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Abstract 

Principal properties (PPs), new compact descriptors for 48 gases were derived, their physico-chemical 

significance discussed, and applications to predict gas solubility in organic solvents by means of data-driven soft 

models reported. 
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Introduction 

 

Optimization of the desired biological and physico-chemical properties for complex chemical entities (molecules 

or macromolecules) or for the performance of chemical processes involving different chemical building blocks 

(reactions, industrial and physico-chemical processes etc.) requires parametrization of non-continuous variables 

(substituents, amino acids, solvents, catalysts, etc.) by means of chemical descriptors. The need for variables 

(descriptors) orthogonal to each other suitable for multivariate experimental design led to the derivation of 

principal properties (PPs), intrinsic properties representative of experimentally observable macroscopic 

descriptors for chemical entities. PPs, calculated as a principal component analysis (PCA)1 scores from several 

experimentally measured physico-chemical properties, are nowadays available for solvents,2,3 aldehydes and 

ketones,2 amines,2 Lewis acids,2 lanthanide triflates,4 aromatic substituents5 and amino acids.6-9 Principal 

properties for heteroaromatic moieties, based on aromaticity10 and on 3D-GRID structural parameters11 have 

also been reported.  

PPs have been successfully applied in the field of Quantitative Structure Activity Relationships (QSARs),5 in 

particular for the design of biologically active peptides.6,7 Dedicated PPs for amino acids were then derived for 

peptides QSARs8 and for quantitative sequence-activity modelling.12 More recently  MIF (Molecular Interaction 

Field) molecular descriptors9,13-16 were used for ligand-based virtual screening in antitumor drug design.  

PPs were also derived for Ionic Liquids (ILs), low melting point salts comprising an organic cation and an 

inorganic or organic anion, which exhibited unprecedented efficiency at a molecular level providing 

opportunities for the development of green and sustainable chemical procedures. As experiments could not 

possibly explore the huge experimental chemical space covered by cationic and anionic counterparts of ILs, 

derivation of in silico VolSurf+ physico-chemical descriptors was needed. These parameters used as such, or 

compacted into cationic and anionic PPs, PP+ and  PP- for ILs, respectively,17 were applied to develop QSARs 

relating the chemical structure of ILs to their toxicities,17,18 or to important physico-chemical properties such as 

polarity,19 heat capacity,20 viscosity, density, decomposition temperature and conductivity.21 Such an approach 

has been illustrated in detail and allowed design of ILs for specific applications.22 

The above examples illustrate the use of PPs as molecular descriptors for building blocks to predict the 

biological or physico-chemical properties of more complex chemical entities. An interesting example of PPs 

multivariate optimization of a chemical process with three chemical building blocks is provided by the Fischer 

indole synthesis23,24 a two-step synthesis involving the reaction of ketones with phenylhydrazones and ring 

closure in the presence of an acid. When unsymmetrical ketones are used, an indole regioisomeric mixture can 

be obtained. The use of PPs of ketones, of Lewis acid catalysts and of solvents led to the regiospecific synthesis 

of single indole regioisomers25 and to a one-pot reaction under milder conditions.26  

In spite of several successful applications, PPs have not been very popular over the past three decades. The  

main criticism is focussed on the fact that they are subjective quantities dependent on the data set adopted for 

their derivation and the lack of an immediately interpretable physical meaning. On the other hand PPs are 

statistically orthogonal and therefore can be safely used in multiparameter linear equations, avoiding the danger 

of collinearity. Furthermore, they are less influenced by measurement errors and system-specific variations as 

compared to single descriptors (e.g. solvent polarity scales) and can be derived for a wider set of objects as 

compared to the original descriptors (e.g. different solvent polarity scales), allowing the investigation of a wider 

chemical space. Finally the physical meaning of PPs can be evidenced by the PCA descriptor loadings in their 

derivation.  

