Supplementary Material

Metal-free coupling/isomerization reaction of isocyanide and cyclic 1,3-dione: a selective Csp³-H functionalization strategy for C-C bond formation

Hui Jiang,*a Yefei Li,a Mingming Sun,b Jun Yao,a and Jian Li*b

^a School of Materials and Energy, University of Electronic Science and Technology of China, Shahe Campus: No.
⁴ Section 2, North Jianshe Rd, Chengdu 610054, P. R. China
^b Department of Chemistry, Shanghai University, 99 Shangda Road, Shanghai 200444, P. R. China
E-mail address: jianghui@uestc.edu.cn; lijian@shu.edu.cn

Table of Contents

Genral InformationGeneral Procedure	S2	
	S2	
Preliminary Mechanistic Study and Control Experiment		
¹ H NMR and ¹³ C NMR Spectra of All Compounds		

Page S1 [©]AUTHOR(S)

1 General Information

The NMR spectra were recorded on Bruker AC-500 spectrometer (500 MHz for 1 H NMR and 125 MHz for 13 C NMR) with CDCl₃ as the solvent and TMS as internal reference. 1 H NMR spectral data were reported as follows: chemical shift (δ , ppm), multiplicity, integration, and coupling constant (Hz). 13 C NMR spectral data were reported in terms of the chemical shift. The following abbreviations were used to indicate multiplicities: s = singlet; d = doublet; t = triplet; q = quartet; m = multiplet. Low-resolution mass spectra were obtained on a Shimadzu LCMS-2010EV spectrometer in ESI mode and reported as m/z. High-resolution mass spectra (HRMS) were recorded on a Bruker Daltonics, Inc. APEXIII 7.0 TESLA FTMS instrument. Melting points were obtained on a X-4 digital melting point apparatus without correction. Purification of products was accomplished by column chromatography packed with silica gel. Unless otherwise stated, all reagents were commercially purchased and used without further purification.

2 General Procedure

Under air atmosphere, a sealable reaction tube with a Teflon-coated screw cap equipped with a magnetic stir bar was charged with isocyanide **1** (0.5 mmol), 1,3-dione **2** (1.0 mmol) and DTBP (3.0 equiv.) in DCE (5.0 mL) at room temperature. The rubber septum was then replaced by a Teflon-coated screw cap, and the reaction vessel placed in an oil bath at 80 °C for 12 h. After the reaction was completed, it was cooled to room temperature and monitored by TLC. The solvent was then removed under reduced pressure and the residue was purified by column chromatography on silica gel to afford product **3-4**.

3 Preliminary Mechanistic Study and Control Experiment

a) Reaction with radical scavenger TEMPO

Under air atmosphere, a sealable reaction tube with a Teflon-coated screw cap equipped with a magnetic stir bar was charged with isocyanide **1a** (0.5 mmol), 5,5-dimethylcyclohexane-1,3-dione **2a** (1.0 mmol) and DTBP (3.0 equiv.) in DCE (5.0 mL) at room temperature. To this mixture TEMPO (5 equiv.) was added. The rubber septum was then replaced by a Teflon-coated screw cap, and the reaction vessel placed in an oil bath at 80 °C for 12 h. After the reaction was completed, it was cooled to room temperature and monitored by TLC.

b) Reaction with radical scavenger BHT

Page S2 [©]AUTHOR(S)

Under air atmosphere, a sealable reaction tube with a Teflon-coated screw cap equipped with a magnetic stir bar was charged with isocyanide **1a** (0.5 mmol), 5,5-dimethylcyclohexane-1,3-dione **2a** (1.0 mmol) and DTBP (3.0 equiv.) in DCE (5.0 mL) at room temperature. To this mixture BHT (5 equiv.) was added. The rubber septum was then replaced by a Teflon-coated screw cap, and the reaction vessel placed in an oil bath at 80 °C for 12 h. After the reaction was completed, it was cooled to room temperature and monitored by TLC.

c) Gram-scale coupling reaction

Under air atmosphere, a sealable reaction tube with a Teflon-coated screw cap equipped with a magnetic stir bar was charged with isocyanide **1d** (0.5 mmol), 5,5-dimethylcyclohexane-1,3-dione **2a** (1.0 mmol) and DTBP (3.0 equiv.) in DCE (5.0 mL) at room temperature. The rubber septum was then replaced by a Teflon-coated screw cap, and the reaction vessel placed in an oil bath at 80 °C for 12 h. After the reaction was completed, it was cooled to room temperature and monitored by TLC. The solvent was then removed under reduced pressure and the residue was purified by column chromatography on silica gel to afford product.

Page S3 [©]AUTHOR(S)

4 $^{1}\mathrm{H}$ NMR and $^{13}\mathrm{C}$ NMR Spectra of All Compounds

Compound 3a

Page S4 [©]AUTHOR(S)

Compound 3b

Page S5 [©]AUTHOR(S)

Compound **3c**

Page S6 [©]AUTHOR(S)

Compound 3d

Page S7 [©]AUTHOR(S)

Compound 3e

Page S8 [©]AUTHOR(S)

Compound 3f

Page S9 [©]AUTHOR(S)

Compound 3g

Page S10 [©]AUTHOR(S)

Compound 3h

Page S11 [©]AUTHOR(S)

Compound 3i

Page S12 [©]AUTHOR(S)

Compound 3j

Page S13 [©]AUTHOR(S)

Compound 4a

Page S14 [©]AUTHOR(S)

Compound 4b

Page S15 [©]AUTHOR(S)

Compound 4c

Page S16 [®]AUTHOR(S)

Compound 4d

Page S17 ©AUTHOR(S)

Compound 4e

Page S18 [©]AUTHOR(S)

Compound 4f

Page S19 [©]AUTHOR(S)

Compound 4g

Page S20 [©]AUTHOR(S)

Compound 4h

Page S21 [©]AUTHOR(S)

Compound 4i

Page S22 [©]AUTHOR(S)

Compound 4j

Page S23 [©]AUTHOR(S)