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Abstract 

 

The inherent reactivity of the aziridine ring due to ring-strain makes it valuable building blocks for the 

synthesis of other heterocyclic motifs of biological relevance. Of particular significance is the generation of 

azomethine ylides from them and cycloaddition of ylides with alkenes, alkynes, and heterocumulenes. The ring 

undergoes opening followed by cyclization with a variety of reagents either in the presence of a catalyst or 

without any catalyst. This review article discusses the recent applications of aziridines in syntheses of four- to 

seven-membered heterocycles of biological relevance such as azetidines, 2-azetidinones, pyrroles, imidazoles, 

oxazoles, thiazoles, piperidines, pyrazines, pyrimidines, benzoxazines, morpholines, azepanes, 

benzodiazepines, benzoxazepines, and benzothiazepines. 
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1. Introduction 

 

Azacyclopropanes, commonly known as aziridines, are a well-known class of compounds in the realm of 

heterocyclic chemistry and medicinal chemistry.1 Aziridine ring is extremely reactive due to ring-strain 

associated with it which makes it a powerful building block in organic synthesis. The unique reactivity of 
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aziridines has been exploited by synthetic organic chemists for developing synthetic protocols to several novel 

heterocyclic compounds either directly or through the formation of diverse 1,2-difunctionalized compounds 

through ring-opening followed by cyclization or cycloaddition. 

Although access to strained three- and four-membered heterocycles is a challenging endeavor aziridines 

having a broad range of functionalities are easily accessible by several routes described in literature. The 

reactivity of aziridines depends largely on type of substituents presents on the ring. The presence of a strong 

electron-withdrawing group on the ring activates the ring and such aziridines are referred to as activated 

aziridines. Aziridines bearing arylsulfonyl groups on ring nitrogen, a carboxylate group or a vinylic group on 

ring carbon(s) have drawn considerable interest of researchers. The synthesis and reactivity of aziridines have 

been reviewed from time to time.2,3 Some review articles focusing on specific type of aziridines such as 

aziridine-2-carboxylates,4 2-haloaziridines,5 2-methyleneaziridines,6 and 2-vinylaziridines7,8 have been 

published. This review paper aims to describe recent applications (2008 to early 2017) of aziridines, whether 

activated or non-activated, in synthesis of other heterocyclic frameworks by aziridine ring expansion. It is well-

known that heterocyclic compounds containing one or more nitrogen atoms, or nitrogen atom(s) together 

with sulfur or oxygen atoms are biologically very important class of compounds. Hence the article will focus on 

synthesis of different types of heterocycles rather than the different types of reactions of aziridines. Although 

the review of synthetic methods of aziridines is not the objective of this article it would be wise to give a brief 

idea about how the aziridines are accessed in laboratory. Accordingly, selected examples from different 

methods reported in recent literature are described here. 

 

1.1 Synthesis of aziridines 

There are a number of methods known in literature for synthesizing aziridines (Figure 1). The main approaches 

to construct the aziridine motif can be broadly classified as i) cyclization of 2-aminoalcohols, ii) addition of 

nitrenes or nitrenoids to alkenes, and iii) reactions of sulfur ylides or carbenes/carbenoids with imines. Looking 

at significance of asymmetry in structure of the molecules in biological systems, efforts are on to synthesize 

enantioenriched aziridines.9,10  

 

 
 

Figure 1. Main synthetic approaches to aziridines. 
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i) Cyclization of 2-aminoalcohols: A one-step cyclization of 2-aminoalcohol 1 with p-toluenesulfonyl chloride 

(TsCl), aqueous NaOH and tetrabutylammonium iodide in a biphasic system leads to the formation of a 

tricyclic aziridine, 2,4-diamino-5,6-methylene-5,6,7,8-tetrahydropyrido[3,2-d]pyrimidine 2 in 50% yield 

(Scheme 1).11  
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N N
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  THF, H2O, 2h
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Scheme 1 

 

The formation of N-tosyl-2-trifluoromethylaziridine 5 is reported from 3-amino-1,1,1-trifluoropropan-1-ol 

3.12 The latter compound undergoes a selective N-tosylation on treatment with TsCl in pyridine to form N-

sulfonamide 4. The cyclization of the N-sulfonamide under the Mitsunobu conditions yielded the aziridine 5 

(Scheme 2). This aziridine finds use in synthesis of pyrrolidines, piperidines and azepanes that will be dealt 

with in respective sections.13 
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Scheme 2 

 

ii) Addition of nitrenes or nitrenoids to alkenes: Menjo and coworkers have reported an excellent asymmetric 

synthesis of fused bicyclic aziridines 9 by reaction of alkenes 6 with N-tosyloxycarboxybenzyl carbamate 7 in 

the presence of N-neopentyl-1,2-diphenylethylenediamine catalyst 8 (Scheme 3).14 Recently, this group has 

discovered another diamine similar to 8 but CH2CMe3 group replaced with a 4,4-dimethylcyclohexyl group for 

the asymmetric aziridination using same reagent.15 
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Scheme 3 

 

Halskov and coworkers have reported the formation of aziridines 12-14 in very good yields and excellent 

enantioselectivity (except for aziridine 14 that had only 40% ee) by the reaction of N-tosyl-tert-
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butyloxycarbonyl carbamate, 7b, with five- to seven-membered cyclic 2,4-dienals 10 using trimethylsilyl 

(TMS)-protected prolinol catalyst 11 (Scheme 4).16 
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Scheme 4 

 

Liang and coworkers have reported the formation of N-tosylaziridines 17 by reactions of olefins 15 with p-

toluenesulfonyl azide 16 in the presence of iron porpholactone, (mesotetrakis-

(pentafluorophenyl)porpholactonato dianion, [Fe(F20-TPPL)Cl]) as a catalyst (Scheme 5).17 However, p-

methoxystyrene and α-methylstyrene furnished tetrahydropyrrole and allylic amidation products, 

respectively, instead of aziridine derivatives from this reaction. 

 

R1R + N3

[Fe(F20-TPPL)Cl]
(0.5 mol %)
4 Å molecular sieves

3 equiv. 1 equiv.

R = alkyl, aryl; R1 = H, alkyl

15 16 17
N2

20-87%

Ts
N
Ts

RR1

 
 

Scheme 5 

 

iii) Reactions of sulfur ylides or carbenes/carbenoids with imines: A one-pot, highly diastereoselective 

synthesis of functionalized  cis-vinylaziridines, 21 and 22 containing a quaternary carbon center is reported 

through a sulfur ylide-mediated aziridination of five- and six-membered cyclic imines 18 and 19 in the 

presence of a palladium catalyst (Scheme 6).18  
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Scheme 6 

 

In another example, Aggarwal and coworkers used dissolved sulfonium salt 24 in acetonitrile before adding 

the imines 23 and potassium carbonate.18 The solution was then stirred at room temperature overnight. The 

reaction led to the formation of aziridines 17 in good yields with good trans selectivity (Scheme 7).19 
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P
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Scheme 7 

 

The Aza-Darzens reaction is reported as a convenient method to access aziridnes.20 Aza-Darzens reaction 

involves an α-haloenolate or an α-halocarbanion and an imine. Stockman and coworkers have reported the 

synthesis of 2,3-disubstituted and 2,2’,3-trisubstituted aziridines by an aza-Darzens reaction of the tert-

butanesulfinyl imines with ethyl bromoacetate.20 Larson and co-workers reported the first asymmetric aza-

Darzens addition using 3-chloropentane-2,4-dione 26 and N-benzoyl imines 25 to give N-benzoyl-2,2-diacetyl-

3-arylaziridines 27 using vaulted biphenanthrol magnesium salt (Mg[P3]2) as a catalyst (Scheme 8).21 
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Khoumeri and coworkers have synthesized a mixture of cis/trans 2,3-diaryl N-tosylaziridines 32, with cis- 

isomers being the major products by reaction of 1,1-dichloromethyl-4-nitrobenzene 28 with aromatic N-

tosylimines 31 in the presence of tetrakis(dimethylamino)ethylene (TDAE) (Scheme 9).22 However, when the 

nitro group was on ortho-position, as in 1,1-dichloromethyl)-2-nitrobenzene 29 and 1,1-(dichloromethyl)-4,5-

dimethoxy-2-nitrobenzene 30, only the trans-aziridines 33 and 34, respectively, are obtained.  
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                       32
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O2N
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X

 
 

Scheme 9 

 

Wulff`s research group has carried out several studies on catalytic reactions of diazo compounds with 

imines, mediated by boroxinate catalysts derived from VANOL and VAPOL ligands mainly for achieving 

aziridines in enantiopure forms.23-25 The reactions of imines with diazoacetates26 and with diazomethyl 

ketones,27 catalyzed by either a VAPOL or VANOL catalysts, have been reported to provide cis-aziridines. The 

reaction of sec-diazoacetamides with imines, however, results in formation of trans-aziridines.28 The reaction 

of imines 23 with α-diazo compounds 35 in the presence of the VANOL/ VAPOL-B3 catalyst furnishes either cis- 

or trans- aziridines 36 depending on the reaction conditions (Scheme 10).29 For example, a N-BUDAM-

protected imine 23 reacts with α-diazoacetamides 35 in toluene at -20 °C to give pure trans-aziridine 

acetamides 36 in 90% yield and 96% ee. The same imine 23 reacts with ethyl diazoacetate 35 under similar 

reaction conditions to give a 99% isolated yield of the pure cis-aziridine acetate 36 in 98 % ee. Hence, the face 

selectivity is caused by the catalyst or diazo compound rather than the imine. 
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Scheme 10 

