spectrum of macrocycle 5	
Figure S12: MALDI-TOF mass spectrum of macrocycle 5	S10
Figure S13: ¹ H NMR spectrum of linear oligomer 7	
Figure S14: ¹³ C NMR spectrum of linear oligomer 7	
Figure S15: MALDI-TOF mass spectrum of linear oligomer 7	S12
Figure S16: ¹ H NMR spectrum of macrocycle 8	S13
Figure S17: ¹³ C NMR spectrum of macrocycle 8	S13
Figure S18: ¹ H- ¹ H COSY NMR spectrum of macrocycle 8	
Figure S19: MALDI-TOF mass spectrum of macrocycle 8	S15
Figure S20: ¹ H NMR spectrum of macrocycle 9	S16
Figure S21: ¹³ C NMR spectrum of macrocycle 9	S16
Figure S22: MALDI-TOF mass spectrum of macrocycle 9	S17
Computational modelling of macrocycles 8 and 9	S17

2 (n = 2), **3** (n = 3), **4** (n = 4), **5** (n = 5)

8 (n = 1), **9** (n = 2)

Chart S1: Labelled structures for ¹H NMR assignments (refer to Experimental Section).

Figure S1: ¹H NMR spectrum of macrocycle 2 (250 MHz, CD₂Cl₂/CH₃SO₃H 4/1 v/v).

Figure S2: ¹³C NMR spectrum of macrocycle **2** (62.5 MHz, $CDCl_3/CF_3CO_2H$ 5/1 v/v). *Note:* the strong quartet resonances centred at 114 and 162 ppm are due to trifluoroacetic acid co-solvent.

Figure S3: MALDI-TOF mass spectrum of macrocycle **2**. (Calc. m/z for $[C_{60}H_{40}S_4O_{12}Na]^+ = 1104.2$).

Figure S4: ¹H NMR spectrum of macrocycle **3** (250 MHz, CD₂Cl₂/CH₃SO₃H 4/1 v/v).

Figure S5: ¹³C NMR spectrum of macrocycle **3** (62.5 MHz, $CD_2Cl_2/CH_3SO_3H 4/1 v/v$).

Figure S6: MALDI-TOF mass spectrum of macrocycle 3. (Calc. m/z for $[C_{90}H_{60}S_6O_{18}Na]^+ = 1644.8$).

Figure S7: ¹H NMR spectrum of macrocycle 4 (250 MHz, CD₂Cl₂/CH₃SO₃H 4/1 v/v).

Figure S8: ¹³C NMR spectrum of macrocycle 4 (62.5 MHz, CD₂Cl₂/CH₃SO₃H 4/1 v/v).

Figure S9: MALDI-TOF mass spectrum of macrocycle **4**. (Calc. m/z for $[C_{120}H_{80}S_8O_{24}Na]^+ = 2185.4$).

Figure S10: ¹H NMR spectrum of macrocycle **5** (250 MHz, CD₂Cl₂/CH₃SO₃H 4/1 v/v).

Figure S11: ¹³C NMR spectrum of macrocycle **5** (62.5 MHz, CD_2Cl_2/CH_3SO_3H 4/1 v/v).

Figure S12: MALDI-TOF mass spectrum of macrocycle 5. (Calc. m/z for $[C_{150}H_{100}S_{10}O_{30}Na]^+ = 2726.0$).

Figure S13: ¹H NMR spectrum of linear oligomer **7** (250 MHz, CDCl₃/CF₃COOH 5/1 v/v).

Figure S14: ¹³C NMR spectrum of linear oligomer **7** (62.5 MHz, CDCl₃/CF₃COOH 5/1 v/v). *Note:* the strong quartet resonances centred at 114 and 162 ppm are due to trifluoroacetic acid co-solvent.

Figure S15: MALDI-TOF mass spectrum of linear oligomer 7. (Calc. m/z for $[C_{44}H_{28}S_2O_6Cl_2Na]^+ = 810.7$).

Figure S16: ¹H NMR spectrum of macrocycle **8** (400 MHz, CDCl₃/CF₃COOH 5/1 v/v).

Figure S17: ¹³C NMR spectrum of macrocycle **8** (100 MHz, CDCl₃/CF₃COOH 5/1 v/v). *Note:* the strong quartet resonances centred at 114 and 162 ppm are due to trifluoroacetic acid co-solvent.

Figure S18: ¹H-¹H COSY NMR spectrum of macrocycle **8** (400 MHz, CDCl₃/CF₃COOH 5/1 v/v).

Figure S19: MALDI-TOF mass spectrum of macrocycle **8** (Calc. m/z for $[C_{50}H_{32}S_2O_8Na]^+ = 847.9$).

Figure S20: ¹H NMR spectrum of macrocycle **9** (400 MHz, CDCl₃/CF₃COOH 5/1 v/v).

Figure S21: ¹³C NMR spectrum of macrocycle **9** (100 MHz, CDCl₃/CF₃COOH 5/1 v/v). *Note:* the strong quartet resonances centred at 114 and 162 ppm are due to trifluoroacetic acid co-solvent.

Computational modelling of macrocycles 8 and 9

Models of macrocycles **8** and **9** were constructed on a SGI-O2 workstation using the *Cerius2* suite of programs, v. 3.5, Accelrys, San Diego. Models were minimised initially using the Dreiding-II force field (molecular mechanics with charge-equilibration),^{S1} and the resulting models were then re-minimised with a modified version of this force field in which aromatic ether, ketone, and sulfone linkages were constrained to experimentally-established bond lengths and bond angles.

Atomic coordinates of the final models for **8** and **9** are available from the authors as electronic data files in pdb format. Email: fabio.arico@unive.it; or h.m.colquhoun@rdg.ac.uk

S1. Mayo, S. L.; Olafson, B. D.; Goddard III, W. A. J. Phys. Chem. **1990**, *94*, 8897-8909.