Supplementary Material

Rate constant for the generation of ${ }^{1} \mathrm{O}_{\mathbf{2}}$ from commonly used triplet sensitizers: a systematic study on the wavelength effect using an ene reaction of 2,3-dimethyl-2-butene

Mamiko Hayakawa, Tadashi Aoyama, and Akihiko Ouchi ${ }^{*}$
Department of Materials and Applied Chemistry, College of Science and Technology, Nihon University, Kanda-Surugadai, Chiyoda-ku, Tokyo 101-8308, Japan

Table of contents

1. Derivation of eq 5 from eqs 3^{\prime} and 4 S2
2. Number of photons absorbed by the solution per unit time. S3

[1] Derivation of eq 5 from eqs 3^{\prime} and 4.

When we consider steady state of $\left[{ }^{1} \mathrm{O}_{2}\right]$, eq 3 ' becomes

$$
\mathrm{d}\left[{ }^{1} \mathrm{O}_{2}\right]_{t} / \mathrm{d} t=k_{1} p[\mathrm{sen}]_{t}\left[{ }^{3} \mathrm{O}_{2}\right]_{t}-k_{2}\left[{ }^{1} \mathrm{O}_{2}\right]_{t}[\mathbf{1}]_{t}=0
$$

From eq 3"

$$
\begin{equation*}
\left[{ }^{1} \mathrm{O}_{2}\right]_{t}=k_{l} p[\operatorname{sen}]_{t}\left[{ }^{3} \mathrm{O}_{2}\right]_{t} / k_{2}[\mathbf{1}]_{t} \tag{3"'}
\end{equation*}
$$

By substituting $3^{\prime \prime \prime}$ to eq 4 , we obtain

$$
\begin{equation*}
-\mathrm{d}[\mathbf{1}]_{t} / \mathrm{d} t=k_{l} p[\mathrm{sen}]_{t}\left[{ }^{3} \mathrm{O}_{2}\right]_{t} \tag{4'}
\end{equation*}
$$

As $p,[\operatorname{sen}]_{t}\left(\approx[\operatorname{sen}]_{o}=0.12 \mathrm{mM}\right.$, initial concentration of the sensitizers $)$, and $\left[{ }^{3} \mathrm{O}_{2}\right]_{t}\left(\approx\left[{ }^{3} \mathrm{O}_{2}\right]_{s}\right.$, concentration of saturated ${ }^{3} \mathrm{O}_{2}$) can be considered as constants, eq 4^{\prime} is solved as

$$
[\mathbf{1}]_{t}=-k_{l} p[\mathrm{sen}]_{o}\left[{ }^{3} \mathrm{O}_{2}\right]_{s} \mathrm{t}+\mathrm{C}
$$

where C is a constant.
At $t=0,[\mathbf{1}]_{t}$ is $[\mathbf{1}]_{0}=3.0 \times 10^{-2}[\mathrm{M}]$, so that from eq $4^{\prime \prime}$

$$
\begin{equation*}
[\mathbf{1}]_{t}=-k_{l} p[\mathrm{sen}]_{o}\left[{ }^{3} \mathrm{O}_{2}\right]_{s} t+3.0 \times 10^{-2} \tag{5}
\end{equation*}
$$

[2] Number of photons absorbed by the solution per unit time.

In our reactions, 10 mL of solutions were introduced in a cylindrical cell with 3.0 cm diameter. Therefore, the height of the solution in the cell $\left(l_{H}\right)$ is calculated to be $l_{H}=10 /\left(1.5^{2} \pi\right) \mathrm{cm}$.