 

The α-diazo compounds 35 without amidic protons, furnish cis-aziridines 36 selectively whereas those with 

amidic proton afford trans-aziridines 36 under similar reaction conditions.30 Thus, the presence or absence of 

an amidic proton plays an important role in diastereoselection. The N-Boc-protected imines 23 react with α-

diazopropanoate 35 (R2 = OEt) and α-diazo-N-propanoyloxazolidinone 35 (R2 = N-acyloxazolidinone) in 

dichloromethane at -78 °C in the presence of VANOL-B3 catalyst to give trans-trisubstituted aziridines 36 

selectively (Scheme 11).25  
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Scheme 11 

 
 

2. Ring-Opening of Aziridines: Synthetic Methods for Heterocycles from Aziridines 

 

The chemistry of aziridines has drawn considerable interest in recent years with an objective to construct 

medium-size aza-, diaza-, oxoaza- and thioaza- heterocycles (Figure 1). A brief account of synthetic methods in 

preceding section has shown that aziridines with different types of substituents are easily accessible in 

laboratory by a number of methods. Aziridine ring, however, has inherent reactivity due to high ring-strain 

associated with it. As a result, a number of nucleophiles have been employed successfully for aziridine ring-

opening. Both C-C and C-N bonds of aziridine ring can undergo cleavage (Scheme 12).31 The regioselectivity in 
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ring-opening depends on substituents present on the ring.32,33 Usually the electron-withdrawing groups on ring 

favor the cleavage of C-N bond. The presence of an electron-releasing group favors the cleavage of C-C bond. 

Besides electronic effects, sometimes steric effect also governs the nucleophilic attack on the ring.32 De Kimpe 

and coworkers observed that in non-activated 2-substituted aziridines, the ring-opening depends on the 

nature of nucleophile, the type of activation of the aziridine ring, and nature of the substituent on the ring.32 

Paasche and coworkers have performed computational analysis of the underlying potential energy surfaces 

and reaction paths to get an insight into the thermodynamic and kinetic factors governing the cleavage of C-C 

and C-N bonds in differently substituted aziridines.34 This study revealed that the C-C bond cleavage and 

nucleophilic attack is a stepwise reaction while the C-N bond cleavage and nucleophilic attack is a concerted 

process. The substitution pattern on the aziridine ring did not affect the reaction course but affected the 

reaction barrier. The barrier for the C-C bond cleavage decreased on replacing hydrogen atom with electron-

withdrawing substituents such as nitrophenyl or carboxylate. The barrier for the C-N bond cleavage, however, 

increased with cumulative substitution. The computed data predicted that a shift from C-N to C-C bond 

cleavage required stabilizing substituents at both carbon atoms. 

 

N
R1

R2

Lewis acid
R2 N

R1

1,3-zwitterion
C-N cleavage

N
R1

R2

heat
R2 N

R1

R1 = EWG; R2 = aryl, CH2(Si)----

R1 = alkyl, aryl; R2 = EWG

R2 N
R1

1,3-dipole

 
 

Scheme 12 

 

The 1,3-dipole, generated by cleavage of aziridine ring, can be trapped with diverse types of dipolarophiles 

to synthesize heterocyclic compounds. The ring-opening of aziridines and subsequent cyclization or 

cycloaddition have led to discovery of interesting synthetic methodologies for four- to seven-membered 

heterocyclic motifs (Figure 2) such as azetidines, β-lactams, pyrroles, imidazoles, oxazoles, pyrimidines, 

pyrazines, oxazines, morpholines, thiomorpholines azepanes, benzodiazapines, benzoxazepines, and 

benzothiazepines. In the succeeding sections, the synthesis of these heterocyclic frameworks from aziridines 

by different methods is described. The literature is arranged here according to the ring size. Within a particular 

ring size, the synthetic methods are discussed according to ring-type.  
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Figure 2. Heterocyclic compounds from aziridines. 

 

 

 

3. Synthesis of Four-membered Heterocycles 

 

3.1  Synthesis of azetidines 

The transformation of a three-membered ring to a four-membered ring is a difficult to achieve endeavor and 

hence the literature is scarce on this type of transformation. Azetidines constitute an important class of 

azaheterocyclic compounds from synthetic, mechanistic, and biological points of views.35 

De Kimpe and coworkers have designed and developed the synthesis of several novel aziridines and 

investigated their reactivity towards different reagents for entry into other heterocyclic systems of biological 

relevance. A novel aziridine to azetidine rearrangement protocol has been developed by the conversion of 2-

bromomethyl-2-methylaziridines 37.36 Treatment of aziridines 37 with sodium borohydride is suggested to 

form a bicyclic intermediate 38 that undergoes reaction with methanol to form the azetidines 39 (Scheme 13). 

The cyclization of aziridines 37 to the bicyclic intermediate 39, which is in contrast with the well-known 

chemistry of 2-(bromomethyl)aziridines 37 bearing no additional substituent at C-2-position, was interpreted 

as the Thorpe-Ingold effect due to the gem-disubstitution at the aziridine carbon atom, resulting in a more 

favorable geometric positioning of the nucleophilic nitrogen atom with respect to the halogenated carbon 

atom. 
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De Kimpe group has extended their work with N-benzylaziridines 40 towards different anionic nucleophiles 

such as oxygen, sulfur and carbon.37 The solvent had a significant influence on the reaction outcome, enabling 

the selective formation of either functionalized aziridines in dimethylformamide or azetidines 42 in 

acetonitrile (Scheme 13).  

 

N

R1

Br

NaBH4

MeOH, ∆ N

R1

OHMe

NR1

OMe

N

Br

R1

Nu ; MeCN

∆, 15 h N

Br

R1

N

Br

R1

R1 = H, Me, OMe

70-78 %

37                                                        38                                                39

40                                                              41                                            42

R1 = i-Pr (72%)
R1 = CHEt2 (74%)

 
 

Scheme 13  

  

A regioselective ring-opening of the cis-N-tosyl-2-tosyloxymethyl-3-trifluoromethylaziridines 43 with 

phenols, followed by rearrangement leads to an easy entry to azetidine ring system (Scheme 14).38 A similar 

treatment of these aziridines with aryl thiols leads to the formation of N-tosyl-2-arylthiomethyl-3-

trifluoromethylaziridines. The phenolate ion attacks at C-2 position of the aziridine ring leading to cleavage of 

the C-N bond resulting into formation of an intermediate 44. An intramolecular displacement of the tosylate 

group from intermediate 44 leads to the formation of cis-azetidines 45. 

The cleavage of alkyl 2-(bromomethyl)aziridine-2-carboxylates by HCl is reported to occur by the reaction 

at sterically more hindered carbon atom (C-2) leading to cleavage of the C-N bond. A subsequent base-

promoted cyclization of the ring-opened product gives alkyl 3-chloroazetidine-3-carboxylates.39  
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N

F3C OR

OTsTs
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43
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Scheme 14 

 

3.2 Synthesis of β-lactams 

β-Lactams are four-membered cyclic amides that constitute the most famous group of antibiotics. Besides 

being used as antibiotics,40,41 they are also used as β-lactamase inhibitors,42 and cholesterol absorption 

inhibitors.43 

Fontana and coworkers have reported the palladium-catalyzed carbonylative ring-expansion of 

vinylaziridines for the synthesis of β-lactams.44 The reaction of 3-aryl-2-vinylaziridines 46 with carbon 

monoxide in the presence of trisdibenzylideneacetone palladium(III) trichloromethane catalyst and triphenyl 

phosphite afforded four isomeric β-lactams 47a-d at room temperature (Scheme 15). The trans-E-β-lactams 

47c were the major products. Alkyl substituents on vinyl aziridines did not give any β-lactam except in the 

presence of 50 bar of carbon monoxide, where trans-Z-β-lactams 47a were obtained. However, a full chirality 

transfer to the trans-E-β-lactam 47c could be achieved by using enantioenriched alkyl substituted vinyl 

aziridine 46. A palladium(0)-mediated isomerization of vinyl aziridines followed by carbonylation and ring 

closure was proposed as the plausible mechanism for the formation of major product. 
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Ts

R1 R2

R2

Pd2(dba)3.CHCl3 (5 mol %)
         PPh3 (0.2 equiv.)
             CO (1bar)
          PhMe, r. t., 2 h

59-79 %  of  47c (dr 76-100 %)
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N N
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Ts O

R1
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R2

N

R1
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R2
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N

R1

Ts O
R2

+

++

47d

R1 = Ph, p-Me-Ph, p-MeO-Ph, p-Cl-Ph
R2 = Ph, Me, p-Me-Ph, p-MeO-Ph, p-Cl-Ph

trans/ cis

 
 

Scheme 15 

 

Wulff and coworkers have reported the reactions of 3-alkylaziridine-2-carboxylic acids 48 with oxalyl 

chloride leading to an exclusive formation of 2-azetidinones 49 (Scheme 16).45 The ring-expansion occurs in 

stereospecific manner with high yields and diastereoselection. The reaction with trans-1-benzyl-3-
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cyclohexylaziridine-2-carboxylic acid yielded exclusively the trans-β-lactam. The reaction also provided β-

bromo-β-lactams with oxalyl bromide but some isomerization to trans-β-lactam was observed.  
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Scheme 16  

 

A highly diastereoselective synthesis of 3-halogenated-4-trifluoromethyl cis and trans-β-lactams 50 is 

reported from 1-alkyl/aryl-3-(trifluoromethyl)aziridine-2-carboxylic acids 48. The latter compounds are 

converted into cis and trans-β-lactams by different halogenating reagents, such as POCl3, PCl5, SOBr2, 

PPh3/NBS, PPh3Br2 (Scheme 17).46  
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Scheme 17 

 

 

4. Synthesis of Five-membered Heterocycles 

 

4.1 Synthesis of pyrroles and indoles 

Pyrroles are well-known structural subunits in natural products and in compounds for industrial purposes. 