In 1803 Henry’s law provided the first and still most popular quantitative measurement for gas solubility in a 

solvent at a given temperature.27  Henry’s constant H is defined as P/x where P is the partial pressure of the gas 
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in bar units and x is its molar fraction in the liquid phase. Accordingly, high H values denote low solubility, while 

low H values correspond to higher solubility. In 1936, Hildebrand28 proposed the definition of a “solubility 

parameter”, further extended by Hansen.29 Similar Hansen parameters indicate miscibility in various 

proportions, while dissimilar values denote limited solubility. Henry, Hildebrand and Hansen solubility 

parameters, providing a quantitative estimate for the ancient motto “like dissolves like”, are widely adopted in 

industrial processes requiring the knowledge of gas-liquid solubility, for the selection of extraction solvents and 

in many other applications. In this context, a recent review dealt with the solubility parameters of permanent 

gases, an important issue for industrial processes and environmental elimination.30   

Modelling and predicting gas solubility adopting theory-driven approaches, such as quantum mechanical 

calculations,31 mixed quantum mechanics/molecular mechanics32  and force field33 models have been 

reported.34  

It has recently been proposed21 that data-driven modelling approaches can complement and usefully 

integrate theory-driven ones.  

In particular, the SIMCA approach35  adopting PCA/PLS36  modelling compacts raw data into data of higher 

relevance, eventually adopting different soft models of local validity for different classes leading to simple linear 

predictive equations. PCA/PLS modelling has been successfully applied by our group in many different areas 

such as cultural heritage,37 to predict NMR shifts,38  in food chemistry,39 for drug identification40 and in genome 

based cancer research41-43 including leukaemia.44,45  

A limitation of PLS models, relating molecular descriptors (variables in the X matrix) to a given molecular 

property (the y dependent variable) is that they are derived from a learning set of objects spanning a given 

chemical space. Accordingly, PLS predictions, which can in principle be calculated for all test set objects for 

which the descriptors are available, are reliable within the investigated experimental domain. However, a PLS 

model of local validity usually requires a lower number of descriptors as compared to a more general one. 

Therefore, disentangling the objects into more homogeneous classes spanning a limited chemical space may 

lead not only to more accurate predictions, but also to simple linear equations - with a lower number of 

independent variables - which can be applied directly by experimentalists to address a specific problem.  

In this context, we here derive by PCA gas PPs as new compact experimental descriptors and report two 

examples of PLS analysis to predict the outcome of gas solubility in organic solvents, a key physico-chemical 

property in many industrial processes. 

 

 

Results and Discussion 

 

Derivation of gas PPs  

The gas PPs reported in Table 1 were derived by SIMCA (Soft Independent Modelling of Class Analogy)35  as the 

scores of a PCA carried out on a data matrix including 48 gases as objects and 42 experimentally determined 

physico-chemical properties as variables46  (Table 2). PCA is an “open” statistical procedure which depends on 

the choice of the objects (gases) and variables (observable gas properties) included in the data matrix, which 

has to achieve an optimal balance between model (and therefore PPs) generality and descriptor prediction 

ability. In the present case we selected 48 gases among the most common ones, for which a significant number 

of experimental determinations was available in the Air Liquide database.46 PCA of the selected data matrix 

provided a 4 significant principal components (PC) model with good predictive ability (Q2=0.72), explaining 

89.7% of variance (Table S1).  
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Table 1. Principal Properties (PPs) for 48 gases 

