Supplementary Material

Temperature dependent analysis of Octenidine (*N*,*N*[']-(decane-1,10-diyldipyridin-1-yl-4-ylidene)dioctan-1-amine) dihydrochloride by NMR and NIR spectroscopy

David L. Mainka,^{a*} Jörg Schwarz,^b and Ulrich Girreser^b

^aInstitute of Pharmacy, University of Greifswald,Friedrich-Ludwig-Jahn-Str. 17, 17489 Greifswald ^bInstitute of Pharmacy, University of Kiel, Gutenbergstr. 76, 24118 Kiel Email: david-mainka@gmx.de

Table of Contents

Table S1: Comparison of observed and predicted ¹³ C NMR shifts	S3
Table S2: Comparison of observed and predicted ¹ H NMR shifts	S4
Figure S1: predictons for the remaining mesomeric forms	S5
Figure S2: Hückel MO charge density	S5
Figures S3-S6: ¹ H NMR spectrum and expansions of octenidine dihydrochloride	S6
Figures S7-S9: ¹³ C NMR spectrum and expansions of octenidine dihydrochloride	S10
Figures S10-S13: ¹ H, ¹⁵ N HSQC and ¹ H, ¹⁵ N HMBC spectra	S13
Table S3: 15N referencing details	S17
Figures S14: ¹ H, ¹ H COSY	S18
Figures S15: Expansion of the ¹ H, ¹ Hlong-range COSY	S19
Figures S16-S19: ¹ H, ¹³ C HSQC and HMBC spectrum and bandselective measurements	S20
Figures S20-S22: ¹ H, ¹ H NOESY and 1D NOESY with selective excitation	S24
Figures S23-S24: visualizationn of the molecular structures	S27
Figures S25-S36: temperature dependent ¹ H NMR spectra	S29

S41
S42
S42
S43
S44
S45
S46
S47
S48

Table S1. Comparison of observed ¹³C NMR shifts and predicted values for the two mesomeric forms, all values are given in ppm

	¹³ C shifts	¹³ C shifts	¹³ C shifts	Differences D <i>d</i>		selected differences D <i>d</i>		
observed		predicted	predicted	observed - predicted		observed - predicted		
		iminium	pyridinium	iminium	pyridinium	iminium	pyridinium	
position		ion	ion	ion	ion	ion	ion	
1	56.69	51.5	60.9	5.19	-4.21	5.19	-4.21	
2	30.22	27.8	29.0	2.42	1.22	2.42	1.22	
3	25.37	27.2	27.1	-1.83	-1.73			
4	28.37	28.8	28.6	-0.43	-0.23			
5	28.67	29.1	28.5	-0.43	0.17			
2'	141.19	137.2	143.8	3.99	-2.61	3.99	-2.61	
3'	110.26	111.8	111.1	-1.54	-0.84	-1.54	-0.84	
4'	156.62	151.2	154.5	5.42	2.12	5.42	2.12	
5'	105.1	111.4	111.1	-6.3	-6	-6.30	-6.00	
6'	143.57	137.2	143.8	6.37	-0.23	6.37	-0.23	
1''	42.18	50.1	43.8	-7.92	-1.62	-7.92	-1.62	
2''	27.90	29.6	29.7	-1.7	-1.8	-1.70	-1.80	
3''	26.28	26.3	27.2	-0.02	-0.92			
4''	28.62	29.0	28.9	-0.38	-0.28			
5''	28.61	29.0	29.0	-0.39	-0.39			
6''	31.21	31.5	31.5	-0.29	-0.29			
7''	21.98	22.8	22.8	-0.82	-0.82			
8''	13.93	14.1	14.1	-0.17	-0.17			
	S	tandard deviation		3.69	1.86	5.27	2.54	

Table S2. Comparison of observed ¹H NMR shifts and predicted values for the two mesomeric forms, all values are given in ppm