Polypyrroles have applications in material science, non-linear optics and supramolecular chemistry as 

molecular sensors and devices.47 Yoshida and coworkers have reported the synthesis of 3-iodopyrroles by an 

electrophilic cyclization of N-tosyl or N-benzyl-substituted propargylic aziridines.48 The annulation of N-tosyl-

substituted substrates required a platinum catalyst while, the N-benzyl-substituted aziridines could be 

annulated through iodine-promoted cycloisomerization. In the case of N-tosyl compounds 51, the aziridine is 

activated by coordination of platinum with ring-nitrogen and alkynyl group forming complex 52, which 

promotes the aziridine ring-opening by nucleophilic attack of water on ring-carbon bearing the alkynyl group. 

The attack of the sulfonamide nitrogen in resulting product 53 on the distant alkyne carbon leads to the 

formation of a dihydropyrrole 54 that undergoes aromatization by elimination and subsequent iodo-

demetalation with iodine to form 3-iodopyrroles 55 (Scheme 18). The mechanism for N-benzyl substrates 

suggested by the authors involved the formation of a cyclic iodonium ion 57 by the coordination of the 
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propargylic triple bond to an iodine cation followed by the attack of the aziridine nitrogen producing the 

cyclized cationic intermediate 58, which then underwent aromatization by elimination of a proton to furnish 3-

iodopyrroles 59 (Scheme 19). This group has further reported the platinum-catalyzed cascade cyclization/ring 

expansion of alkynyl-aziridines, spiro-fused to cyclobutane, forming bicyclic pyrroles 61 (Scheme 20).49  
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Wang and coworkers have reported an efficient method for the synthesis of polyfunctionalized pyrroles 67 

by a cascade of regioselective ring-opening of N-H aziridines 62 followed by [3+2]-cycloaddition with β-

nitroolefins 63 under aerobic conditions (Scheme 21).50 The reaction is assumed to proceed through an 

azomethine ylide, generated by a regioselective C-C bond cleavage. A copper-catalyzed regioselective [3+2]-

annulation of the ylide 64 with nitroalkenes forms pyrrolidines 65. An elimination of HNO2 from pyrrolidines 

65 followed by dehydrogenation of the resulting dihydropyrroles 66 leads to the formation of pyrroles 67. 

When the reaction was carried out in an inert atmosphere, a significantly low yield of the product was 

obtained suggesting the necessity of oxygen for dehydrogenative aromatization step.  
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Scheme 21 

 

Ghorai and coworkers have reported recently a regioselective ring-opening of N-tosyl-substituted 2-(2-

haloaryl)-3-alkylaziridines 68 with thiophenol, followed by copper-powder-mediated intramolecular 

cyclization/aromatization to access 2-alkylindoles in good yields (Scheme 22).51 The reaction was also 

extended to 3-(2-chlorophenyl)-1-tosylaziridine-2-carboxylate to get an indole with a carboethoxy group on C-

2 position. The authors proposed a Lewis acid-catalyzed SN2-type ring-opening with thiophenol as proposed in 

an earlier study published same year.52 The ring-opening product 69 undergoes C-N cyclization under influence 

of copper powder to give product 70. The Cu(I)-mediated generation of radical cation 71 from product 70, 

followed by its desulfonylation gives a cationic intermediate 72 which undergoes aromatization to give the 

final product. 



Arkivoc 2018, i, 50-113  Singh, G. S. et al. 

 

 Page 65  ©
ARKAT USA, Inc 

N
Ts

R

X

R1
1. PhSH, BF3-OEt2 (15 mol%),
    DCM, r. t. 15 min-2 h

2. Cu powder (2 equiv.)
    DMF, 120-125 oC, 8-24 h

N
Ts

R1

R

(15 examples)yields: 64-86%X = Br, Cl
R = H, Me, Et, n-Pr
R1 = H, 5-F, 5-Cl, 4-Cl, 6-Cl

68

68

PhSH
BF3OEt2

X

R1
SPh

NHTs

R Cu powder

N
Ts

R1

R
Cu(I)

SPh

N
Ts

R1

R

SPh

- CuSPh N
Ts

R1

R

H

- PhSH,
- Cu

69                                                70                                       71                                           72

73

73

 
 

Scheme 22 

 

4.2 Synthesis of dihydropyrroles 

The dihydropyrrole structural unit makes up the functional core of some natural products and pharmaceutical 

agents as well as serves as precursors for many N-heterocycles of synthetic and biological interest.53 Gold 

catalysts have been applied in cascade-type reactions for the conversion of various 2-(aryloxyprop-1-

ynyl)aziridines 74a-h to spiro[isochroman-4,2'-pyrrolines] 75a-h (Scheme 23).54 The reaction exploited both 

the σ- and π-Lewis acid properties of the gold salt for a Friedel–Crafts type intramolecular rearrangement 

followed by the cyclization of an aminoallene intermediate. In case of more hindered aziridines, however, the 

cascade reaction stopped at aminoallene intermediate product stage. 
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Njardarson and coworkers have reported annulation of several N-tosyl- and N-phthalimide-protected vinyl 

aziridines 76 to dihydropyrroles 77 in high yields using Cu(hfacac)2 as a Lewis acid catalyst (Scheme 24).55 The 

formation of the product has been explained through the Lewis acid-catalyzed [1,3]-sigmatropic 

rearrangement. Later, they applied the same methodology to reveal the stereospecificity of this 

arrangement.56 The mechanistic studies concluded that several key factors impacted the rate of this catalytic 

reaction.57 The reaction was significantly accelerated by using an electron-poor sulfonamide (nosyl instead of 

tosyl) and modestly accelerated when electron-rich olefins were employed, compared to electron-poor 

olefins. Moreover, a M(hfacac)2 additive could accelerate the reaction, with Zn(hfacac)2 providing the optimal 

results. 

 

N Cu(hfacac)2 (5mol %)

DCM, 150 °C, 0.3-16 h NR2

R1 = Ts, Phth; R2 = H, Ph, OTBS, CO2Me,

R2
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Scheme 24 

 

The reactions of aziridines with buta-2,3-dienoate are reported to form pyrrolidines and pyrroles by C-C 

bond cleavage and C-N bond cleavage of aziridines, respectively, followed by [3+2]-cycloaddition.58,59 The 

preference for cleavage depends on substitution pattern of aziridines, and solvent used. In a recent 

communication, Laia and Pinho e Melo have reported the thermal reactivity of an alkyne or allene-bearing 

aziridines, derived from salicylaldehyde. Thermolysis of aziridines results into a pericyclic ring-opening 

generating azomethine ylides. The latter intermediate undergoes an intramolecular [3+2]-cycloaddition with 

the allene or alkyne moiety present in it to form the pyrrole derivatives.60 The two representative examples of 

formation of pyrrolidine 79 and dihydropyrrole 81 from aziridines 78 and 80, respectively, are shown in 

scheme (Scheme 25). According to the report, aziridine-2-carboxylates furnished higher yields in comparison 

to 2-benzoylaziridines. Also, the carbon-carbon triple bond was observed to be more activated dipolarophile in 

comparison to allene.   
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Activated aziridines 82 containing sulfonyl, nosyl, and tosyl groups on ring-nitrogen has been reported to 

undergo a Lewis acid-catalyzed domino ring-opening cyclization reaction with malononitrile at low 

temperatures to give 4,5-dihydropyrroles 83 in excellent yields (Scheme 26).61 The formation of products has 

been explained by an SN2-type pathway. A malononitrile anion, formed after proton abstraction from 

malonate by t-BuOK, attacked the Lewis acid-activated aziridine intermediate 84 to generate another 

intermediate 85, which cyclized to intermediate 86. Subsequent protonation of intermediate 86 by aqueous 

NH4Cl gave intermediate 87 which then tautomerized to dihydropyrrole products 83 (Scheme 27).61  
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Scheme 27 

 

4.3 Synthesis of pyrrolidines  

Pyrrolidine motif occurs in alkaloids from natural resources such as nicotine, epibatidine and hygrine.62 They 

are also found in the leaves of tobacco and carrots.63 In addition, pyrrolidines are compounds of medicinal 

importance. The drugs like procyclidine and bepridil are pyrrolidine derivatives.63 L-Proline and its derivatives 

having pyrrolidine ring are well-known chiral organocatalysts.64 Obviously, the construction of pyrrolidine ring 

is of utmost importance to synthetic and medicinal organic chemists. 

Aziridines as masked azomethine ylides are well-known precursors for synthesis of pyrrolidines by [3+2]-

cycloaddition. Many research groups have reported palladium-catalyzed [3+2]-cycloaddition of aziridines 

leading to pyrrolidines. Lowe and coworkers have reported the reaction of trans-3-styryl-2-phenyl-N-

tosylaziridines 88 with methyl vinyl ketone (X = Me) or with ethyl thioacrylate (X = SEt) 89 in the presence of a 



Arkivoc 2018, i, 50-113  Singh, G. S. et al. 

