Supplementary Material

Application of Appel reaction to the primary alcohol groups of fructooligosaccharides: Synthesis of 6,6',6"-trihalogenated 1-kestose derivatives

Zetryana Puteri Tachrim,^a Tadashi Nakamura,^b Yasuko Sakihama,^a Yasuyuki Hashidoko,^a and Makoto Hashimoto^{*a}

^aDivision of Applied Science, Graduate School of Agriculture, Hokkaido University, Sapporo, Japan ^bDepartment of Agricultural and Life Science, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Japan Email: <u>hasimoto@abs.agr.hokudai.ac.jp</u>

Table of Contents

NMR spectrum 3

1	",2,3,3',3",4,4',4"-Octa-O-acetyl-6,6',6"-tribromo-6,6',6"-trideoxy-1-kestose (4)	S3
	Figure SM-1(a). ¹ H-NMR (500 MHz, CDCl₃) of compound 4	S3
	Figure SM-1(b). Selected down field region ¹ H-NMR (500 MHz, CDCl ₃) of compound 4	S3
	Figure SM-1(c). Selected up field region ¹ H-NMR (500 MHz, CDCl ₃) of compound 4	S3
	Figure SM-2(a). ¹³ C NMR (125 MHz, CDCl₃) of compound 4	S4
	Figure SM-2(b). Selected down field region ¹³ C-NMR (500 MHz, CDCl₃) of compound 4	S4
	Figure SM-2(c). Selected up field region ¹³ C-NMR (500 MHz, CDCl₃) of compound 4	S4
	Figure SM-3. ¹ H- ¹ H COSY 2D-NMR (500 MHz, CDCl₃) of compound 4	S5
	Figure SM-4. ¹³ C- ¹ H HETCOR 2D-NMR (500 MHz, CDCl₃) of compound 4	S5
	Figure SM-5. ¹ H- ¹³ C HMQC 2D-NMR (500 MHz, CDCl ₃) of compound 4	S6
	Figure SM-6. ¹ H- ¹³ C HMBC 2D-NMR (500 MHz, CDCl₃) of compound 4	S6
	Figure SM-7. ¹ H- ¹ H NOESY 2D-NMR (500 MHz, CDCl ₃) of compound 4	S7
	Figure SM-8. ¹ H- ¹ H TOCSY 2D-NMR (500 MHz, CDCl₃) of compound 4	S7
1	",2,3,3',3",4,4',4"-Octa-O-acetyl-6,6',6"-trichloro-6,6',6"-trideoxy-1-kestose (5)	S8
	Figure SM-9(a). ¹ H-NMR (500 MHz, CDCl₃) of compound 5	S8
	Figure SM-9(b). Selected down field region ¹ H-NMR (500 MHz, CDCl₃) of compound 5	S8
	Figure SM-9(c). Selected up field region ¹ H-NMR (500 MHz, CDCl₃) of compound 5	S8
	Figure SM-10(a). ¹³ C NMR (125 MHz, CDCl ₃) of compound 5	S9
	Figure SM-10(b). Selected down field region ¹³ C NMR (125 MHz, CDCl3) of compound 5	S9
	Figure SM-10(c). Selected up field region ¹³ C NMR (125 MHz, CDCl3) of compound 5	S9
	Figure SM-11. ¹ H- ¹ H COSY 2D-NMR (500 MHz, CDCl₃) of compound 5	. S10
	Figure SM-12. ¹³ C- ¹ H HETCOR 2D-NMR (500 MHz, CDCl₃) of compound 5	. S10
	Figure SM-13. ¹ H- ¹³ C HMQC 2D-NMR (500 MHz, CDCl3) of compound 5	. S11
	Figure SM-14. ¹ H- ¹³ C HMBC 2D-NMR (500 MHz, CDCl₃) of compound 5	. S11
	Figure SM-15. ¹ H- ¹ H NOESY 2D-NMR (500 MHz, CDCl₃) of compound 5	. S12
	Figure SM-16. ¹ H- ¹ H TOCSY 2D-NMR (500 MHz, CDCl₃) of compound 5	. S12
1	",2,3,3',3",4,4',4",6,6',6"-Undeca- <i>O</i> -acetyl-1-kestose (3)	. S13
	Figure SM-17(a). ¹ H-NMR (500 MHz, CDCl₃) of compound 3	. S13
	Figure SM-17(b). Selected down field region ¹ H-NMR (500 MHz, CDCl₃) of compound 3	. S13
	Figure SM-17(c). Selected up filed region ¹ H-NMR (500 MHz, CDCl₃) of compound 3	. S13
	Figure SM-18(a). ¹³ C NMR (125 MHz, CDCl₃) of compound 3	. S14
	Figure SM-18(b). Selected down field region ¹³ C-NMR (500 MHz, CDCl ₃) of compound 3	. S14
	Figure SM-18(c). Selected up filed region ¹³ C-NMR (500 MHz, CDCl ₃) of compound 3	. S14
	Figure SM-19. ¹ H- ¹ H COSY 2D-NMR (500 MHz, CDCl₃) of compound 3	. S15
	Figure SM-20. ¹³ C- ¹ H HETCOR 2D-NMR (500 MHz, CDCl₃) of compound 3	. S15
	Figure SM-21. ¹ H- ¹³ C HMQC 2D-NMR (500 MHz, CDCl ₃) of compound 3	. S16