	¹ H shifts	¹ H shifts	¹ H shifts	Differences [Dd	selected diff	erences D <i>d</i>	
	observed predicted		predicted	observed - p	observed - predicted		observed - predicted	
		iminium	pyridinium	iminium	pyridinium	iminium	pyridinium	
position		ion	ion	ion	ion	ion	ion	
1	4.11	3.93	4.34	0.18	-0.23	0.18	-0.23	
2	1.74	1.69	1.78	0.05	-0.04	0.05	-0.04	
3	1.20	1.34	1.35	-0.14	-0.15			
4	1.25	1.26	1.26	-0.01	-0.01			
5	1.22	1.23	1.23	-0.01	-0.01			
2'	8.16	7.95	8.55	0.21	-0.39	0.21	-0.39	
3'	7.05	6.68	7.21	0.37	-0.16	0.37	-0.16	
5'	6.90	6.61	7.21	0.29	-0.31	0.29	-0.31	
6'	8.35	7.95	8.55	0.40	-0.20	0.40	-0.20	
1''	3.24	3.69	3.47	-0.45	-0.23	-0.45	-0.23	
2''	1.56	1.90	1.68	-0.34	-0.12	-0.34	-0.12	
3''	1.31	1.34	1.34	-0.03	-0.03			
4''	1.27	1.27	1.28	0	-0.01			
5''	1.27	1.23	1.23	0.04	0.04			
6''	1.24	1.24	1.24	0	0			
7''	1.24	1.28	1.28	-0.04	-0.04			
8''	0.86	0.87	0.87	-0.01	-0.01			
	standard devia	tion		0.22	0.13	0.32	0.11	

Figure S1. Further mesomeric forms with predicted 1 H and 13 C NMR shifts, 13 C shifts of positively charged carbons are not predicted by any of the prediction tools employed.

Figure S3. ¹H NMR spectrum, 400 MHz, 298 K, DMSO-*d*₆.

Figure S4. ¹H NMR spectrum, 400 MHz, 298 K, DMSO- d_6 , expansion.

Figure S5. ¹H NMR spectrum, 400 MHz, 298 K, DMSO- d_6 , expansion.

4.5 3.0 3.5 2.0 Т 2.5 4.0 1.5 1.0 ppm 3.98 4.00 3.98 4.03 6.05 32.11

Figure S6. ¹H NMR spectrum, 400 MHz, 298 K, DMSO- d_6 , expansion.

General Papers

Figure S7. ¹³C NMR spectrum, 100 MHz, 298 K, DMSO- *d*₆.

Figure S8. ¹³C NMR spectrum, 100 MHz, 298 K, DMSO- d_6 , expansion.

Figure S9. ¹³C NMR spectrum, 100 MHz, 298 K, DMSO- d_6 , expansion.

Figure S10. 1 H, 15 N HSQC spectrum, 300 MHz, 310 K, DMSO- d_{6} , referenced to external nitromethane.

Figure S11: ¹H,¹⁵N HMBC spectrum, 300 MHz, 310 K, DMSO-d₆, referenced to external nitromethane in DMSO-d₆

Figure S12. ¹H,¹⁵N HSQC spectrum, 300 MHz, 298 K, CDCl₃, referenced to external nitromethane in CDCl₃.

Figure S13. ¹H,¹⁵N HMBC spectrum, 300 MHz, 298 K., CDCl₃, referenced to external nitromethane in CDCl₃.

General Papers

Table S3. Calibration/Referencing of ¹⁵N NMR spectra

from liquid ammonia to external nitromethane	–380.2 ppm
from nitromethane in DMSO- d_6 to external nitromethane	+2.0 ppm
so from external nitromethane in DMSO- d_6 to the ammonia scale is added	+382.2 ppm
15N chemical shift of N,N-dimethylformaide is in DMSO-d6 relative to internal	276 6 mm
nitromethane is set identical to external nitromethane (own measurement)	270.0 µµm
15N chemical shift of N,N-dimethylformaide is in DMSO-d6 relative to ammonia	105.6 ppm
or the calibration of the 15 N NMR shifts in CDCl $_3$ external nitromethane in CDCl $_3$ was used.	
For the referencing to the ammonia scale the same value as above was added	382.2 ppm

Figure S14. ¹H, ¹H COSY spectrum, 400 MHz, 298 K, DMSO-*d*₆.

Figure S15. Expansion of the ¹H,¹H long-range COSY spectrum, 300 MHz, 298 K, DMSO- d_6 , d0 = 0.25 s.

Figure S16. ¹H,¹³C HSQC spectrum, 400 MHz, 298 K, DMSO-*d*₆**.**

Figure S17. ¹H, ¹³C HSQC band selective HSQC spectrum for the 13 C shift range from 20 to 32 ppm, 298 K, 400 MHz, with breakthrough of some diagnostic 2 J(C.H) couplings.