 

 Page 68  ©
ARKAT USA, Inc 

palladium catalyst, a phosphine and an additive to give a diastereomeric mixture of pyrrolidines 90a-d in 60-

66% yields with excellent enantioselectivity (ee 92-93%) (Scheme 28).65 The reaction was promoted by 

nonpolar solvents - pentane, diethyl ether or mixtures of diethyl ether/pentane, and sterically hindered 

phosphines; (o-tol)3P, (2-furyl)3P and (4-F-Ph)3P. The presence of a styryl group on C-2 position of the aziridine 

furnished excellent diastereoselectivities but moderate yields. Replacing the styryl group with a 4-

chlorophenyl group or 1-propenyl group lowered both the diastereoselectivity and yield. In addition to 

lowering the diastereoselectivity, the prop-1-enyl group switched the stereoselectivity to compound 90c as 

the major diastereomer. The 2-vinyl-3-phenyl-aziridine 88 offered only two diastereomers, 2,3-cis-3,4-trans-

substituted pyrrolidine 90c as the major diastereomer and 2,3-cis-3,4-cis-substituted pyrrolidine 90d as the 

minor one. 
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Scheme 28  

 

The scope of the reaction was extended to trans-2-(trimethylsilyl)vinyl-3-phenyl-N-tosylaziridine 91 to get 

2,3-cis-3,4-trans substituted pyrrolidine bearing a Z olefin side chain 92a as the major product.65
 Aziridine 91 

also reacted with ethyl thioacrylate 89 to give the diastereomer 92a as the major product (Scheme 29).  
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Aggarwal and coworkers have demonstrated the application of pyrrolidines, synthesized from the reaction 

of 2-vinylaziridine with Michael acceptors in the total synthesis of (-)-α-kainic acid and (+)-allo-kainic acid, 

pharmacological tools used in neurological disorders.65,66 The reaction of vinylaziridine 93 with fumarate 94 

furnished trisubstituted pyrrolidine 95 in the presence of MgI2 (Scheme 30).66 The latter promoted the SN2-

type ring-opening and concomitant cyclization with fumarate Michael acceptors forming 2,3,4-trisubstituted 

pyrrolidine 95. The auxiliary was then removed by basic hydrolysis to afford acid 96 that was then converted 

into a diazoketone by treatment with oxalyl chloride and trimethylsilyldiazomethane. Sonication of this 

intermediate in the presence of silver benzoate promoted the Arndt-Eistert homologation to furnish the 

diester. The saponification of the ethyl esters and removal of the tosyl group gave (+)-allo-kainic acid 97. 

Sengoden and Punniyamurthy, have employed 2-arylaziridines with free NH- or N-alkyl and N-aryl group in a 

highly efficient [3+2]-cycloaddition reaction with different heterocumulenes resulting into formation of 2-

iminopyrrolidines, 2-iminooxazolidines, and 2-iminothiazolidines, etc. in very good yields.67 The reaction was 

catalyzed by an iron catalyst (Fe(NO3)2.9H2O) in water as a solvent. 
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Scheme 30 

 

Lei and coworkers have reported the Lewis acid Y(OTf)3–catalyzed ring-expansion of N-tosyl aziridine 

dicarboxylates 98 with electron-rich olefin 3,4-dihydro-2H-pyran 99 leading to the formation of functionalized 

pyrrolidines 100 in good yields with moderate to excellent diastereoselectivities (Scheme 31).68 The use of 

commercially available chiral ligand Pybox in the reaction offered moderate enantioselectivity (ee 57-59%) in 

the reactions. The selective coordination of the Lewis acid with dicarboxylates of aziridines led to the cleavage 

of C-C bond of aziridines 98 through intermediate 101 forming metalloazomethine ylides 102. The ylides went 

into the formal [3+2] dipolar cycloaddition with electron-rich acyclic olefins or 3,4-dihydro-2H-pyran 99 via a 

stepwise reaction pathway involving intermediate 103 to produce substituted pyrrolidines 100. 
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Scheme 31  

 

Yadav and coworkers have exploited the application of organocatalysts in synthesis and reactions of 

aziridines.69 Rai and Yadav have reported the reaction of enamines 108, generated in situ from the reaction of 

aldehydes 104 and a pyrrolidine derivative 106, with 2-arylaziridines 105 forming pyrrolidines 107 as a single 

diastereomer in very good yields (Scheme 32).70 The presence of a chiral carbon in aziridines was the main 

driving force in formation of a single diastereomer. Usually in such aziridines, the nucleophilic attack occurs at 

benzylic carbon of the ring. The present study, however, revealed the nucleophilic attack at other carbon atom 

presumably due to bulky nucleophile (steric control). The authors have explained the C-C bond formation step 

between the β-carbon of enamine and methylene carbon (CH2) of aziridine as the origin of stereoselectivity. 

This bond-formation took place from the Si-face of the trans-enamine because the Re-face was covered by the 

bulky (Me3SiO)Ph2 group.     
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More recently, Mal and coworkers have reported a one-pot method for the synthesis of indoline-fused 

pyrrolidines 112 (Scheme 33) by a domino ring-opening cyclization of activated aziridines 110 with indoles 109 

having substituents at C-3 and other positions.71 A Lewis acid-catalyzed SN2-type ring-opening followed by 

cyclization leads to the formation of hexahydropyrrolo[2,3-b]indoles 109. The latter compounds, on 

detosylation, afforded the corresponding products with a free NH group in excellent yields (up to 95%) with 

very high enantioselectivity (up to >99%). According to proposed mechanism, the Lewis acid coordinates to 

aziridine ring nitrogen, generating a highly reactive intermediate 113. A SN2-type nucleophilic attack by indole 

through its C-3 position on intermediate 113 leads to the formation of an iminium ion 114. The product 111 is 

then formed by an intramolecular nucleophilic attack by nitrogen on iminium ion. 
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Hirner and coworkers have demonstrated a palladium(0) and gold(I) Lewis acid dual-catalysis in 

rearrangement of vinyl aziridines 115 installing a C-C bond and C-N bond in one step to form pyrrolizidine and 

indolizidine products 116.72 According to proposed mechanism (Scheme 34), the gold complex (Lewis acid) 

attaches to aziridine nitrogen forming an aziridinium ion 117. The latter undergoes a Lewis acid-promoted 

oxidative addition by Pd(0) resulting into formation of a palladium(II) intermediate 118. A syn 

aminometalation in intermediate 118 released the Lewis acid and formed a palladacyclic intermediate 119. A 

reductive elimination from the palladacycle led to the formation of observed product.  A gold/palladium 

transmetalation occurred with complete retention of stereochemistry. A variety of substrates such as 

adamantyl (86%), cyclohexyl (56%), and cyclopentyl (51%) were tolerated in this reaction. Methyl substitution 

at the internal position of the tethered alkene also afforded the corresponding indolizidine in 67% yield. 

Increasing the olefin tether length in diphenyl vinyl aziridine provided indolizidine in good yield (74%) with an 

increased diastereomeric ratio (10:1). However, it was not efficient with gem-dimethyl group, probably due to 

a reduced rate of cyclization from a diminished Thorpe-Ingold effect. 
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Scheme 34 

 

Aziridines react with π-nucleophiles to give both bicyclic and monocyclic compounds under acidic 

conditions as governed by N-substitution.73 The p-nitrophenylsulfonyl (N-Ns)-protected aziridine 120 gave 6-

azabicyclo[3.2.1]octane 121 in 95% yield in the presence of a Lewis acid B(C6F5)2 (Scheme 35). The N-

diphenylphosphinyl (Dpp)-protected aziridine furnished a mixture of aminomethyl-substituted cyclohexenes 

with Lewis acids; BF3OEt2 and B(C6F5)2, respectively. The formation of product was explained via an initial 

attack of the Lewis acid on the olefinic linkage of the aziridine 120 leading to a carbocationic intermediate 122 

that cyclized by nucleophilic attack of nitrogen on the carbocation. Azabicyclooctanes are found in natural 

products and pharmacologically active molecules.74 They are useful as antitumor agents.75 Azabicyclooctane 

based antagonists have been shown to decrease viability of breast cancer cells without affecting normal 

mammary epithelial cells as well as inhibiting tumor growth in a breast cancer xenograft model.75  

 

N

Ph
NPh

B(C6F5)3 (100 mol%)

 95 %120                                                            121

Ns

Ns

2 h

Ph

N
BF3

Ts
122

LA120 121

 
 

Scheme 35 

 

A novel N-bromosuccinimide-induced aminocyclization–aziridine ring-expansion cascade leading to the 

formation of functionalized pyrrolidines 124a as the major products is reported.76 The mechanism proposed by 

the authors involved addition of bromine on C=C of aziridines 123 by the NBS/NsNH2 protocol to produce an 

intermediate 125a. A subsequent reaction of aziridine in 125a with the bromonium ion led to the generation 

of another intermediate 125b, which then transformed to either pyrrolidines 124a or piperidines 124b 
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depending on the NsNH2 attack on C-5 or C-4, respectively (Scheme 36). The substrates with electron-rich 

substituents afforded better regioselectivity. The best selectivity was observed in substrate bearing a tert-

butylphenyl group. Compared to other substrates, ortho-CH3 phenyl system gave slightly lower yield. This was 

attributed to the steric repulsion.  
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Scheme 36 

 

Martinand-Lurin and coworkers have reported the Lewis acid-catalyzed ring-opening and cycloaddition of 

N-sulfonylaziridines with methylenecycloalkanes such as methylenecyclobutane, methylenecyclopentane, and 

methylenecyclohexane to achieve the synthesis of spiro-fused pyrrolidine ring. For example, the reaction of N-

arylsulfonylaziridines 126 with methylenecyclopentane 127 afforded pyrrolidines 128 (Scheme 37).31 The 

study revealed that the substituent on nitrogen had little influence on [3+2] cycloaddition reaction that was 

rationalized by theoretical studies. The DFT calculations revealed that the formation of 1,3-zwitterionic species 

was probably the rate-determining step. 