Figure 1. Cylindrical cell

Figure 2 shows the horizontal projection of the cylindrical cell. When the radius of the cell is divided into n segments, the optical path of the rectangular parallelepipeds at m th segment, $l_{m} \mathrm{~cm}$, is calculated to be

$$
\begin{aligned}
& l_{m}=2 \sqrt{1.5^{2}-\left(\frac{1.5}{n} m\right)^{2}} \\
& =\frac{3}{n} \sqrt{n^{2}-m^{2}}
\end{aligned}
$$

The number of photons (wavelength λ) absorbed by m th rectangular parallelepiped shown in Figure 3 in $1 \mathrm{~min}\left([\operatorname{sens}]_{\left.o p_{\lambda m}\right)}\right.$ is,

$$
[\operatorname{sen}]_{o} p_{\lambda m}=\frac{60 \times \frac{1.5}{n} l_{H} E_{\lambda m}\left(1-10^{-\varepsilon_{\lambda} \lambda \frac{3}{n} \sqrt{n^{2}-m^{2}}}\right)}{\frac{h C}{\lambda} N_{A}}
$$

where $E_{\lambda m} \mathrm{~W} / \mathrm{cm}^{2}$ is the intensity of incident light (wavelength λ) at m th segment, c is the concentration of the sensitizer, h is Planck's constant, C is the speed of light, ε_{λ} is the molar absorption coefficient of the sensitizer at wavelength λ, and N_{A} is the Avogadro's number.

Figure 2. Horizontal projection of cylindrical cell

Figure 3. Rectangular parallelepiped of the solution at m th segment

Figure 4 shows the relationship between the light intensities of flat panel LED 395 (370-475 nm, $\lambda_{\max }$ $400 \mathrm{~nm})$ and LED $525\left(455-600 \mathrm{~nm}, \lambda_{\max } 518 \mathrm{~nm}\right)$, and distance from the LEDs. As shown in the figure, the light intensities decrease proportionally with the distance. Therefore, the intensity of incident light (wavelength λ) at m th segment (cf. Figure 2), $E_{\lambda m} \mathrm{~W} / \mathrm{cm}^{2}$, is

$$
\begin{aligned}
E_{\lambda m} & =E_{\lambda 1.5}+\left(E_{\lambda 1.5}-E_{\lambda 3}\right)-\left(E_{\lambda 1.5}-E_{\lambda 3}\right) / 1.5 \times\left\{3-\sqrt{1.5^{2}-\left(\frac{1.5 m}{n}\right)^{2}}\right\} \\
& =2 E_{\lambda 1.5}-E_{\lambda 3}-\left(E_{\lambda 1.5}-E_{\lambda 3}\right) / 1.5 \times\left\{3-\sqrt{1.5^{2}-\left(\frac{1.5 m}{n}\right)^{2}}\right\}
\end{aligned}
$$

where $E_{\lambda 1.5}$ and $E_{\lambda 3}$ are the intensities of incident light (wavelength λ) at 1.5 and 3 cm from the LED, respectively.

Therefore, the total number of photons absorbed by the solution at m th segment of the cylindrical cell in 1 min ([sen] $]_{o p}$) falls between the volume of rectangular parallelepipeds having lengths l_{m} and l_{m+1} (cf. Figure 3), which is

Figure 4. Intensity of light vs distance from LED
$[\mathrm{sen}]_{0} p_{\text {min }}=\sum_{\lambda_{1}}^{\lambda_{2}} \sum_{m=1}^{n} 2[\mathrm{sen}]_{0} p_{\lambda m}<[\mathrm{sen}]_{o} p<\sum_{\lambda_{1}}^{\lambda_{2}} \sum_{m=0}^{n-1} 2[\mathrm{sen}]_{0} p_{\lambda m}=[\mathrm{sen}]_{0} p_{\max }$
where λ_{1} and λ_{2} are the wavelengths of the both ends of the emission of LEDs, namely, $\lambda_{1}=370 \mathrm{~nm}$ and $\lambda_{2}=475 \mathrm{~nm}$ for the 395 nm LED, and $\lambda_{1}=455 \mathrm{~nm}$ and $\lambda_{2}=620 \mathrm{~nm}$ for the 525 nm LED.