Figure SM-22. ¹ H- ¹³ C HMBC 2D-NMR (500 MHz, CDCl₃) of compound 3	S16
Figure SM-23. ¹ H- ¹ H NOESY 2D-NMR (500 MHz, CDCl ₃) of compound 3	S17
Figure SM-24. ¹ H- ¹ H TOCSY 2D-NMR (500 MHz, CDCl₃) of compound 3	S17
6,6',6''-Tribromo-6,6',6''-trideoxy-1-kestose (6)	S18
Figure SM-25(a). ¹ H-NMR (500 MHz, D ₂ O) of compound 6	S18
Figure SM-25(b). Selected region ¹ H-NMR (500 MHz, D ₂ O) of compound 6	S18
Figure SM-26(a). ¹³ C NMR (125 MHz, D ₂ O) of compound 6	S19
Figure SM-26(b). Selected down field region ¹³ C NMR (125 MHz, D ₂ O) of compound 6	S19
Figure SM-26(c). Selected up field region ¹³ C NMR (125 MHz, D ₂ O) of compound 6	S19
Figure SM-27. ¹ H- ¹ H COSY 2D-NMR (500 MHz, D ₂ O) of compound 6	S20
Figure SM-28. ¹³ C- ¹ H HETCOR 2D-NMR (500 MHz, D ₂ O) of compound 6	S20
Figure SM-29. ¹ H- ¹³ C HMQC 2D-NMR (500 MHz, D ₂ O) of compound 6	S21
Figure SM-30. ¹ H- ¹³ C HMBC 2D-NMR (500 MHz, D ₂ O) of compound 6	S21
Figure SM-31. ¹ H- ¹ H NOESY 2D-NMR (500 MHz, D ₂ O) of compound 6	S22
Figure SM-32. ¹ H- ¹ H TOCSY 2D-NMR (500 MHz, D ₂ O) of compound 6	S22
6,6',6''-Trichloro-6,6',6''-trideoxy-1-kestose (7)	S23
Figure SM-33(a). ¹ H-NMR (500 MHz, D ₂ O) of compound 7	S23
Figure SM-33(b). Selected region ¹ H-NMR (500 MHz, D₂O) of compound 7	S23
Figure SM-34(a). ¹³ C-NMR (125 MHz, D ₂ O) of compound 7	S24
Figure SM-34(b). Selected down field region ¹³ C-NMR (125 MHz, D ₂ O) of compound 7	S24
Figure SM-34(c). Selected up field region ¹³ C-NMR (125 MHz, D ₂ O) of compound 7	S24
Figure SM-35. ¹ H- ¹ H COSY 2D-NMR (500 MHz, D ₂ O) of compound 7	S25
Figure SM-36. ¹³ C- ¹ H HETCOR 2D-NMR (500 MHz, D ₂ O) of compound 7	S25
Figure SM-37. ¹ H- ¹³ C HMQC 2D-NMR (500 MHz, D₂O) of compound 7	S26
Figure SM-38. ¹ H- ¹³ C HMBC 2D-NMR (500 MHz, D ₂ O) of compound 7	S26
Figure SM-39. ¹ H- ¹ H NOESY 2D-NMR (500 MHz, D ₂ O) of compound 7	S27
Figure SM-40. ¹ H- ¹ H TOCSY 2D-NMR (500 MHz, D ₂ O) of compound 7	S27
1-kestose (1)	S28
Figure SM-41(a). ¹ H-NMR (500 MHz, D ₂ O) of compound 1	S28
Figure SM-41(b). Selected region ¹ H-NMR (500 MHz, D ₂ O) of compound 1	S28
Figure SM-42(a). ¹³ C NMR (125 MHz, D ₂ O) of compound 1	S29
Figure SM-42(b). Selected down field region ¹³ C NMR (125 MHz, D ₂ O) of compound 1	S29
Figure SM-42(c). Selected up field region ¹³ C NMR (125 MHz, D ₂ O) of compound 1	S29
Figure SM-43. ¹ H- ¹ H COSY 2D-NMR (500 MHz, D2O) of compound 1	S30
Figure SM-44. ¹³ C- ¹ H HETCOR 2D-NMR (500 MHz, D ₂ O) of compound 1	S30
Figure SM-45. ¹ H- ¹³ C HMQC 2D-NMR (500 MHz, D₂O) of compound 1	S31
Figure SM-46. ¹ H- ¹³ C HMBC 2D-NMR (500 MHz, D ₂ O) of compound 1	S31
Figure SM-47. ¹ H- ¹ H NOESY 2D-NMR (500 MHz, D ₂ O) of compound 1	S32
Figure SM-48. ¹ H- ¹ H TOCSY 2D-NMR (500 MHz, D ₂ O) of compound 1	S32
¹ H and ¹³ C NMR literature comparison with observation data	S33
Table SM-1. ¹ H and ¹³ C NMR literature comparison with observation data of per- <i>O</i> -acetylated 1-kestose and per-O-acet	ylated
halogenated 1-kestose derivatives	S33
Table SM-2. ¹ H and ¹³ C NMR literature comparison with observation data of 1-kestose and halogenated 1-kestose deriv	vatives.
· · · · · · · · · · · · · · · · · · ·	S36