   gas PPs 

GAS class t1 t2 t3 t4 

Ammonia acid/basic -0.54 2.88 5.67 3.70 

Carbon dioxide acid/basic -0.16 -1.68 3.97 1.36 

Hydrogen chloride acid/basic -1.13 -1.62 3.51 0.36 

Hydrogen sulfide acid/basic 0.18 0.29 2.95 0.95 

Nitric oxide acid/basic -3.65 -2.39 2.49 0.89 

Nitrogen dioxide acid/basic 5.81 2.79 5.24 2.46 

Nitrous oxide acid/basic -0.54 -1.46 3.04 0.35 

Sulfur dioxide acid/basic 2.42 0.35 1.41 1.50 

1-Chloro-1,1-difluoroethane halogenated 3.52 1.20 -1.59 -0.80 

Bromochlorodifluoromethane (R12 B1) halogenated 5.80 -2.03 -3.68 -0.18 

Bromotrifluoromethane halogenated 4.12 -3.17 -3.17 -0.49 

Chlorodifluoromethane (R22) halogenated 2.33 0.03 -0.65 -0.68 

Chloropentafluoroethane (R115) halogenated 4.33 -0.50 -3.51 0.12 

Chlorotrifluoromethane (R13) halogenated 1.59 -1.61 -1.41 -1.45 

Dichlorodifluoromethane halogenated 3.45 -0.01 -2.29 -0.62 

Dichlorofluoromethane halogenated 3.96 0.67 -1.43 -0.27 

Methyl bromide halogenated 4.72 -0.64 -0.26 0.70 

Methyl chloride halogenated 2.02 1.96 1.54 0.30 

Nitrogen trifluoride halogenated 0.15 -2.49 -0.55 -1.54 

Sulfur hexafluoride halogenated 3.55 -0.89 -2.73 1.76 

Trichlorofluoromethane halogenated 5.48 -0.04 -2.38 -0.06 

Trifluoroiodomethane halogenated 5.90 -1.95 -4.91 2.28 

1-Butene hydrocarbons 2.00 3.13 -0.22 -2.06 

2-Butene, cis hydrocarbons 2.55 3.46 0.22 -1.27 

2-Butene, trans hydrocarbons 2.61 3.62 0.44 -0.65 

Acetylene hydrocarbons -0.80 0.80 4.14 -0.02 

Cyclopropane hydrocarbons 1.36 2.40 1.47 -0.65 

Ethane hydrocarbons -0.95 1.35 1.95 -2.11 

Ethylene hydrocarbons -1.40 0.53 2.54 -1.92 

Isobutane hydrocarbons 2.30 3.26 -0.43 -1.83 

Isobutene hydrocarbons 2.23 3.33 0.10 -1.38 

Methane hydrocarbons -2.45 0.96 1.99 -1.68 

n-Butane hydrocarbons 2.42 3.55 -0.17 -1.52 

Propane hydrocarbons 1.02 2.68 0.43 -2.03 

Propene hydrocarbons 0.74 2.39 0.78 -1.95 

Propyne hydrocarbons 1.55 2.83 1.64 -0.19 
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Table 1 (continued) 

   gas PPs 

GAS class t1 t2 t3 t4 

Argon neutral -2.52 -5.59 1.22 -0.93 

Carbon monoxide neutral -2.45 -2.22 1.20 -2.19 

Deuterium neutral -10.69 2.79 -1.21 -0.21 

Fluorine neutral -2.53 -4.37 1.40 -1.15 

Helium neutral -10.38 -1.97 -5.09 -1.16 

Hydrogen neutral -16.02 7.59 -4.89 3.20 

Krypton neutral -0.45 -6.87 -0.14 1.15 

Neon neutral -6.23 -7.84 1.75 -1.07 

Nitrogen neutral -2.53 -2.34 1.12 -2.27 

Oxygen neutral -2.56 -3.40 1.49 -1.58 

Ozone neutral -1.21 -1.24 0.43 -0.58 

Xenon neutral 0.53 -7.44 -1.16 2.00 

 

Table 2. Experimentally measured properties included as descriptors in the data matrix for gas PPs derivation 

descr. ID gas descriptors 

MW Molecular weight (g/mol) 

 cT Critical temperature (°C) 

cP Critical pressure (bar) 

 cd  Critical density (Kg/m3) 

3p Triple point temperature (°C)  

mp Melting point at 1.013 bar (°C)  

 bp Boiling point at 1.013 bar (°C) 

Liqd at bp Liquid density at boiling point and 1.013 bar 

 lhf Latent heat of fusion at melting point and 1.013 bar (KJ/Kg) 

 lhv Latent heat of vaporization, at boiling point and 1.013 bar (KJ/Kg) 

Cp/Cv 0° Cp/Cv ratio at  0 °C 

Cp/Cv 15° Cp/Cv ratio at 15 °C 

Cp/Cv 25° Cp/Cv ratio at 25 °C 

Z 15° Compressibility factor at 15 °C and 1.013 bar Z 15° 

Z 25° Compressibility factor at 25 °C and 1.013 bar Z 15° 

dyn v 0° Dynamic viscosity at 1.013 bar and 0 °C (Po) 

dyn v 15° Dynamic viscosity at 1.013 bar and 15 °C (Po) 

dyn v 25° Dynamic viscosity at 1.013 bar and 25 °C (Po) 

 d at bp Gas density at boiling point and 1.013 bar (Kg/m3) 

d 0° Gas density at 0 °C and 1.013 bar (Kg/m3)  

d 15° Gas density at 15 °C and 1.013 bar (Kg/m3)  
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Table 2 (continued) 

descr. ID gas descriptors 

d 25° Gas density at 25 °C and 1.013 bar (Kg/m3)  

