Supplementary Material

Preparation of tetrahydro-1*H*-xanthen-1-one and chromen-1-one derivatives *via* a Morita-Baylis-Hillman/oxa-Michael/elimination cascade

Manoel T. Rodrigues Jr.,^a Hugo Santos, ^a Lucas A. Zeoly,^a Deborah A. Simoni,^b Albert Moyano,^c and Fernando Coelho^{*a}

^a Laboratory of Synthesis of Natural Products and Drugs, and ^b Laboratory of Crystallography, Institute of Chemistry, University of Campinas, UNICAMP, P.O. Box 6154, 13083-970, Campinas, SP, Brazil ^c Secció de Química Orgànica, Departament de Química Inorgànica i Orgànica, Facultat de Química, Universitat de Barcelona, Martí î Franquès 1-11, 08028 Barcelona, Catalonia, Spain E-mail: <u>facoelho@unicamp.br</u>

Table of Contents

Copies of ¹ H and ¹³ C(¹ H) NMR spectra	S3
X-Ray Crystallographic Data for Compound 4c	S46
References	S48

¹H NMR and ¹³C{¹H} NMR spectra for compounds 3a-m, 4a-c and 5a-b (only resonance signals associated with each compound have been integrated and/or assigned chemical shift values)

Figure S1. ¹H NMR spectrum (250 MHz, CDCl₃) of compound **3a**.

mai25mtjH.1.fid Manoel_Xanthn_30Me_CyHex_CDCl3

— 18.0

— 56.1

— 38.8

mai25mtjH.2.fid Manoel_Xanthn_30Me_CyHex_CDCl3

HS-363-C1 - CDCl3 - Av 250 MHz - dez06hdsH1

ARKIVOC 2020, *ii*, S1-S48

Figure S6. ¹³C NMR spectrum (63 MHz, CDCl₃) of compound 3c.

Page S8

ARKIVOC 2020, *ii*, S1-S48

— 17.8

Manoel_XTN_5NO2_CyHex_250MHz

ARKIVOC 2020, *ii*, S1-S48

110 100 90 Chemical shift (ppm)

Figure S12. ¹³C NMR spectrum (126 MHz, CDCl₃) of compound 3f.

©AUTHOR(S)

ARKIVOC 2020, *ii*, S1-S48

Figure S14. ¹³C NMR spectrum (63 MHz, DMSO- d_6) of compound 4a.

Page S16

Figure S19. ¹³C NMR spectrum (63 MHz, CDCl₃) of compound 3g.

150 140 130 120 110 -10 -2 Figure S21. $^{\rm 13}\text{C}$ NMR spectrum (63 MHz, CDCl₃) of compound 3h.

Figure S24. ¹H NMR spectrum (250 MHz, CDCl₃) of compound **3i**.

JUN07MTJh.2.fid Manoel_cdcl3_Xant_O-vanilin_cyclopent

set17mtjH2.1.fid Manoel_CDCl3_MBH_Xant_3NO2_CyPent

.87 .86 .84 .83	51 50 47	28 22 21	
S K			517

8.0 7.9 7.8 7.7 7.6 7.5 7.4 7.3 7.2 7.1 7.0 6.9

©AUTHOR(S)

Figure S37. ¹³C NMR spectrum (63 MHz, CDCl₃) of compound **3k**.

2.5733

Manoel/Hugo_adutoMBH_5NO2_CyPent_250MHz

Figure S39. ¹³C NMR spectrum (63 MHz, CDCl₃) of compound 5b.

Figure S41. ¹³C NMR spectrum (126 MHz, CDCl₃) of compound **3I.**

Figure S43. ¹³C NMR spectrum (63 MHz, CDCl₃) of compound 3m.

X-Ray Crystallographic Data for Compound 4c

Crystal structure of (2E)-2-[(2-hydroxy-3-methoxyphenyl)methylidene]-5-methoxy-1H,2H,3H,3aH-cyclopenta[b]chromen-1-one (4c) (Figure S44) was determined by single crystal X-ray diffraction analysis using a crystal that had been obtained by slow evaporation of a ethyl acetate/chloroform mixture (1:1 v/v) of 4c. Data collection was performed on a Bruker APEX II DUO area diffractometer, at low temperature (150 K, CRYOSTREAM 700 - Oxford Cryosystem), based on a strategy combining omega and phi scans, with 0.5^o width and 10 s of acquisition time per frame, operating with a Mo fine-focus sealed tube source of radiation ($K\alpha \lambda = 0.71073$ Å).

Cell refinement and data reduction were done using SAINT¹ and multi-scan absorption correction was applied using SADABS-2014/5¹. Solution structure was obtained by primary atom site location by structure-invariant direct methods SHELXS97². SHELXL2014/7³ was chosen to perform structure refinement using least squares methods against F^2 and hydrogen atoms were placed during the refinement, with their location inferred from neighbouring sites. All non-hydrogen atoms were refined anisotropically, while H-atom parameters were not refined. 311 parameters were refined (0 restrains), $R[F^2 > 2 \sigma(F^2)] = 0.033$, $wR(F^2) = 0.079$, S = 1.02, with maximum and minimum residual electron density of 0.65 e Å⁻³ and -0.47 e Å⁻³, respectively. Details about the analyzed crystal and data collection are presented in **Table S1** and **Table S2**, respectively.

Figure S44. The molecular structure of (*2E*)-2-[(2-hydroxy-3-methoxyphenyl)methylidene]-5-methoxy-1H,2H,3H,3aH-cyclopenta[b]chromen-1-one (**4c**) with 50% probability displacement ellipsoids.

Table S1. Selected crystallographic data for (2E)-2-[(2-hydroxy-3-methoxyphenyl)methylidene]-5-methoxy-1H,2H,3H,3aH-cyclopenta[b]chromen-1-one (4c)crystal

C ₂₁ H ₁₈ O ₅ ·2(CHCl ₃)	Z = 2
<i>M</i> r = 589.09	<i>F</i> (000) = 600
Triclinic, <i>P1</i>	<i>D</i> x = 1.536 Mg m ⁻³
<i>a</i> = 8.8569 (8) Å	Mo <i>K</i> α radiation, λ = 0.71073 Å
<i>b</i> = 10.8992 (11) Å	Cell parameters from 134 reflections
<i>c</i> = 14.8123 (14) Å	θ = 3.2–24.4°
α = 71.700 (2)°	μ = 0.71 mm ⁻¹
β = 79.556 (2)°	<i>T</i> = 150 K
γ = 70.333 (2)°	Block, yellow
V = 1273.8 (2) Å ³	0.22 × 0.12 × 0.08 mm

Table S2. Selected crystallographic data for data collection

Absorption correction: multi-scan	<i>R</i> _{int} = 0.037
T _{min} = 0.684, T _{max} = 0.745	θ_{max} = 26.8°, θ_{min} = 1.5°
35447 measured reflections	$h = -11 \rightarrow 11$
5395 independent reflections	<i>k</i> = −13→13
4302 reflections with $l > 2\sigma(l)$	/=-18→18

References

- 1. Bruker (2010). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- 2. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.
- 3. Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.