Supplementary Material

Rate constant for the generation of ¹O₂ from commonly used triplet sensitizers: a systematic study on the wavelength effect using an ene reaction of 2,3-dimethyl-2-butene

Mamiko Hayakawa, Tadashi Aoyama, and Akihiko Ouchi^{*}

Department of Materials and Applied Chemistry, College of Science and Technology, Nihon University, Kanda-Surugadai, Chiyoda-ku, Tokyo 101-8308, Japan

Table of contents

1.	Derivation of eq 5 from eqs 3' and 4.	S2
2.	Number of photons absorbed by the solution per unit time.	S3

[1] Derivation of eq 5 from eqs 3' and 4.

When we consider steady state of $[^{1}O_{2}]$, eq 3' becomes

$$d[{}^{1}O_{2}]_{t}/dt = k_{1} p [sen]_{t} [{}^{3}O_{2}]_{t} - k_{2} [{}^{1}O_{2}]_{t} [\mathbf{1}]_{t} = 0$$
(3")

From eq 3"

$$[{}^{1}O_{2}]_{t} = k_{1} p [sen]_{t} [{}^{3}O_{2}]_{t} / k_{2} [\mathbf{1}]_{t}$$
(3''')

By substituting 3^{'''} to eq 4, we obtain

$$- d[1]_t / dt = k_l p [sen]_t [{}^{3}O_2]_t$$
(4')

As *p*, $[sen]_t (\approx [sen]_\theta = 0.12 \text{ mM}, initial concentration of the sensitizers), and <math>[^3O_2]_t (\approx [^3O_2]_s, \text{ concentration of saturated } ^3O_2)$ can be considered as constants, eq 4' is solved as

$$[\mathbf{1}]_t = -k_I p \,[\operatorname{sen}]_{\theta} \,[{}^3\operatorname{O_2}]_s \, t + C \tag{4''}$$

where C is a constant.

At t = 0, $[1]_t$ is $[1]_0 = 3.0 \times 10^{-2}$ [M], so that from eq 4"

$$[1]_{t} = -k_{I} p [\text{sen}]_{\theta} [{}^{3}\text{O}_{2}]_{s} t + 3.0 \times 10^{-2}$$
(5)

[2] Number of photons absorbed by the solution per unit time.

In our reactions, 10 mL of solutions were introduced in a cylindrical cell with 3.0 cm diameter. Therefore, the height of the solution in the cell (*l_H*) is calculated to be $l_H = 10/(1.5^2 \pi)$ cm.

Figure 2 shows the horizontal projection of the cylindrical cell. When the radius of the cell is divided into *n* segments, the optical path of the rectangular parallelepipeds at *m* th segment, l_m cm, is calculated to be

$$l_{m} = 2 \sqrt{1.5^{2} - \left(\frac{1.5}{n}m\right)^{2}}$$
$$= \frac{3}{n} \sqrt{n^{2} - m^{2}}$$

The number of photons (wavelength λ) absorbed by *m* th rectangular parallelepiped shown in Figure 3 in 1 min ([sens] $\rho_{\lambda m}$) is,

$$[\operatorname{sen}]_{\ell} p_{\lambda m} = \frac{60 \times \frac{1.5}{n} l_H E_{\lambda m} \left(1 - 10^{-\varepsilon_{\lambda}} c_{\overline{n}}^{3} \sqrt{n^2 - m^2} \right)}{\frac{hC}{\lambda} N_A}$$

where $E_{\lambda m}$ W/cm² is the intensity of incident light (wavelength λ) at *m* th segment, *c* is the concentration of the sensitizer, *h* is Planck's constant, *C* is the speed of light, ε_{λ} is the molar absorption coefficient of the sensitizer at wavelength λ , and N_A is the Avogadro's number.

Figure 3. Rectangular parallelepiped of the solution at *m* th segment

ARKIVOC 2020, viii, S1-5

Figure 4 shows the relationship between the light intensities of flat panel LED 395 (370-475 nm, λ_{max} 400 nm) and LED 525 (455-600 nm, λ_{max} 518 nm), and distance from the LEDs. As shown in the figure, the light intensities decrease proportionally with the distance. Therefore, the intensity of incident light (wavelength λ) at *m* th segment (cf. Figure 2), $E_{\lambda m}$ W/cm², is

$$E_{\lambda m} = E_{\lambda 1.5} + (E_{\lambda 1.5} - E_{\lambda 3}) - (E_{\lambda 1.5} - E_{\lambda 3})/1.5 \times \left\{3 - \sqrt{1.5^2 - \left(\frac{1.5 m}{n}\right)^2}\right\}$$
$$= 2 E_{\lambda 1.5} - E_{\lambda 3} - (E_{\lambda 1.5} - E_{\lambda 3})/1.5 \times \left\{3 - \sqrt{1.5^2 - \left(\frac{1.5 m}{n}\right)^2}\right\}$$

where $E_{\lambda 1.5}$ and $E_{\lambda 3}$ are the intensities of incident light (wavelength λ) at 1.5 and 3 cm from the LED, respectively.