NMR spectrum

1",2,3,3',3",4,4',4"-Octa-O-acetyl-6,6',6"-tribromo-6,6',6"-trideoxy-1-kestose (4)

Figure SM-1(a). ¹H-NMR (500 MHz, CDCl₃) of compound **4**

Figure SM-1(b). Selected down field region ¹H-NMR (500 MHz, CDCl₃) of compound **4**

Figure SM-1(c). Selected up field region ¹H-NMR (500 MHz, CDCl₃) of compound **4**

Figure SM-2(a). ¹³C NMR (125 MHz, CDCl₃) of compound **4**

Figure SM-2(b). Selected down field region ¹³C-NMR (500 MHz, CDCl₃) of compound 4

Figure SM-2(c). Selected up field region ¹³C-NMR (500 MHz, CDCl₃) of compound **4**

Figure SM-3. 1 H- 1 H COSY 2D-NMR (500 MHz, CDCl₃) of compound **4**

Figure SM-4. $^{\rm 13}\text{C}\text{-}^{\rm 1}\text{H}$ HETCOR 2D-NMR (500 MHz, CDCl_3) of compound ${\bf 4}$

Figure SM-5. $^1\text{H}\text{-}^{13}\text{C}$ HMQC 2D-NMR (500 MHz, CDCl₃) of compound **4**