Cp 0° Heat capacity at constant pressure at 0 °C (kJ/(kg K))  

Cp 15° Heat capacity at constant pressure at 15 °C (kJ/(kg K))  

Cp 25° Heat capacity at constant pressure at 25 °C (kJ/(kg K))  

 Cv 0° Heat capacity at constant volume at 0 °C (kJ/(kg K))  

Cv 15° Heat capacity at constant volume at 15 °C (kJ/(kg K))  

Cv 25° Heat capacity at constant volume at 25 °C (kJ/(kg K))  

 l/g 0° Liquid (boiling point)/gas equivalent (0 °C) ratio (mol/mol) 

 l/g 15° Liquid (boiling point)/gas equivalent (15 °C) ratio (mol/mol) 

l/g 25° Liquid (boiling point)/gas equivalent (25 °C) ratio (mol/mol) 

sp grav 0° Specific gravity at 0 ° C 

sp grav 25° Specific gravity at 25° C 

sp Vol 0° Specific volume at 0 °C (m3/kg)  

sp Vol 15° Specific volume at 15 °C (m3/kg)  

sp Vol 25° Specific volume at 25 °C (m3/kg)  

th cond 0° Thermal conductivity at 0 °C and 1.013 bar (mW/(m K)) 

th cond 15° Thermal conductivity at 15 °C and 1.013 bar (mW/(m K)) 

th cond 25° Thermal conductivity at 25 °C and 1.013 bar (mW/(m K)) 

vap P 0° Vapor pressure at 0 °C  (bar) 

vap P 15° Vapor pressure at 15 °C  (bar) 

vap P 25° Vapor pressure at 25 °C  (bar) 

 

The t1-t4 scores of such a model (see Equation 3 in the Experimental Section), i.e. the PPs for 48 gases, are 

reported in Table 1 and plotted as t1-t2 and t3-t4 in Figures 1a and 2a respectively, together with the 

corresponding p1–p2 and p3-p4 loadings plots in Figures 1b and 2b respectively. 

 The loadings elucidate the descriptors information providing guidance for interpreting the physico-

chemical meaning of gas PPs. Figure 1b clearly shows grouping of descriptors typical of thermal properties, such 

as heat capacities (Cp, Cv) and thermal conductivities, mainly in the top left quadrant (negative p1 and positive 

p2). Properties related to the capability of molecules to move (increase in translational energy), to rotate 

(increase  in rotational energy) and to vibrate (increase in vibrational energy), such as viscosity, vapor pressure, 

Z ratio, Cp/Cv ratio and liquid/gas equivalent ratio, are in the bottom left quadrant (negative p1 and p2).  

Interestingly, most neutral gases are located in the same quadrant of Figure 1a. Positive p1 loadings are 

exhibited by properties related to the gas molecular weight, namely boiling and melting points, specific gravity 

and density. Therefore, gas PP1 values in Table 1 (i.e. t1 values in Figure 1a) are very high for halogenated gases 

and increase on increasing the number of carbon atoms in hydrocarbons. 
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Figure 1. PCA scores plot for gases (1a) and loadings plot for descriptor variables (1b) for the first and second 

components. 

 

In Figure 2a acid gases and the only basic one (ammonia) are located in the upper right quadrant (positive t3 

and t4). In the same quadrant of the loadings plot (Figure 2b) we find gas properties related to the equilibrium 

with other phases, such as latent heats of vaporization and fusion, triple point, and critical pressure and 

temperature, all affected by the capability to form hydrogen bonds. The lower right quadrant of the loadings 

plot (positive p3 and negative p4) in Figure 2b is characterized by the presence of vapor pressure properties. 

Interestingly in the same quadrant of the score plot in Figure 2a we find volatile hydrocarbons. 