Calculated [sen] ${ }_{0} p_{\max }$ and $[\operatorname{sen}]^{0} p_{\text {min }}$ for $\mathrm{n}=1000$ are listed in Table S 1 . The $\varepsilon_{\lambda} \mathrm{s}$ in the above equations were calculated from the absorbance of each sensitizer that were measured by UV spectroscopy. $E_{\lambda 1.5}$ and $E_{\lambda} 3$ are the average emission intensities measured at 1.5 and 3 cm from the flat pannel LEDs. The value $[\operatorname{sen}]_{o} p$ was obtained as an average of $[\operatorname{sen}]_{o} p_{\max }$ and $[\operatorname{sen}]_{o} p_{\text {min }}$.

Table S1. Minimum ([sen] ${ }_{o p_{m i n}}$), maximum ([sen] ${ }_{o p_{\max }}$), and average ([sen] $]_{o p}$) number of photons absorbed by the sensitizer per unit time.

Sensitizer	Solvent	395 nm LED ($\mathrm{n}=1000$)		525 nm LED ($\mathrm{n}=1000$)	
		[sen] $o p_{\text {min }}$ [sen] ${ }_{o} p_{\text {max }}$ ($\mathrm{E} / \mathrm{min}$)	[sen] $o p$ (E/min)	[sen] $o p_{\text {min }}$ [sen] ${ }_{o} p_{\text {max }}$ (E/min)	[sen] $o p$ ($\mathrm{E} / \mathrm{min}$)
EY	MeOH	$\begin{aligned} & \hline 6.705 \times 10^{-6} \\ & 6.713 \times 10^{-6} \end{aligned}$	6.709×10^{-6}	$\begin{aligned} & \hline 2.418 \times 10^{-6} \\ & 2.420 \times 10^{-6} \end{aligned}$	2.419×10^{-6}
RB	MeOH	$\begin{aligned} & \hline 6.200 \times 10^{-6} \\ & 6.207 \times 10^{-6} \\ & \hline \end{aligned}$	6.204×10^{-6}	$\begin{aligned} & \hline 2.568 \times 10^{-6} \\ & 2.571 \times 10^{-6} \\ & \hline \end{aligned}$	2.569×10^{-6}
MB	MeOH	$\begin{aligned} & 3.250 \times 10^{-6} \\ & 3.255 \times 10^{-6} \end{aligned}$	3.253×10^{-6}	$\begin{aligned} & 2.196 \times 10^{-6} \\ & 2.198 \times 10^{-6} \end{aligned}$	2.197×10^{-6}
MB	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	$\begin{aligned} & \hline 3.173 \times 10^{-6} \\ & 3.177 \times 10^{-6} \end{aligned}$	3.175×10^{-6}	$\begin{aligned} & \hline 1.953 \times 10^{-6} \\ & 1.956 \times 10^{-6} \end{aligned}$	1.955×10^{-6}
TPP	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	$\begin{aligned} & \hline 10.682 \times 10^{-6} \\ & 10.693 \times 10^{-6} \\ & \hline \end{aligned}$	10.687×10^{-6}	$\begin{aligned} & \hline 2.464 \times 10^{-6} \\ & 2.467 \times 10^{-6} \\ & \hline \end{aligned}$	2.466×10^{-6}
C60	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	$\begin{aligned} & 7.666 \times 10^{-6} \\ & 7.675 \times 10^{-6} \end{aligned}$	7.670×10^{-6}	-	
C60	Toluene	$\begin{aligned} & 7.714 \times 10^{-6} \\ & 7.723 \times 10^{-6} \\ & \hline \end{aligned}$	7.719×10^{-6}	$\begin{aligned} & 1.178 \times 10^{-6} \\ & 1.180 \times 10^{-6} \end{aligned}$	1.179×10^{-6}

$\mathrm{E}=$ mol-photons