Figure SM-6. ¹H-¹³C HMBC 2D-NMR (500 MHz, CDCl₃) of compound **4**

Figure SM-7. $^{1}H^{-1}H$ NOESY 2D-NMR (500 MHz, CDCl₃) of compound **4**

Figure SM-8. $^1\text{H}\text{-}^1\text{H}$ TOCSY 2D-NMR (500 MHz, CDCl_3) of compound ${\bf 4}$

1",2,3,3',3",4,4',4"-Octa-O-acetyl-6,6',6"-trichloro-6,6',6"-trideoxy-1-kestose (5)

Figure SM-9(a). 1 H-NMR (500 MHz, CDCl₃) of compound **5**

Figure SM-9(b). Selected down field region ¹H-NMR (500 MHz, CDCl₃) of compound **5**

Figure SM-9(c). Selected up field region 1 H-NMR (500 MHz, CDCl₃) of compound **5**

Figure SM-10(a).¹³C NMR (125 MHz, CDCl₃) of compound **5**

Figure SM-10(b). Selected down field region ¹³C NMR (125 MHz, CDCl₃) of compound **5**

Figure SM-10(c). Selected up field region 13 C NMR (125 MHz, CDCl₃) of compound **5**

Figure SM-11. ^{1}H - ^{1}H COSY 2D-NMR (500 MHz, CDCl₃) of compound **5**

Figure SM-12. $^{\rm 13}\text{C}^{-1}\text{H}$ HETCOR 2D-NMR (500 MHz, CDCl₃) of compound 5

Figure SM-13. 1 H- 13 C HMQC 2D-NMR (500 MHz, CDCl₃) of compound **5**

Figure SM-14. 1 H- 13 C HMBC 2D-NMR (500 MHz, CDCl₃) of compound **5**

Figure SM-15. 1 H- 1 H NOESY 2D-NMR (500 MHz, CDCl₃) of compound **5**

Figure SM-16. $^{1}H^{-1}H$ TOCSY 2D-NMR (500 MHz, CDCl₃) of compound **5**

1",2,3,3',3",4,4',4",6,6',6"-Undeca-O-acetyl-1-kestose (3)

Figure SM-17(a). ¹H-NMR (500 MHz, CDCl³) of compound **3**

Figure SM-17(b). Selected down field region 1 H-NMR (500 MHz, CDCl₃) of compound **3**

Figure SM-17(c). Selected up filed region ¹H-NMR (500 MHz, CDCl₃) of compound **3**

Figure SM-18(a). ¹³C NMR (125 MHz, CDCl₃) of compound **3**

Figure SM-18(b). Selected down field region $^{13}\text{C-NMR}$ (500 MHz, CDCl₃) of compound ${\bf 3}$

Figure SM-18(c). Selected up filed region ¹³C-NMR (500 MHz, CDCl3) of compound **3**

Figure SM-19. 1 H- 1 H COSY 2D-NMR (500 MHz, CDCl₃) of compound **3**

Figure SM-20. ¹³C-¹H HETCOR 2D-NMR (500 MHz, CDCl₃) of compound **3**

Figure SM-21. 1 H- 13 C HMQC 2D-NMR (500 MHz, CDCl₃) of compound **3**

Figure SM-22. ¹H-¹³C HMBC 2D-NMR (500 MHz, CDCl₃) of compound **3**

Figure SM-23. 1 H- 1 H NOESY 2D-NMR (500 MHz, CDCl₃) of compound **3**

Figure SM-24. 1 H- 1 H TOCSY 2D-NMR (500 MHz, CDCl₃) of compound **3**

6,6',6"-Tribromo-6,6',6"-trideoxy-1-kestose (6)

Figure SM-25(a). ¹H-NMR (500 MHz, D_2O) of compound **6**

Figure SM-25(b). Selected region 1 H-NMR (500 MHz, D₂O) of compound **6**

Figure SM-26(a). 13 C NMR (125 MHz, D₂O) of compound **6**

Figure SM-26(b). Selected down field region 13 C NMR (125 MHz, D₂O) of compound **6**