Figure S18. ¹H, ¹³C HMBC spectrum, 400 MHz, 298 K, DMSO-*d*₆.

Figure S19. ¹H, ¹³C HMBC band selective spectrum for the ¹³C shift range from 20 to 32 ppm, 298 K, 400 MHz, DMSO-d₆.

Figure S20. ¹H,¹H NOESY spectrum, 400 MHz, 298 K, DMSO-*d*₆, d8 = 0.7 s.

Figure S21. ¹H, ¹H NOESY spectrum, 400 MHz, 298 K, DMSO-d₆, expansion, d8 = 0.7 s.

Figure S22a) and b): 1D NOESY spectra with selective excitation of the NH proton with a) d8 = 0.3 s and b) d8 = 0.5 s, 300 MHz, 298 K, DMSO- d_{6} .

Figure S23

General Papers

Figure S24

Figure S25. ¹H NMR spectrum, 300 MHz, 295 K, DMSO-d₆.

Figure S26. ¹H NMR spectrum, 300 MHz, 300 K, DMSO-d₆.

Figure S27. ¹H NMR SJlectrum, 300 MHz, 310 K, DMSO-d₆

Figure S28.¹H NMR SJlectn1m, 300 MHz, 320 K, DMSO-*d*₆.

Figure S29: ¹H NMR SJlectrum, 300 MHz, 330 K, DMSO-*d*₆.

Figure S30. ¹H NMR SJlectn1m, 300 MHz, 340 K, DMSO-d₆.

Figure S31. ¹H NMR SJlectrum, 300 MHz, 350 K, DMSO-*d*₆.

Figure S32: ¹H NMR SJlectrum, 300 MHz, 360 K, DMSO-*d*₆.

Figure S33: ¹H NMR SJlectrum, 300 MHz, 370 K, DMSO-d₆.

 $H^{1} \rightarrow$

Figure S34. ¹H NMR SJlectn1m, 300 MHz, 380 K, DMSO-d₆.

Figure S35: ¹H NMR SJ)ect111m, 300 MHz, 390 K, DMSO-*d*₆.

 $\leftarrow {}^1\!H$

Figure S36: ¹H NMR SJlectn1m, 300 MHz, 400 K, DMSO-d₆.

Figure S37. Eyring plot and Table S4 data used for curve fitting (300 MHz data, *n* = 10, *T* from 310 to 400 K).

General Papers

Table S5. Results of curve fitting (400 MHz data)

т/к	k*s		
310	7		
320	15		
330	20		
340	33		
350	40		
360	105		
370	180		
380	190		
390	400		
400	440	Results for an independent experiment at 400 MHz with $n = 8$	$D\mu$ = 50.6 kl/mol
		Results for an independent experiment at 400 MHz with $n = 0$,	$DH^{2} = 50.0 \text{ KJ}/1101$
DH [‡] = 4	5.7 kJ/ <u>mol</u>	T from 308 to 353 K with 5 K intervals (data and plot not shown),	DS [‡] = -70 J/(mol K)
$DS^{\ddagger} = -82 J/(mol K)$		deliver the equation $y = -6079.1 + 15.35$ with $R^2 = 0.987$	$E_{A} = 53.4 \text{ kJ/mol}$
$E_{\rm A}$ = 48.6 kJ/mol		and the thermodynamic parameters on the right	

Figure S38. Original NIR spectra of solid-state Octenidine dihydrochloride at different temperatures (25 °C to 60 °C).

Figure S39: SNV-corrected NIR spectra of solid-state Octenidine dihydrochloride at different temperatures (25 °C to 60 °C).

Figure S40. SNV- and 1. Derivative-corrected NIR spectra of solid-state Octenidine dihydrochloride at different temperatures (25 °C to 60 °C).

only DMSO solution

Octenidine-DMSO solution

Figure S41. Original NIR spectra of Octenidine dihydrochloride in DMSO and pure DMSO at different temperatures (25 °C to 60 °C).

only DMSO solution

Octenidine-DMSO solution

Figure S42. SNV- and 1. Derivative-corrected NIR spectra of Octenidine dihydrochloride in DMSO and pure DMSO at different temperatures (25 °C to 60 °C).

only DMSO solution

Octenidine-DMSO solution

Figure S43. SNV- and 1. Derivative-corrected NIR spectra of Octenidine dihydrochloride in DMSO and pure DMSO at different temperatures (25 °C to 60 °C).