Supplementary Material

Efficient synthesis of 2-substituted 1-phenylchromen[3,4-d]imidazol-4(1H)-ones with possible antiinflammatory activity

Thomas D. Balalas,^a Asterios K. Theologis,^a Konstantina Mazaraki,^a Catherine Gabriel,^b Eleni Pontiki,^c Dimitra J. Hadjipavlou-Litina,^c and Konstantinos E. Litinas^{*a}

^a Laboratory of Organic Chemistry, Department of Chemistry, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece

^b Center for Research of the Structure of Matter, Magnetic Resonance Laboratory, Department of Chemical Engineering, Aristotle University of Thessaloniki, University Campus, Thessaloniki 54124, Greece ^c Department of Pharmaceutical Chemistry, School of Pharmacy, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece Email: klitinas@chem.auth.gr

Table of Contents

- ¹H-NMR and ¹³C-NMR of compounds

3-Nitro-4-(phenylamino)-2 <i>H</i> -chromen-2-one (3)	S3
3-Amino-4-(phenylamino)-2H-chromen-2-one (4)	S5
1-Phenylchromeno[3,4-d]imidazol-4(1H)-one (6a)	S7
2-Methyl-1-phenylchromeno[3,4-d]imidazol-4(1H)-one (6b)	S9
2-Ethyl-1-phenylchromeno[3,4-d]imidazol-4(1H)-one (6c)	S11
1-Phenyl-2-propylchromeno[3,4- <i>d</i>]imidazol-4(1 <i>H</i>)-one (6d)	S13
2-(Methoxymethyl)-1-phenylchromeno[3,4-d]imidazol-4(1H)-one (6e)	S15
2-Butyl-1-phenylchromeno[3,4-d]imidazol-4(1H)-one (6f)	S17
2-Heptyl-1-phenylchromeno[3,4-d]imidazol-4(1H)-one (6g)	S19
2-Isopropyl-1-phenylchromeno[3,4-d]imidazol-4(1H)-one (6h)	S21
2-Isobutyl-1-phenylchromeno[3,4-d]imidazol-4(1H)-one (6i)	S23
N-(2-Oxo-4-(phenylamino)-2H-chromen-3-yl)acetamide (7)	S25
6H-Chromeno[3,4-b]quinoxalin-6-one (8)	S27

8,9,10,11-Tetrahydro-6H-chromeno[3,4-b]quinoxalin-6-one (9)	S29
- Molecular Docking	

-1

-2

Page S7

f1 (ppm)

2-(methoxymethyl)-1-phenylchromeno[3,4-*d*]imidazol-4(1*H*)-one (6e)

CARBON_01 KW30_9-16

ARKIVOC 2020, vi, S1-S31

Page S23

6H-chromeno[3,4-b]quinoxalin-6-one (8)

,

General Papers

Visualization of the protein (PDB code: 3PZW) was performed using UCSF Chimera.¹ Water molecules were removed, missing residues were added with Modeller,² hydrogen atoms and AMBER99SB-ILDN charges were added and the charge on iron was set to +2.0, with no restraint applied to the iron atom and the ligands. Ligand 3D coordinates were generated and minimised with OpenBabel³ using the MMFF94 force field.⁴ ACPYPE (AnteChamber PYthon Parser interfacE)⁵ was used to generate ligand topologies and parameters using Antechamber.⁶ Energy minimizations were carried out using the AMBER99SB-ILDN force field⁷ with GROMACS 4.6.5 as the molecular dynamics simulation toolkit.⁸ Docking was performed with AutoDock Vina (1.1.2)⁹ using a grid box of size 25 Å in X, Y, Z dimensions, centred on iron atom. UCSF-Chimera was used to generate docking input files and to analyze docking results. Docking was carried out with an exhaustiveness value of 10 and a maximum output of 20 docking modes.

1. Pettersen, E. F.; Goddard, T. D.; Huang, C. C.; Couch, G. S.; Greenblatt, D. M.; Meng, E. C.; Ferrin, T. E. J. Comput. Chem. 2004, 25, 1605.

- 2. Fiser, A.; Sali, A. Meth. Enzymol. 2003, 374, 461.
- 3. O'Boyle, N. M.; Banck, M.; James, C. A.; Morley, C.; Vandermeersch, T.; Hutchison, G. R. J. Cheminform. 2011, 3, 33.
- 4. Halgren, T. A. J. Comput. Chem. **1998**, 17, 490.
- 5. Sousa de Silva, A. W.; Vranken, W. F. BMC Research Notes 2012, 5, 367.
- 6. Wang, J.; Wang, W.; Kollman, P. A.; Case, D. A. J. Mol. Graph. Comput. Model. 2006, 25, 247.
- 7. Lindorff-Larsen. K.; Piana, S.; Palmo, K. Maragakis, P.; Klepeis, J. L.; Dror, R. O.; Shaw, D. E. Proteins 2010, 78, 1950.
- 8. Hess, B.; Kutzner, C.; van der Spoel, D.; Lindhal, E. J. Chem. Theory Comput. 2008, 4, 435.
- 9. Trott, O.; Olson, A. J. J. Comput. Chem. 2010, 31, 455.