Figure SM-26(c). Selected up field region ^{13}C NMR (125 MHz, D₂O) of compound **6**

Figure SM-27. $^1\text{H}\text{-}^1\text{H}$ COSY 2D-NMR (500 MHz, D2O) of compound $\boldsymbol{6}$

Figure SM-28. ¹³C-¹H HETCOR 2D-NMR (500 MHz, D₂O) of compound **6**

Figure SM-29. $^1\text{H}\text{-}^{13}\text{C}$ HMQC 2D-NMR (500 MHz, D2O) of compound ${\bf 6}$

Figure SM-30. 1 H- 13 C HMBC 2D-NMR (500 MHz, D₂O) of compound **6**

Figure SM-31. 1 H- 1 H NOESY 2D-NMR (500 MHz, D₂O) of compound **6**

Figure SM-32. 1 H- 1 H TOCSY 2D-NMR (500 MHz, D₂O) of compound **6**

6,6',6"-Trichloro-6,6',6"-trideoxy-1-kestose (7)

Figure SM-33(a). ¹H-NMR (500 MHz, D₂O) of compound **7**

Figure SM-33(b). Selected region 1 H-NMR (500 MHz, D₂O) of compound **7**

Figure SM-34(a). $^{13}\text{C-NMR}$ (125 MHz, D₂O) of compound 7

Figure SM-34(b). Selected down field region $^{13}\text{C-NMR}$ (125 MHz, D2O) of compound **7**

Figure SM-34(c). Selected up field region 13 C-NMR (125 MHz, D₂O) of compound **7**

Figure SM-35. $^{1}H^{-1}H$ COSY 2D-NMR (500 MHz, D₂O) of compound **7**

Figure SM-36. 13 C- 1 H HETCOR 2D-NMR (500 MHz, D₂O) of compound **7**

Figure SM-37. $^{1}H^{-13}C$ HMQC 2D-NMR (500 MHz, D₂O) of compound **7**

Figure SM-38. ¹H-¹³C HMBC 2D-NMR (500 MHz, D₂O) of compound **7**

Figure SM-39.¹H-¹H NOESY 2D-NMR (500 MHz, D_2O) of compound **7**

Figure SM-40. ¹H-¹H TOCSY 2D-NMR (500 MHz, D₂O) of compound **7**

1-kestose (1)

Figure SM-41(a).¹H-NMR (500 MHz, D₂O) of compound **1**

Figure SM-41(b). Selected region 1 H-NMR (500 MHz, D₂O) of compound **1**

Figure SM-42(a). 13 C NMR (125 MHz, D₂O) of compound **1**

Figure SM-42(b). Selected down field region ^{13}C NMR (125 MHz, D2O) of compound 1

Figure SM-42(c). Selected up field region ^{13}C NMR (125 MHz, D2O) of compound ${\bf 1}$

Figure SM-43. ¹H-¹H COSY 2D-NMR (500 MHz, D₂O) of compound **1**

Figure SM-44. $^{13}C^{-1}H$ HETCOR 2D-NMR (500 MHz, D₂O) of compound **1**

Figure SM-45. $^{1}H^{-13}C$ HMQC 2D-NMR (500 MHz, D₂O) of compound **1**

Figure SM-46. 1 H- 13 C HMBC 2D-NMR (500 MHz, D₂O) of compound **1**

Figure SM-47.¹H-¹H NOESY 2D-NMR (500 MHz, D₂O) of compound **1**

Figure SM-48.¹H-¹H TOCSY 2D-NMR (500 MHz, D₂O) of compound **1**

¹H and 13C NMR literature comparison with observation data

Table SM-1. ¹H and ¹³C NMR literature comparison with observation data of per-O-acetylated 1-kestose and per-O-acetylated halogenated 1-kestose derivatives