 

N
SO2R

H

Ph

BF3.OEt2 (1.5 equiv.)

DCM, - 78 oC, 2 h
+

N
SO2R

Ph

(6 examples)

47-66%

R = 4-MePh, Ph, 4-O2NPh,
       4-MeOPh, OCH2CCl3, 
       OCH(Ph)CCl3

126                     127                                                         128

 
 

Scheme 37 

 

Dolfen and coworkers have reported synthesis of functionalized 2-(trifluoromethyl)pyrrolidines, from 1-

tosyl-2-(trifluoromethyl)aziridine 5.13 Error! Bookmark not defined. They have extended this study to the synthesis of 
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piperidine and azepane as well. Deprotonation and subsequent alkylation of 1-tosyl-2-

(trifluoromethyl)aziridine 5 afforded the aziridines 129, which upon treatment with nucleophiles, triggered 

rearrangements of aziridines toward pyrrolidines 130 and piperidines 131 (Scheme 38). In this case, the Cl- 

serves as a requisite leaving group for the ring-expansion process.  
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Scheme 38 

 

The mechanism proposed by the authors involved the ring cleavage of aziridines 129 under the action of 

the nucleophile to form the corresponding anions 132, followed by either direct ring-closure or protonation to 

amines 133 (in protic solvents) followed by ring-closure, thus affording pyrrolidines 130 or piperidines 131 

(Scheme 39). Ring rearrangements towards piperidines occurred in the presence of a higher boiling solvent 

dimethylformamide. Treatment of aziridine 129 (n = 2) with equimolar amounts of i-PrNH2 and NaI afforded 

piperidines (see Section 5.1) while the treatment of 129 (n = 3) with 5 equiv of i-PrNH2 or i-BuNH2 and NaI (1 

equiv) in acetonitrile afforded the 1-isoalkyl-3-tosylamino-3-(trifluoromethyl)azepanes (see Section 6.1) 

instead of piperidines. Addition of an equimolar amount of NaI appeared to be necessary to induce ring-

closure in these cases.  
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Scheme 39 

 

Dolfen and coworkers have reported the Lewis acid-mediated regio- and stereoselective ring-opening of 

different 2-(2-cyanoethyl)aziridines 134 to pyrrolidines 137 either directly or via other aziridines 135 and 136 

obtained by alkylation of side-chain in aziridines and 135, respectively (Scheme 40).77 The pyrrolidines were 
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obtained through a ring-opening of the aziridine moiety at the more hindered carbon atom of intermediate 

139 (Route a, Scheme 41), while 3-aryl-3-(2-cyanoethyl)aziridines 138 furnished 3-aminopiperidines 140 (see 

section 5.1) through a regioselective ring-opening at the benzylic position of the same intermediate  due to 

the resonance stabilization of the developing benzylic carbenium ion at the C-3 position (route b, Scheme 42). 

The regioselectivity of ring opening process, according to the routes a and b, could be controlled by the 

selection of the substituents on the aziridine core. 
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Scheme 40 
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4.4 Synthesis of 2-pyrrolidinones 

The 2-pyrrolidinones or γ-lactam ring occurs in many secondary metabolites and is pharmacophore in many 

biologically important natural and synthetic compounds.78 It has also been used as a building block for the 

synthesis of naturally occurring compounds.  Lee and coworkers have reported the synthesis of (-)-8-epi-

swainsonine 144 that is an indolizidine derivative from a commercially available 1-(R)-α-methylbenzylaziridine-

2-methanol 141.79 Aziridine-diol 142, obtained from the aziridine 141 in three steps, undergoes a 
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regioselective ring-opening under influence of acetic acid in dichloromethane at room temperature. Heating 

the crude product mixture in toluene led to the formation of pyrrolidinone 143 (Scheme 42) bearing adjacent 

hydroxyl groups in cis-configuration. This compound was used for synthesizing (-)-8-epi-swainsonine 144 in a 

number of steps. 
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Scheme 42 

 

The approaches for synthesis of γ-lactams using transition metals as catalysts in various reactions have 

made considerable progress in recent years.80  Ghorai and Tiwari have reported the synthesis of γ-lactams 

from N-tosyl, N-sulfonyl and N-nosylaziridines by transition metal catalysis (Scheme 43).81 The mono- and 

disubstituted aziridines 17 undergo an SN2-type ring-opening under an influence of the Lewis acid in a highly 

enantio- and diastereoselective manner that is followed by cyclization with active methylene compounds 145 

in domino fashion to afford the functionalized chiral γ-lactams 146 in good yields. It was observed that the 

electronic effect of the phenyl ring on N-tosyl-2-phenylaziridine 17 had a vital role in determining the regio- 

and diastereoselectivity. The authors have demonstrated the synthetic utility of such compounds by 

synthesizing pyrrolidinone-3-carboxylate 147 and N-tosylpyrrolidinone derivatives 149 by desulfonation and 

decarboxylation, respectively, of a pyrrolidinone 148 (Scheme 44). 
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Scheme 43 
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A pyrrolidine-catalyzed [3+2] cycloaddition of substituted aziridines 150 with isocyanates, 

isoselenocyanates and carbon disulfide forming five-membered heterocycles 151 including pyrrolidinones is 
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reported by Sengoden and coworkers (Scheme 45).82 This reaction goes through a urea-type intermediate 152, 

which on reaction with aziridine through an SN2 reaction afforded product 153.  The intramolecular cyclization 

of the product 153 provided heterocycles 151 (Scheme 46). The same group also reported similar reactions of 

aziridines with heterocumulenes on water using iron(III) catalysis.83 
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Scheme 45  
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4.5  Synthesis of imidazoles 

The 2-chloro-2-imidoylaziridines 154, prepared via an aza-Darzens type reaction of 3,3-dichloro-1-azaallylic 

anions and N-sulfonylaldimines, undergo a thermal rearrangement via C-C bond cleavage to produce 4-chloro-
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2,5-diarylimidazoles 157 on heating under reflux in acetonitrile.84 The reaction involves the conversion of 3-

aryl-2-chloro-2-imidoylaziridines 154 to azomethine ylides 155 and their subsequent 1,5-dipolar 

electrocyclization to imidazolines 156 (Scheme 47). The latter products, after loss of benzenesulfonate, 

afforded imidazoles 157. 
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Scheme 47 

 

4.6 Synthesis of imidazolines 

The reaction of imidoyl chlorides 159 with aziridine derivatives 158 in a single-pot Heine process have led to 

the synthesis of functionalized 2-imidazolines 161 (Scheme 48).85 The reaction is highly regio- and 

stereospecific. The imidoyl aziridine 160 is most likely activated by the Bronsted acid, 2,6-lutidine.HCl. An SN2 

attack of the chloride ion at the C-2-position of the imidoyl aziridines 160 may form intermediate 162 that can 

cyclize through a second SN2 reaction. Alternatively, the attack of the imidoyl carbon atom by the chloride ion 

to form product 163 and ring-expansion of the latter product by a 4-endo-tet ring-closure either by a SNi or 

stepwise process may lead to the formation of product (Scheme 49). There are evidences in support of both 

mechanisms.   
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Scheme 48 
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Scheme 49 

 

4.7 Synthesis of imidazolidines 

Sengoden and coworkers have reported a stereospecific copper-catalyzed domino ring-opening of activated 

aziridines and their sp
3 C-H functionalization with N-alkylanilines resulting into the formation of functionalized 

imidazolidines.86 Anilines with bulky group on nitrogen such as N-benzylaniline and N-isopropylaniline failed to 

react with 2-phenyl-1-sulfonylaziridine due to steric hindrance.  The reaction of an optically active aziridine 

110a with a series of N-methylanilines 164 afforded imidazolidines 165 with excellent optical purity (ee >99%) 

(Scheme 50). The plausible mechanism for the formation of products involves coordination of Cu(OTf)2 with 

the nitrogen lone pair of aziridine and its subsequent ring-opening leading to the formation of intermediate 

166. Another intermediate 167 may be formed by single electron transfer reduction of Cu(OTf)2 using the 

nitrogen lone pair of 166. Homolysis of N-methyl C-H bond by tert-butoxy radical is suggested to form imine 

168 that may cyclize to give the observed products.  
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Scheme 50 

 