Therefore, the total number of photons absorbed by the solution at *m* th segment of the cylindrical cell in 1 min ([sen] $_{0}p$) falls between the volume of rectangular parallelepipeds having lengths l_m and l_{m+1} (cf. Figure 3), which is

 $[\operatorname{sen}]_{0} p_{\min} = \sum_{\lambda_{1}}^{\lambda_{2}} \sum_{m=1}^{n} 2[\operatorname{sen}]_{0} p_{\lambda m} < [\operatorname{sen}]_{0} p < \sum_{\lambda_{1}}^{\lambda_{2}} \sum_{m=0}^{n-1} 2[\operatorname{sen}]_{0} p_{\lambda m} = [\operatorname{sen}]_{0} p_{\max}$

where λ_1 and λ_2 are the wavelengths of the both ends of the emission of LEDs, namely, $\lambda_1 = 370$ nm and $\lambda_2 = 475$ nm for the 395 nm LED, and $\lambda_1 = 455$ nm and $\lambda_2 = 620$ nm for the 525 nm LED.

Calculated [sen] $_{0}p_{max}$ and [sen] $_{0}p_{min}$ for n = 1000 are listed in Table S1. The ε_{λ} s in the above equations were calculated from the absorbance of each sensitizer that were measured by UV spectroscopy. $E_{\lambda} I.5$ and $E_{\lambda} J$ are the average emission intensities measured at 1.5 and 3 cm from the flat pannel LEDs. The value [sen] $_{0}p$ was obtained as an average of [sen] $_{0}p_{max}$ and [sen] $_{0}p_{min}$.

		395 nm LED	(n=1000)	525 nm LED	(n=1000)
Sensitizer	Solvent	[sen]0 p _{min} [sen]0 p _{max} (E/min)	[sen] <i>0 p</i> (E/min)	[sen]0 p _{min} [sen]0 p _{max} (E/min)	[sen] <i>0 p</i> (E/min)
EY	МеОН	6.705×10 ⁻⁶ 6.713×10 ⁻⁶	6.709×10 ⁻⁶	2.418×10 ⁻⁶ 2.420×10 ⁻⁶	2.419×10 ⁻⁶
RB	МеОН	6.200×10 ⁻⁶ 6.207×10 ⁻⁶	6.204×10 ⁻⁶	2.568×10 ⁻⁶ 2.571×10 ⁻⁶	2.569×10 ⁻⁶
MB	МеОН	3.250×10 ⁻⁶ 3.255×10 ⁻⁶	3.253×10 ⁻⁶	2.196×10 ⁻⁶ 2.198×10 ⁻⁶	2.197×10 ⁻⁶
MB	CH_2Cl_2	3.173×10 ⁻⁶ 3.177×10 ⁻⁶	3.175×10 ⁻⁶	1.953×10 ⁻⁶ 1.956×10 ⁻⁶	1.955×10 ⁻⁶
TPP	CH ₂ Cl ₂	10.682×10 ⁻⁶ 10.693×10 ⁻⁶	10.687×10 ⁻⁶	2.464×10 ⁻⁶ 2.467×10 ⁻⁶	2.466×10 ⁻⁶
C60	CH ₂ Cl ₂	7.666×10 ⁻⁶ 7.675×10 ⁻⁶	7.670×10 ⁻⁶	-	-
C60	Toluene	7.714×10 ⁻⁶ 7.723×10 ⁻⁶	7.719×10 ⁻⁶	1.178×10 ⁻⁶ 1.180×10 ⁻⁶	1.179×10 ⁻⁶

Table S1. Minimum ([sen] $_{0}p_{min}$), maximum ([sen] $_{0}p_{max}$), and average ([sen] $_{0}p$) number of photons absorbed by the sensitizer per unit time.

E = mol-photons