Assign			1",2,3,3',3",4,4',4",6 acetyl-deoxy-1 CAS: 2510 (δ in ppm an	,6',6"-Undeca-<i>O</i>- ·kestose (3) 1-98-8 d <i>J</i> in Hz)	1",2,3,3',3",4,4',4"-octa- <i>O</i> -acetyl-6,6',6"- tribromo-6,6',6'-trideoxy 1-kestose (4) No CAS (δ in ppm and J in Hz)		1",2,3,3',3",4,4',4"-octa-O- acetyl-6,6',6"-trichloro-6,6',6"-trideoxy-1- kestose (5) No CAS (δ in ppm and J in Hz)			
ment	Ref [1]		Ref [2]		Observed		Observed		Observed	
	c 1	δ ¹³ C	<i>δ</i> ¹ Η		δ 1 H	δ ¹³ C	δ ¹ Η	δ ¹³ C	δ ¹ Η	δ ¹³ C
	δ H	(100.6 MHz,	(100 or 220 MHz,	δ ¹³ C ^a	(500 MHz,	(125 MHz,	(500 MHz,	(125 MHz,	(500 MHz,	(125 MHz,
	(CDCI3)	CDCl₃)	CDCl₃)		CDCl₃)	CDCl₃)	CDCl₃)	CDCl₃)	CDCl₃)	CDCl₃)
1	5.71 (d)	90.3 (d)	5.71		5.75 (d)	89.2	5.67 (d)	90.1	5.70–5.66 (m)	90.0
2	4.88 (dd)	70.3 (d)	4.88		4.91 (dd)	70.0	4.95 (dd)	69.7	4.93 (dd)	69.7
3	5.42 (t)	70.1 (d)	5.42		5.42 (t)	69.8	5.48–5.42 (m)	69.3	5.48–5.41 (m)	69.4
4	5.22 (t)	68.0 (d)	5.04		5.08 (t)	68.2	5.03 (t)	70.8	5.06 (t)	69.7
5		69.0 (d) (11H signals)			4.39–4.33 (m)	68.2	4.35–4.28 (m)	69.3	4.38-4.32 (m)	69.8
6a	4.40–4.20 (m,	()	4.42–4.07 (11H signals)	_	4.33–4.24 (m)		3.54 (dd)		3.68 (dd)	43.2
6b	overlap 13H signals)	59.7 (t)	4.42–4.07 (11H signals)		4.20–4.14 (m)	61.7	3.40 (dd)	31.1	3.57 (dd)	
1'a			3.71		3.69 (d)		3.79 (d)			
1′b		63.7 (t)	3.62		3.63 (d)	62.2	3.73 (d)	61.5	3.75 (s)	61.6
2′	_	104.3 (s)	_		_	103.4	_	103.8	_	103.8
3′	5.37 (d)	76.2 (d)	5.46		5.69 (d)	74.9	5.70 (d)	75.8	5.70–5.66 (m)	75.5
4′	а	75.3 (d)	5.32		5.46 (t)	73.7	5.48–5.42 (m)	76.4	5.48–5.41 (m)	75.7

Page S33

				-
۲,		78 1 (d)	4.42-4.07	4 24-4 2
5	4.40-4.20 (m	78.1 (u)	(11H signals)	4.24-4.2
6'	4.40-4.20 (III,	62 5 (+)	4.42-4.07	122_12
0		02.5 (t)	(11H signals)	4.55-4.2
1″	Signals	64 4 (+)	4.42-4.07	1 21-1 2
-		04.4 (1)	(11H signals)	
2″	_	103.1 (s)	-	
3″	5.46 (d)	76.6 (d)	5.68	5.48 (
4″	а	76.0 (d)	5.22	5.34
F//	4.40,4.20 (70.4 (-1)	4.42-4.07	4 20 4 4
5	4.40–4.20 (m,	79.1 (d)	(11H signals)	4.20-4.1
	overlap 13H	(2 0 (t))	4.42-4.07	4 20 4 2
6	signais)	62.9 (t)	(11H signals)	4.39-4.3
J _{1,2}	3.4		3.9	3.4
J _{2,3}	10.2		9.0	10.3
J _{3,4}	10.2		9.4	9.7
J 4,5			10.0	
J _{5,6a}				
J _{5,6b}				
J _{6a,6b}				
$J_{1^\prime a,1^\prime b}$				9.2
J _{3',4'}	8.6		7.0	8.0
J _{4',5'}			6.0	
J _{5',6'}				
J _{3",4"}	8.6		8.0	6.9
J _{4",5"}			8.0	
J _{5",6"}				
CH ₂	2.09 (s), 2.12 (s),	21 5–20 8	2.12	2.19-2.1
C113	2.11 (s), 2.10 (s),	21.3 20.0	2.09	2.13-2.1