4.8 Synthesis of imidazolidin-2-ones, imidazolidine-2-thiones, and 2-iminoimidazolidines 

Takeda group has employed Lewis base for the ring-expansion of aziridinofullerenes with aryl isothiocyanates 

forming imidazolidinone-fused fullerenes.87 A ring-expansion of trans-aziridine-2-carboxylates with isocyanates 

results into formation of imidazolidin-2-ones.88 A similar reaction of trans-aziridine-2-carboxylates 169 with 

isothiocyanates leads to the formation of trans-imidazolidine-2-thiones 170 in regioselective and 

stereoselective manners (Scheme 51).89 The steric and electronic effects in substrates play a role resulting into 

epimerization of starting aziridines in some cases and/or formation of imidazolidin-4-ones. The formation of 

trans-imidazolidine-2-thiones is suggested via a zwitterionic key intermediate 171, generated by a nucleophilic 

attack of lone pair on aziridine nitrogen onto the electrophilic carbon of isothiocyanates. The zwitterionic 

intermediate 171 undergoes a regiospecific C-N bond cleavage to give a linear zwitterionic intermediate 172 

that cyclizes to form the final product. The formation of 2-iminoimidazolidines is reported by a Lewis acid-

catalyzed [3+2]-cycloaddition of carbodiimides with 2-substituted N-sulfonylaziridines and 2-

phenylaziridines.90 The reaction, catalyzed by zinc bromide, occurs in dichloromethane at room temperature.  
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4.9 Synthesis of oxazoles  

It was very recently demonstrated that N-H ketoaziridines 62a could be rearranged to 2,5-diaryloxazoles 174 

via an in situ formation of N-bromoketoaziridines 173 in the presence of N-bromosuccinimide.91 Under 

thermal conditions, N-bromo substituted ketoaziridines 173 are converted into an azomethine ylide 175 via C-

C bond cleavage that is followed by the ring-closure of the latter leading to a cyclized intermediate 176, which 

then undergoes thermal elimination of hydrogen bromide to produce oxazoles 174 (Scheme 52). The authors 

have also reported that the presence of electron-withdrawing R1 groups and electron-donating R2 groups 

favored the formation of azomethine ylide. It was also observed that the bromine group on the aziridine 

nitrogen had a stabilizing effect on the formation of azomethine ylide and was crucial for the thermal C-C bond 

cleavage of the ketoaziridine ring.   
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Scheme 52 

 

4.10 Synthesis of oxazolidines 

A tandem ring opening/cyclization of aziridines leads to the formation of oxazolidine derivatives.92 A silver 

triflate, AgOTf-catalyzed ring-opening of N-tosyl-2-arylaziridines 110 with water and subsequent reaction of 

the ring-opened product with another molecule of aziridine gives the product 177 (Scheme 53). 2-(2-

Chlorophenyl)/alkyl-1-tosylaziridines failed to afford the desired oxazolidine products. The ring opens by a 

nucleophilic attack of water at the benzylic ring carbon (C-2). The resulting 1-aryl-2-aminoethanol 178 reacts 

with aziridine again by a nucleophilic attack of its hydroxyl group on benzylic carbon of the aziridine 

generating a bis-aminoether 179. The latter compound, in the presence of AgOTf, gives another intermediate 

180 that is stabilized to intermediate 181 by neighboring group participation of aromatic ring. A 1,2-phenyl 

migration in intermediate 181 forming another intermediate 182 followed by cyclization forms the final 

product. 
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Scheme 53 

 

The Lewis acid-catalyzed [3+2]-cycloaddition of carbonyl compounds to aziridines has been investigated by 

many researchers recently. Wu and coworkers demonstrated an efficient [3+2]-cycloaddition of aldehydes  

and azomethine ylides, obtained from a Lewis acid catalyzed C–C bond cleavage of N-tosylaziridines 98 under 

mild conditions, providing highly substituted 1,3-oxazolidines 183 with high diastereo- and regioselectivity 

(Scheme 54).93 It is worthy to note that moderate enantioselectivity (60% ee) is achieved by the use of Pybox 

as a chiral ligand. In yet another recent report, Yang and coworkers have reported the BF3-OEt2-catalyzed 

cycloaddition of N-sulfonylaziridinofullerenes with various aromatic-, heteroaromatic-, and aliphatic 

aldehydes, and some ketones forming fullerooxazolidines.94 The reaction of ethyl formate, however, led to 

elimination of ethoxy group in an unprecedented manner forming fullerooxazole bearing no substituent at C-2 

position of oxazole ring.     
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Scheme 54 
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4.11 Synthesis of oxazolidin-2-ones and oxazolidine-2-thiones 

Oxazolidinones are useful as protected vicinal amino alcohols and as Evans auxiliaries.95 They have been 

reported to exhibit biological activity, especially optically active oxazolidinones.96 Some oxazolidinones inhibit 

bacterial protein synthesis by preventing binding of the aminoacyl-tRNA to the A site of the ribosome.97 For 

example, Linezolid (LZD) (Zyvox) has gained wide use clinically for treating infections caused by gram-positive 

pathogens.98 In that regard, many protocols for synthesizing oxazolidinones have been developed, including 

the use of aziridines. 

N-Boc-protected aziridines undergo an intramolecular Lewis acid-catalyzed reaction to give 

oxazolidinones.99 The reaction involves reduction of the aziridine aldehydes 184 with sodium borohydride 

followed by treatment with HCl in dioxane to furnish a single regioisomer of oxazolidinones 185 (Scheme 55).16 

The products were obtained in good yields with high enantiomeric excess with retention of configuration. 

 

CHO

BocN
R2

R1

OH

R2

184                                                                         185

n O

N
H

O

R1

n

1. NaBH4, MeOH
2. HCl in dioxane

 61-75 % (up to 90 %)

R1 = pentyl, Me
R2 = H,                     
n = 0, 1  

 

Scheme 55 

 

Hamada group has also synthesized an oxazolidinone 189 from an N-boc-protected aziridine 186 (Scheme 

56).15Error! Bookmark not defined. The oxazolidinone was then utilized to access a key intermediate required for the 

synthesis of (-)-allosamizoline, an aglycon unit of the potent chitinase inhibitor allosamidin. The aziridine ring-

opening with acetic acid leading to formation of cyclopentane 187 followed by creation of an olefinic system 

188 in the cyclopentane ring,  and cyclization led to an entry into an oxazolidinone ring system.   
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Very recently Kaabi and coworkers reported the regio- and stereoselective transformation of trans-N-

alkylaziridine-2-carboxylates 169 to the corresponding trans-1,3-oxazolidin-2-ones 191 in good yields (Scheme 

57).100 It is noteworthy to mention that the reaction conditions and N-substituent had little influence on the 

course of the reaction. Upon reaction with methylchloroformate 190, a regioselective nucleophilic ring-

opening by the attack of in situ liberated chloride anion on the benzylic carbon of the electrophilic aziridinium 

ion 192 formed the chloride intermediates 193. This compound could be cyclized to trans-N-alkyl-1,3-

oxazolidin-2-ones 191 through an intramolecular nucleophilic attack of the carbonyl oxygen atom and 

subsequent displacement of chloride ion.  

 

N

R

R1
Cl O

CH3

O

O N

R CO2Et

O

R1∆, 12 h
64-87 %

R = Ph; R1 = i-Pr,
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169                        190 191

MeCN

N

R
CO2Et

R1 O
CH3O

Cl

R
O

N

Cl CO2Et

R1

O
H3C

192                              193

CO2Et

 
 

Scheme 57 

 

A commercial approach that is very efficient as well to construct oxazolidinone ring from aziridine is the 

insertion of CO2 molecule in aziridine ring. A number of catalysts are known in literature to ease the reaction. 

Some of these involve quaternary ammonium bromide-functionalized polyethylene glycol,101 zirconyl 

chloride,102 alkali metal halide,103 Lewis basic ionic liquids,104 protic onium salt,105 polyethylene glycol-

functionalized phosphonium salts,106 DBN,107 polyethylene glycol functionalized ionic liquids,108 2,2’,2’’-

terpyridine,109 and mesoporous zirconium phosphonates.110 A very few selected examples are described in 

succeeding paragraphs.  

An insertion of CO2 in aziridine ring of NH-aziridine or 1-alkyl-2-arylaziridines 105 in the presence of 

polymer-supported diol-functionalized ionic liquids (PS-DFILXs) as catalysts gives 4- and 5-aryl-2-

oxazolidinones 194 and 195 (Scheme 58).111 The reaction offers high conversions with excellent 

regioselectivities under mild solvent-free conditions. The yield of the major product 194 increases with an 

increase in size of alkyl chain on nitrogen atom of aziridine. On the contrary, the increase in bulkiness of the N-

substitution (t-butyl, C-hex) tends to lower yields. However, the problem of steric hindrance could be 

overcome by increasing the temperature of reaction. 
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Scheme 58 

 

The reaction is believed to be initiated by activation of the aziridine ring through hydrogen bonding 

between the hydroxyl groups of the polymer-supported diol-functionalized ionic liquid 196 and the N- atom of 

aziridines 105 to form an intermediate 197. This tends to polarize the C-N bond of aziridines, resulting in ring-

opening via two pathways, a or b to give intermediates 198 and 199, respectively. A subsequent cyclization 

leads to the formation of 2-oxazolidinones 194 and 195 and regeneration of the catalyst. The major product 

194 could originate from ring- opening of the aziridine at the most hindered carbon, path a,112 whereas the 

minor product 195 may be formed from the less hindered position, path b. The hydroxyl groups on vicinal 

carbon atom of the ionic liquid do not only initiate activation of the aziridine, but also stabilize intermediates 

200 and 201 during the reaction (Scheme 59).  
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Scheme 59 
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A similar carbonylation reaction of unactivated aziridines 105 was reported by Gao et al whereby 

polystyrene-supported Lewis acid Fe(III) ionic liquid catalyst was used.113 Oxazolidinones 194 and 195 were 

selectively formed in good to excellent yields as well as high regioselectivities (Scheme 60).  

