Supplementary Material

Synthesis of novel bisphosphorylimides based on Staudinger reaction

Lais Weber^a, Michael Weinert^b, Daniela Goedderz^a, Olaf Fuhr^c, and Manfred Döring^a

^aFraunhofer Institute for Structural Durability and System Reliability LBF, 64289 Darmstadt, Germany
^bFraunhofer Institute for Chemical Technology ICT, 76327 Pfinztal, Germany
^cInstitute of Nanotechnology (INT) and Karlsruhe Nano Micro Facility (KNMF), Karlsruhe Institute of Technology, 76344 Eggenstein-Leopoldshafen, Germany
Email: manfred.doering@lbf.fraunhofer.de

Table of Contents

Crystallographic data of DPP-NH-DPP	S2
Crystallographic data of DPP-NH-DOPO	S3
Crystallographic data of DOPO-NH-DOPO	S4
Crystallographic data of DOPO-NH-DPhPO	S5
Nuclear magnetic resonance spectra of DPP-NH-DPP	S6
Nuclear magnetic resonance spectra of DPP-NH-DOPO	S8
Nuclear magnetic resonance spectra of DPP-NH-DDPO	S10
Nuclear magnetic resonance spectra of DOPO-NH-DOPO	S12
Nuclear magnetic resonance spectra of DOPO-NH-DDPO	S14
o	

Crystallographic data of DPP-NH-DPP

Crystal Data for C₂₄H₂₁NO₆P₂ (*M* =481.36 g/mol): monoclinic, space group P2₁/n (no. 14), *a* = 11.8530(8) Å, *b* = 12.2459(11) Å, *c* = 16.1055(12) Å, *b* = 96.619(6)°, *V* = 2322.1(3) Å³, *Z* = 4, *T* = 180 K, μ (MoK α) = 0.228 mm⁻¹, *Dcalc* = 1.377 g/cm³, 14338 reflections measured (4.8° ≤ 2 Θ ≤ 59.992°), 6637 unique (*R*_{int} = 0.0370, R_{sigma} = 0.0596) which were used in all calculations. The final *R*₁ was 0.0505 (I > 2 σ (I)) and *wR*₂ was 0.1303 (all data).

Crystallographic data of DPP-NH-DOPO

Crystal Data for $C_{25}H_{20}Cl_3NO_5P_2$ (*M* =582.71 g/mol): monoclinic, space group $P2_1/c$ (no. 14), *a* = 9.7473(4) Å, *b* = 26.3609(15) Å, *c* = 10.2662(4) Å, *b* = 99.553(4)°, *V* = 2601.3(2) Å³, *Z* = 4, *T* = 180 K, μ (MoK α) = 0.513 mm⁻¹, *Dcalc* = 1.488 g/cm³, 18699 reflections measured (4.31° ≤ 2 Θ ≤ 60°), 7471 unique (R_{int} = 0.0477, R_{sigma} = 0.0519) which were used in all calculations. The final R_1 was 0.0630 (I > 2 σ (I)) and wR_2 was 0.1874 (all data).

Crystallographic data of DOPO-NH-DOPO

Crystal Data for C₂₄H₁₇NO₄P₂ (*M* =445.32 g/mol): orthorhombic, space group Pbca (no. 61), *a* = 15.5440(5) Å, *b* = 13.7055(4) Å, *c* = 18.7987(7) Å, *V* = 4004.8(2) Å³, *Z* = 8, *T* = 180.15 K, μ (MoK α) = 0.251 mm⁻¹, *Dcalc* = 1.477 g/cm³, 35005 reflections measured (4.334° ≤ 2 Θ ≤ 53.622°), 4248 unique (*R*_{int} = 0.0535, R_{sigma} = 0.0318) which were used in all calculations. The final *R*₁ was 0.0398 (I > 2 σ (I)) and *wR*₂ was 0.1035 (all data).

Crystallographic data of DOPO-NH-DPhPO

Crystal Data for $C_{24}H_{19}NO_3P_2$ (*M* =431.34 g/mol): triclinic, space group P-1 (no. 2), *a* = 8.6769(8) Å, *b* = 10.2292(7) Å, *c* = 11.9908(12) Å, *a* = 80.721(7)°, *b* = 83.260(8)°, γ = 77.540(6)°, *V* = 1021.84(16) Å³, *Z* = 2, *T* = 180.15 K, μ (MoK α) = 0.240 mm⁻¹, *Dcalc* = 1.402 g/cm³, 8486 reflections measured (4.826° ≤ 2 Θ ≤ 53.724°), 4256 unique (R_{int} = 0.0598, R_{sigma} = 0.0659) which were used in all calculations. The final R_1 was 0.0613 (I > 2 σ (I)) and wR_2 was 0.1742 (all data).

Nuclear magnetic resonance spectra of DPP-NH-DPP

Nuclear magnetic resonance spectra of DPP-NH-DOPO

Nuclear magnetic resonance spectra of DPP-NH-DDPO

Nuclear magnetic resonance spectra of DOPO-NH-DOPO

Nuclear magnetic resonance spectra of DOPO-NH-DDPO