4.24–4.20 (m)	77.8	4.35–4.28 (m)	79.8	4.28–4.22 (m)	79.9
4.33–4.24 (m)	63.2	3.66 (d)	32.0	3.82–3.78 (m)	44.4
4.24–4.20 (m)	62.7	4.24 (s)	62.0	4.28–4.22 (m)	62.2
_	102.9	_	103.1	—	103.1
5.48 (d)	76.5	5.50 (d)	77.2	5.50 (d)	76.9
5.34 (t)	75.5	5.32 (t)	78.1	5.33 (t)	77.2
4.20–4.14 (m)	78.4	4.22–4.19 (m)	80.7	4.17 (q)	80.6
4.39–4.33 (m)	63.7	3.69 (d)	32.7	3.82–3.78 (m)	44.6
3.4		4.0		3.7	
10.3		10.3		10.6	
9.7		9.7		9.7	
		2.3		2.3	
		6.3		5.7	
		11.5		12.0	
9.2		10.3			
8.0		8.0			
		6.9			
6.9		6.3		6.3	
		7.4		6.5	
2.19–2.14 (m),	20.8,	2.16–2.15 (m),	20.8, 20.8,	2.16 (s),	20.8,
2.13–2.12 (m),	20.7,	2.14 (s),	20.7, 20.8,	2.15–2.13 (m),	20.7,

	2.09 (s), 2.08 (s),		2.08	2.11–2.09 (m),	20.7,	2.11 (s),	20.6, 20.5,	2.11 (s),	20.7,
	2.07 (s), 2.05 (s),		2.07	2.06 (s),	20.6,	2.09-2.07 (m),	20.5, 20.5	2.09 (s),	20.6,
	2.02 (s), 2.00 (s)		1.99	2.04 (s),	20.6,	2.02 (s)		2.08 (s),	20.5,
			1.97	2.01 (s)	20.5			2.07 (s),	20.5
								2.02 (s)	
					170.7,				170.2
					170.6,		170.2,		170.2,
					170.5,		170.0,		170.1,
C=0		170.4-169.7			170.1.		170.0.		170.0,
					169.9		169.8		170.0,
					160.7		160 5		169.7,
					109.7,		2.601		169.5
					169.6				

[1] Pejin, B., Iodice, C., Tommonaro, G., Sabovljevic, M. Bianco, A., Tesevic, V., Vajs, V. De Rosa, S. Sugar composition of the moss *Rhodobryum ontariense* (Kindb.) Kindb. *Nat. Prod. Res*, **2012**, *26*, 209–215. https://doi.org/10.1080/14786419.2010.535163

[2] Binkley, W. W., Horton, D., Bhacca, N. S. Physical studies on oligosaccharides related to sucrose. Cabohydr. Res., 1969, 10, 245–258. https://doi.org/10.1016/S0008-6215(00)80466-8

^aNot assign

Table SM-2. ¹H and ¹³C NMR literature comparison with observation data of 1-kestose and halogenated 1-kestose derivatives