In both scores plots hydrogen, a biatomic gas, exhibits a peculiar behavior being outside the confidence 

model ellipse, due to its unique properties deriving from its electronic configuration and position in the periodic 

table. 

 

 

b 
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Figure 2.  PCA scores plot for gases (2a) and loadings plot for descriptor variables (2b) for the third and fourth 

components. 

 

Application of gas PPs for gas solubility modelling 

Gas PPs listed in Table 1 and available solvent PPs2,3 represent orthogonal descriptors for each of two chemical 

building blocks which constitute a more complex physico-chemical process, gas solubility in organic solvents. In 

particular, multivariate PLS modelling of gas solubility in organic solvents, using gas PPs herein derived and 

solvent PPs reported in reference 3 as descriptors and gas solubility as the dependent variable was carried out. 

The descriptors solvent space spanned by this analysis includes 8 solvents, while for the gas space, 10 gases, as 

defined by the experimentally determined Henry’s constants47 considered as the dependent variable. In the 

present case, the y dependent variables in the PLS model were converted into the logarithms (with base 10) of 

the Henry’s constants log H. The choice of the logarithmic form has been pointed out48 to be relevant for 

theoretical considerations as log H is inversely proportional to the solvation ΔGs free energy.  

A preliminary PLS analysis was carried out using a 77x6 descriptor matrix including 77 gas-solvent 

combinations (Table S2) and  6 descriptor variables (4 gas and 2 solvent PPs) and log H as the responses. This 

 

b 
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model  provided two significant PLS components, and the resulting scores plot (Figure S1) evidenced significant 

differences in the gas structures with hydrocarbons separated from hydrogen sulfide, sulfur dioxide and carbon 

dioxide and  suggested to adopt different class models. Actually, the latter three gases do not represent a 

sufficient number of learning set objects to build a separate class model. However, a separate PLS model could 

be derived for the solubility of hydrocarbons, leading to satisfactory statistical parameters (Table S3) and to the 

VIP (Variable Importance on the Projection) values bar plot reported in Figure S2. VIP values, giving an indication 

(in absolute values) of what variables in the X block (PPs of both gases and solvents) are relevant to determine 

the dependent variable (gas solubility), suggested that PP4 gas and PP2 solvent could be eliminated without a 

significant loss of information. Accordingly, a new PLS model was derived for a matrix including 48 objects in the 

learning set and only four important descriptors (three PPs for the gases and one PPs for the solvents). The 

analysis provided a satisfactory model for the solubility of hydrocarbons in organic solvents where (see Table 

S4) 3 PLS components explain 76.8% of y variance (Q2 = 0.73). The VIP descriptor values reported in Figure S3 

indicate, as expected, that the gas structure has a major influence in the process as compared to the solvent 

structure. 

In Figure 3 we report the correlation plot spanning 3.5 log units including model predictions for 48 learning 

set objects and 8 test set randomly selected objects distributed along the y experimental domain. The 

predictions for test set objects (Figure 3 and Table S2) are not significantly different from those of the learning 

set ones, providing an external validation of the model predicting ability. 

 

 
Figure 3. Correlation plot for Henry solubility in organic solvents. (  ) learning set, ( ∆ ) test set. 

 

As mentioned above, one advantage of the soft modelling approach adopted here is that gas solubility for 

hydrocarbons can be easily calculated by the following four parameters equation, where the independent 

variables are readily available in Table 1 and in reference 3: 

 

Eq. 1  logH = 2.085 + 0.136 (PP1 solv) - 0.576 (PP1 gas) + 0.114 (PP2 gas) -0.369 (PP3 gas) 
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Another literature data set suitable to test the performances of gas PPs includes the solubility in five n-

alkanols, expressed as logarithms of Ostwald coefficients49 for nine gases, seven of which are neutral (5 noble 

gases, nitrogen and oxygen), one a hydrocarbon (methane) and one a fluorinated compound (SF6). The 

peculiarity of the chemical structure of the latter suggested we should exclude it from the analysis, while 

methane was retained to verify if it would fit a soft model derived for neutral gases.  