 

N

R2

R1

+ CO2

PS-MimFeCl4 (1 mol %)
      100 oC, 6 h
       Solvent-free

 84-97 % (87-97:13-3)

O N ON

R2 R2

R1

O O

R1
+

105
194 195

R1 = alkyl, R2 = aryl
    (5 aziridines)

( 8 MPa)

 
 

Scheme 60 

 

2-Vinyl aziridines 202 react with carbon dioxide (1 bar) in the presence of triphenylphosphine (PPh3) and 

palladium catalyst to furnish 5-vinyloxazolidinones 203 and 204 with no erosion in enantio-purity (Scheme 

61).114 Tetrabutylammonium difluorotriphenylsilicate adduct (TBAT) was required to hinder ion-pairing 

between the amide ion and the cationic Pd, thus increasing the yields of the products 203 and 204. The 

process is both regio- and stereoselective. Both the electron-donating and electron-withdrawing para 

substituents on the trans-aziridine core were tolerated. However, alkyl groups on the vinyl moiety resulted in 

lower yields. 
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(1 bar)

+

40 - 92 %
203 (79-98 % dr)

202

 
 

Scheme 61 

  

The mechanism involves the reaction of Pd(0) complex with trans-E-vinylaziridines 46 or cis-E-

vinylaziridines 205 to form a π-allyl palladium intermediate 206 which then isomerizes to another complex 

207. The intermediates 206 and 207 are then captured by carbon dioxide to afford the intermediates 208 and 

209, respectively, which cyclize to the corresponding 5-vinyloxazolidinones 203 and 204 (Scheme 62).114  
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Scheme 62 

 

Although the Lewis acid-catalyzed 1,3-dipolar cycloadditions are more common Takeda and coworkers 

have reported a Lewis base-catalyzed fixation of carbon dioxide with N-arylsulfonyl-substituted 

aziridinofullerenes to synthesize oxazolidinone-fused fullerenes.87 This group has used 10 mol% of 

tricyclohexylphosphine as a catalyst. The presence of phenylsulfonyl group gave 85% yield of the product. 

Introducing a nitro group at C-4 of phenyl ring drastically reduced the yield to 23% whereas a 4-methoxy group 

on same position yielded 70% of the product. The N-methylsulfonyl-substituted aziridinofullerene also 

afforded the product in 70% yield.      

The reaction of N-alkyl-3-arylaziridine-2-carboxylates 169 with phenylisocyanate 210 occurs without any 

catalyst leading to the formation of trans-oxazolidin-2-imines 211.88 The reaction proceeds by nucleophilic 

attack of aziridine ring nitrogen on carbonyl carbon of the isocyanate to form an intermediate 212 that cleaves 

at N-C3 bond of the aziridine ring forming another intermediate 213. An intramolecular nucleophilic attack by 

oxygen atom lone pair on enolate leads to cyclization forming the final product (Scheme 63).   

The first stereo- and regioselective conversion of keto-aziridines 214 to 2-iminooxazolidines 215 using 

phenylisocyanate 210 in the presence of potassium iodide is reported (Scheme 64).115 For the reaction in 

presence of potassium iodide, authors have proposed that the presence of an aryl moiety on C-3 and a 

carbamoyl moiety on ring-nitrogen develops a partial positive charge on C-3 making it an appropriate site for 

nucleophilic attack by iodide ion for ring cleavage. The ring cleavage is followed by an attack of oxygen to the 

iodide bearing carbon to give the oxazolidine.  
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Scheme 63 
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Scheme 64  

 

4.12 Synthesis of isoxazolidinones 

A simple and efficient synthesis of 4-alkylamino isoxazolidin-3-ones is reported by the ring-opening of N-

alkylaziridine-2-carboxylates by N-hydroxylamine anions.116 The N-alkylhydroxylamine salts 216 can act as N,O-

binucleophile towards ethyl N-alkylaziridine-2-carboxylates 169 to form the isoxazolidin-3-ones 217 (Scheme 

65). This reaction involved the regio- and stereo-specific nucleophilic ring-opening at the benzylic position by 

the oxygen atom of the hydroxylamine anion (R-NH-O-) as the first nucleophilic center, accompanied with an 

inversion of configuration. Then the O-alkylated hydroxylamine intermediate formed underwent a 

spontaneous intramolecular cyclization with the nitrogen atom as the second nucleophilic center, to give 

functionalized isoxazolidin-3-ones. The reactions of N-isopropylaziridine failed with hydroxylamine bearing a 

benzyl or tert-butyl group did not yield the product.  
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Scheme 65 

 

4.13 Synthesis of 2-iminothiazolidines 

Craig II and coworkers, in 2014, reported alkyl and aryl isothiocyanates as effective substrates for [3+2]-

cycloaddition with 2-substituted N-sulfonylaziridines and 2-phenylaziridine for the synthesis of 2-

iminothiazolidines.90 The reaction occurred in chemo-, regio-, and diastereoselective manners. The authors 

proposed the formation of products through an intimate ion-pair mechanism. The removal of sulfonyl group 

from the product opens up avenue for their further functionalization.  In 2016, two exciting papers have 

appeared on application of aziridines in synthesis of 2-imonothiazolidines. First, Ghorai and coworkers 

reported the formation of thiazolidines from activated aziridines by a Lewis-acid catalyzed domino ring-

opening and cyclization with aryl- and alkylisothiocyanates117 and then Punniyamurthy group reported an 

aluminum-catalyzed enantiospecific [3+2]-cycloaddition of unactivated aziridines 105 with isothiocyanates 218 

leading to the formation of 2-iminothiazolidines 219 (Scheme 66).118 Ghorai and coworkers have studied the 

reaction of aziridines with different sulfonylaryl groups on nitrogen with alkyl and aryl isothiocyanates in the 

presence of BF3.OEt2 to get the products in excellent yields (up to 99%). The reaction with enantiomerically 

pure disubstituted aziridines yielded the single diastereomer of the corresponding iminothiazolidines with ee 

up to 99% (Scheme 67). They have proposed similar mechanism as suggested earlier61,71 that is activation of 

aziridines by Lewis acid and SN2-type ring-opening followed by 5-exo-dig cyclization with isothiocyanates. 

Punniyamurthy et al. have employed unactivated aziridines using aluminum salen as a catalyst. In this study as 

well, a stereospecific SN2-type ring-opening followed by 5-exo-dig cyclization is proposed. In both studies, it 

was observed that the nucleophilic attack took place at benzylic carbon atom of the aziridine ring.  
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Scheme 66 
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Scheme 67 

 

 

5. Synthesis of Six-membered Heterocycles 

 

5.1 Synthesis of piperidines and tetrahydroisoquinolines 

The formation of piperidines from 2-chloroalkyl-2-trifluoromethylaziridines and from 2-cyanoaziridines has 

been described earlier in section on pyrrolidines.13,77 The 2-aryl-3-(2-cyanoethyl)aziridines 221 furnish 3-

aminopiperidines 222a and 222b through a regioselective ring-opening at the benzylic position due to the 

resonance stabilization of the developing benzylic carbenium ion at the C-2 position (Scheme 68).77  

 

N

R
CN

LiAlH4 (2 equiv)

In(OTF)3 (0.3 equiv)
THF, ∆, 1 h, N2

HN

R

NH
56-84 %

221                                                                           222a (R = H,56 %)
                                                                                 222b (R = Cl, 84%)  

 

Scheme 68  

 

Recently, Tummanapalli reported the first example of an intramolecular ring-expansion of N-benzyl-

substituted 2-arylaziridines 223 using scandium(III) as a Lewis acid.119 In this reaction, 4-substituted 

tetrahydroisoquinolines 227 are obtained by cyclization of  carbenium ion 224, which was generated in situ by 

treatment of N-benzyl aziridines 223 with scandium(III) triflate, through intermediates 225 and 226 (Scheme 

69). It should be noted that meta-alkoxy substitution is essential for the cyclization to occur. It also facilitates 

the efficient trapping of the carbenium ion leading to the formation of the tetrahydroisoquinoline. The 

employment of aziridines with other groups afforded 2-aminoalcohols. More recently, Xing and coworkers 

have reported a Lewis acid (BF3.OEt2)-catalyzed three-component reaction of arenes, aldehydes, and N-tosyl-

substituted 2-arylaziridines forming cis-1,4-disubstituted tetrahydroisoquinolines in moderate yields.120 The 

reaction proceeds through an iminium ion, generated from the reaction of aldehydes with amines 

[ArCH(Ar)CH2NHTs] that formed after the Lewis-acid catalyzed ring-opening of aziridines.    
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Scheme 69  

 

5.2 Synthesis of dihydropyridin-2-ones 

Fontana group has reported that the silyl-substituted aziridines, trans-3-phenyl-2-(2'-

trimethylsilyl)vinylaziridine 46 underwent palladium-catalyzed carbonylation at 1 bar CO pressure leading to 

the exclusive formation δ-lactam 228 (Scheme 70).44 The formation of this product has been explained 

through an unsymmetrical π-allyl-Pd complex 229. The preference for carbonylation occurring adjacent to Si 

may result due to the shorter C-Pd bond length in 229,121 leading to the formation of the acyl palladium 

species 230. The latter complex may undergo cyclization at a faster rate after photodesilylation. The reaction 

was observed to depend on the CO concentration which influenced the equilibrium concentration of the acyl 

palladium species 230. At higher pressure of CO (50 bar), β-lactam was still the major product (three 

diastereomers in overall yield of 43%) while the δ-lactam 228 was obtained in only 20% yield.  
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5.3 Synthesis of piperazines 