Assign-		1-kes CAS 5 (δ in ppm	tose (1) 62-68-5 and <i>J</i> in Hz)	6,6',6"-Tribrom - trideoxy-1-kes No CAS (δ in ppm and .	o-6,6',6" tose (6) / in Hz)	6,6',6"-Trichloro-6,6',6"-trideoxy-1- kestose (7) No CAS (δ in ppm and J in Hz)		
ment	Ref	[1]	Observed		Observe	d	Observed	
	¹ H in ppm (200.13 MHz, D ₂ O)	¹³ C in ppm (50.32 MHz, D ₂ O)	¹ H in ppm (500 MHz, D ₂ O)	¹³ C in ppm (125 MHz, D ₂ O)	¹ H in ppm (500 MHz, D ₂ O)	¹³ C in ppm (125 MHz, D ₂ O)	¹ H in ppm (500 MHz, D₂O)	¹³ C in ppm (125 MHz, D ₂ O)
1	5.26	93.73	5.37 (d)	92.9	5.36 (d)	92.9	5.36 (d)	92.8
2	3.38	72.39	3.48 (dd)	71.6	3.52 (dd)	71.0	3.52 (dd)	70.1
3	3.59	73.85	3.70–3.60 (m)	73.0	3.72–3.65 (m)	72.1	3.71–3.60 (m)	72.2
4	3.30	70.48	3.41 (t)	69.6	3.43 (t)	71.4	3.47 (t)	71.6
5	3.64 3.68	73.67	3.79–3.71 (m)	72.8	4.04–3.98 (m)	71.1	4.11–4.05 (m)	71.0
6a	3.63	61.40	3.79–3.71 (m)	60.5	3.79–3.72 (m)	34.2	3.89–3.73 (m)	44.3
60 1'a	3.54	62.17	3.79–3.71 (m)	61.2	3.72–3.65 (m) 3.87 (d)	59.9	3.89–3.73 (m)	60.2
1′b	3.66	02.17	3.70–3.60 (m)	01.5	3.72–3.65 (m)	55.5	3.71–3.60 (m)	00.2
2′	-	104.50	_	103.7	-	103.3	-	103.3
3′	4.12	77.92	4.22 (d)	77.0	4.27 (d)	76.4	4.26 (d)	76.4
4'	3.88	75.12	3.98 (t)	74.2	4.09–4.05 (m)	76.3	4.11–4.05 (m)	75.3
5′	3.67 3.70	82.46	3.83–3.80 (m)	81.6	4.04–3.98 (m)	80.6	4.01–3.94 (m)	80.6
6'a 6'b	3.63	63.44	3.79–3.71 (m)	62.6	3.64–3.59 (m)	33.5	3.89–3.73 (m)	45.2
1"a	3.50	64.70		60.0		50.0		CO O
1‴b	3.59	61.70	3.70–3.60 (m)	60.8	3.72–3.65 (m)	59.9	3.71–3.60 (m)	60.0

2″	_	104.96	_	104.2	_	103.9	_	103.9
3″	4.02	77.94	4.13 (d)	77.0	4.16 (d)	76.9	4.16 (d)	76.6
4″	3.91	75.74	4.02 (t)	74.9	4.09–4.05 (m)	77.4	4.11–4.05 (m)	76.2
5″	3.69	82.36	3.83–3.80 (m)	81.5	4.04–3.98 (m)	80.4	4.01–3.94 (m)	80.5
6"a	3.70							
6"b	3.64	63.59	3.79–3.71 (m)	62.7	3.79–3.72 (m)	33.5	3.89–3.73 (m)	45.4
J _{1,2}			4.0		4.0,		4.0	
J _{2,3}			9.7		10.0		9.7	
J _{3,4}			9.7		10.0		9.7	
$J_{1'a,1'b}$					10.3			
J _{3',4'}			8.6		8.6		8.6	
J _{3",4"}			8.6		8.6		8.6	

[1] Calub, T. M., Waterhouse, A. L., Chatterton, N. J. Proton and carbon chemical-shift assignments for 1-kestose, from two-dimensional nmr-spectral measurements. *Carbohydr. Res*, **1990**, *199*, 11–17. https://doi.org/10.1016/0008-6215(90)84088-C