A PLS analysis carried out on a matrix including 30 objects in the learning set and 6 descriptors (4 gas and 2 

solvents PPs, Table S5) gave an excellent 3 PLS components model (see Table S6) explaining 97.4% of y variance 

with a good predicting ability (Q2 = 0.948). External model validation is provided by Figure 4, the correlation plot 

including also 6 test set objects distributed along the y experimental domain.49 

 

 
Figure 4.  Correlation plot for Ostwald solubility coefficient (L) in organic solvents. (  ) learning set, ( ∆ ) test 

set. 

 

In the present case, gas solubility for neutral gases and methane in n-alcohols can be calculated by the 

following six parameter equation: 

 

Eq. 2 logL = 0.29118 - 0.00374 (PP1 solv) - 0.00156 (PP2 solv) + 0.13772 (PP1 gas) + 0.07827 (PP2 gas) +0.00003 

(PP3 gas) + 0.22384 (PP4 gas) 

 

 

Conclusions 
 

New gas PPs based on experimentally determined properties were derived and interpreted according to the gas 

structural features of different classes. The gas and solvent PPs, both open access in Arkivoc, can be adopted as 

descriptors to develop data-driven soft models for different classes to investigate an important process such as 

the solubility of gases in organic solvents. This flexible approach provided simple equations which can be 
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conveniently used by experimentalists to predict gas solubility, a key physico-chemical property in many 

industrial processes. 

 

 

Experimental Section 

 

Computational methods. The data set used for PCA35  was a table (matrix) in which 48 gases were characterized 

by 42 physico-chemical properties.46  The variables have been autoscaled by multiplying the variables by 

appropriate weights (the reciprocal of the variable standard deviation) to give them unit variance (i.e., the same 

importance). PCA was carried out by using the SIMCA software package26 on a data matrix containing 48 x 42 xik 

elements, where the index k is used for the physico-chemical properties (variables) and index i for the gases 

(objects). Autoscaled matrix elements were then fitted into a model given by Equation (3), where the number A 

of significant cross terms (components), and the parameters pak and tia are calculated by minimizing the 

residuals, eik, after subtracting  xk (the mean value of the ith experimental quantities xk). 

 

𝑥𝑖𝑘 =  𝑥̅𝑘 +  ∑ 𝑡𝑖𝑎

𝐴

𝑎=1

𝑝𝑘𝑎 + 𝑒𝑖𝑘 

 

Parameters xk and pak (the loadings) depend only on the physico-chemical properties (variables), and the tia 

(scores) only on the solvents.  

The deviations from the model are expressed by the residuals, e ik. The number of significant components (A) 

was determined using the cross-validation technique (CV).50 

The Partial Least Squares Projections to Latent Structures (PLS)36  chemometric tool allows to find relationships 

between the gas and solvents PPs (X matrix) and the response, in this case the gas solubility in a given solvent. 

The PLS algorithm computes PLS components for each of the two matrices (X and Y), searching simultaneously 

for a linear relationship between the X-scores and Y-scores of the PLS components by means of equation (4), 

where ba is a proportionality coefficient:  

 

𝑦𝑖𝑎 =  ∑ 𝑏𝑎

𝐴

𝑖=1

𝑡𝑖𝑎 +  ℎ𝑖𝑎  

 

The main statistical parameters provided by the PLS method36  are R2X, R2Y (respectively sum of squares of all 

the Xs and Ys explained by all extracted components) and Q2, the fraction of the total variation of the Y’s 

predicted by all PLS components, as estimated by cross validation. Q2 was computed as: 1-PRESS/SS, where SS 

is the residual sum of squares and PRESS is the squared difference between observed and predicted values for 

the data kept out of the model fitting. CV was performed in the same way as for PCA.  

In the present case the PLS method is able to detect which variables in the X block (i. e. gas and solvent PPs) are 

relevant to determine the dependent variables (i. e. the gas solubility) by means of the VIP values. SIMCA 

computes VIP values by summing over all model dimensions the contributions VIN (variable influence). For a 

given PLS dimension, a, (VIN)ak
2 is equal to the squared PLS weight (wak)2 of that term, multiplied by the % 

explained of residual sum of squares by that PLS dimension. The accumulated (over all PLS dimensions) value, 

VIPk = ∑(VIN)k
2 is then divided by the total percent explained of residual sum of squares by the PLS model and 

multiplied by the number of terms in the model. 

 

E
q
. 
4 
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