Samanta and coworkers have reported a BF3.OEt2-mediated highly regioselective ring-opening of less reactive 

N-Ts chiral aziridines 110b to synthesize piperazines 235.122 The N-Ts chiral aziridines, derived from α-amino 

acids, underwent a ring-opening reaction with S-phenylalanine methyl ester hydrochlorides 231 to form 

secondary amines 232, which were then protected using mesyl chloride. The mesyl protected 233 were 

treated with LiBH4 to afford carbinols 234. Finally, the Mitsunobu cyclization of 234 with 

diethylazodicarboxylate (DEAD) furnished cis-2,5-disubstituted chiral piperazines 235 (Scheme 71). This 

reaction sequence was exploited for the preparation of piperazine core framework of natural product (+)- 

piperazinomycin. 
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Scheme 71 

 

Treatment of N-alkyl arylaziridines 105 with a catalytic amount of a Lewis acid, magnesium bromide 

furnished corresponding 2,5-disubstituted N,N-dialkylpiperazines 236 as a 1 : 1 mixtures of two easily 

separable diastereoisomers together with the meso-product 237 (Scheme 72).123 Enantioselective version (er 

>98:2; yield 40 %) of this transformation was also developed, chiral aziridines (S) and (R) gave the chiral (S,S) 

and (R,R) piperazines, respectively, together with meso-compounds. 
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Scheme 72 
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5.4 Synthesis of pyrimidines 

Zheng and Wu have reported a base-promoted tandem reaction of 2-(2-alkynylphenyl)aziridines 238 with 2-

isocyanoacetates 239 in the presence of copper(II) triflate (Scheme 73).124 This reaction led to an entry into 

tetrahydro-3H-indeno[2,1-d]pyrimidine ring system 240 in moderate to good yields. When a 2-(2-

alkynylphenyl)aziridines with a tert-butyl group attached to the carbon-carbon triple bond was used, the 

product was obtained in trace amount.  
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Scheme 73 

 

Wang and coworkers have reported a catalytic enantioselective ring-opening followed by formal [3+3]-

cycloaddition reaction of 3-isothiocyanato-2-oxindoles 241 with N-(2-picolinoyl)aziridines 242 leading to the 

formation of pyrimidine ring spiro-fused to 2-oxindole ring 244.125 The authors have employed a magnesium 

catalyst generated in situ using (R)-3,3’-fluorous-BINOL 243 as a chiral ligand to synthesize a series of 

enantioenriched pyrimidines (Scheme 74). The authors have reported that variation of the ring systems on 

aziridine was well tolerated as the products were obtained in moderate to good yields but with excellent 

diastereo- and enantioselectivity. 
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N
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S
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+
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O
N
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N
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O
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N
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O
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R1
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F
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OH

F

241                              242                                                                      244
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Scheme 74 
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5.5 Synthesis of dihydroxazines  

Oxazines are heterocycles with diverse properties useful in material and medicinal chemistry. Some 

fluorescent dyes such as Nile red and Nile blue possess the aromatic benzphenoxazine structural motif.126 The 

1,3-oxazines possess biological properties such as antifungal,127,128 antibacterial,129,130 antitumor,131 

antimalarial132 and anti-HIV agents.133 They are also used as monomers for polymer formation and 

photochromic agents.134 

The chiral N-tosylaziridines 245 undergo a tandem ring-opening/ closing reaction with propargyl alcohols 

246 in the presence of potassium tert-butoxide in dimethylsulfoxide at 40 oC furnishing 3,4-dihydro-2H-1,4-

oxazines 247 in reasonable yields (Scheme 75).135 Various chiral mono N-tosylaziridines bearing substituents 

with different electronic and steric effects were tolerated with the exception of unsubstituted and benzyl 

substituted N-tosylaziridines. Substituent on the aryl propargyl alcohols had no effect on the yield. The most 

plausible mechanism involves formation of an oxygen nucleophile by deprotonation of aryl propargyl alcohols 

246 by potassium tert-butoxide. The oxygen nucleophile reacts with the N-tosylaziridine 245 to furnish 

nucleophilic intermediate 248. Isomerization of intermediate 248 leads to generation of an allene 

intermediate 249 which then undergoes intramolecular nucleophilic ring-closing reaction to aryl dihydroxazine 

247.135  

 

+ R1

OH N

O

R1

Ts
R

    t-BuOK
DMSO, 40 oC

    22-78 %
245 246 247

R = H, Me, Bn, n-Bu, i-Bu, i-Pr
R1 = Ph, 3-MePh, 3-CF3Ph, 4-BrPh,
1-naphthyl, thiophen-2-yl

(13 examples)

R1

O

N
Ts

R

Isomerization

Ring
closing

t-BuOK

246

O

R1
R N

Ts

248                                                249

N
Ts

R

245

 
 

Scheme 75  

 

A gold(I)-catalyzed tandem ring-opening and 6-exo dig cyclization/isomerization of aziridines 17 with 

propargylic alcohols 250 is reported as an efficient entry to functionalized 3,4-dihydro-2H-1,4-oxazine ring 

system 251.136 The latter compounds could be easily reduced to corresponding morpholines. The N-

tosylaziridines with different electronic environments on C-2 and C-3 positions undergo an easy nucleophilic 

ring-opening by SN1 mechanism followed by cyclization/isomerization cascade (Scheme 76). The gold(I) 

catalyst serves as both π acid and σ acid, to activate both the substrates in the reaction. The N-

benzoylaziridines did not react under these conditions. The symmetric bicyclic aziridines used in study led to 

the synthesis of corresponding fused-oxazines in reasonable yields at 55 oC. 

 



Arkivoc 2018, i, 50-113  Singh, G. S. et al. 

 

 Page 95  ©
ARKAT USA, Inc 

N
Ts

R1 R
R4

OH

R3
+

Ph3PAuCl (5 mol%)
AgOTf (6 mol%)

DCM, N2, 0 oC
O

N
Ts

R1

R R3
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(18 examples)

yields: 22-85%

R1 = H; R = aryl; R1, R = C-pent, C-hex
R3 = H; R4 = H, alkyl, aryl

17                          250                                                                       251

 
 

Scheme 76 

 

5.6 Synthesis of dihydrobenzoxazines and dihydrobenzothiazines 

Bhadra and coworkers have reported the synthesis of a series of diversely functionalized 1,4-benzoxazines 253 

by Al2O3-supported Cu(II)-catalyzed domino aziridine ring-opening of N-tosylaziridines 110 with 2-iodophenols 

252 followed by cyclization (Scheme 77).137 The catalytic system was prepared by stirring an aqueous solution 

of CuSO4-5 H2O with basic alumina for 2 h at room temperature.138 The 2,3-dialkylaziridines and cycloalkane-

fused aziridines were also employed successfully. The nucelophilic attack occurred regioselectively at benzylic 

carbon leading to the cleavage of C2-N1 bond only when the catalyst was used. The catalyst could be 

recovered and reused for seven times without any loss of efficiency. Ghorai and coworkers have reported the 

synthesis of chiral dihydrobenzothiazines 255 through regio- and stereoselective SN2-type ring-opening of 

activated aziridines 17 with 2-halothiophenols 254 followed by copper powder-mediated C-N bond cyclization 

(Scheme 78).52  
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252                        110                                                    253

Ts R

 
 

Scheme 77 
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17                          254                                                                 255

 
 

Scheme 78 
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De Kimpe and coworkers have reported the synthesis of dihydrobenzoxazines, dihydrobenzothiazines, 

dihydrobenzodioxines, dihydrobenzodithiines, and dihydrobenzoxathiines 256 and 257 from cis-1-tosyl-2-

tosyloxymethyl-3-(trifluoromethyl)aziridine 43 (Scheme 79).38 A regioselective ring-opening occurs either 

directly forming intermediate 259 or through another aziridine 258 depending on the nucleophile used. The 

sulfur-nucleophile led to nucleophilic substitution on aziridine followed by ring-opening whereas the oxygen 

nucleophile led to ring-opening first.  
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258                                        259  
 

Scheme 79 

 

5.7 Synthesis of morpholines and thiomorpholines 

The ring-opening of aziridines with different nucleophiles followed by cyclization has been reported to form 

morpholine derivatives by different group. In 2010, Bornholdt developed a method to access 3-substituted 

morpholines 264 from N-2-benzothiazolesulfonyl (Bts)-activated aziridine 260 (Scheme 80).139 The reaction 

involved the Cu-catalyzed ring-opening of aziridine with Grignard reagents forming aminoethers 261 that were 

converted to alcohols 262. A subsequent ring-annulation reaction with a vinylsulfonium salt forming 

morpholines 263 followed by the deprotection of N-Bts group under very mild conditions led to the formation 

of final products.  
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260                                                    261                                                  262

264                                                263  
 

Scheme 80 

 

Ghorai and coworkers have published several papers on Lewis acid-catalyzed ring-opening reaction of 

activated aziridines.140,141 A Cu(OTf)2-catalyzed highly regioselective SN2-type ring-opening of chiral aziridines 

126 with 2-chloroethanol 265 followed by cyclization furnishing morpholines 266 is reported (Scheme 81).142 

The partial racemization of the starting aziridine was prevented by using quaternary ammonium salts to get 

the product with high enantioselectivity (up to 99%) and diastereoselectivity (up to 99%). The highest 

enantioselectivity of 90% was observed with N-tosyl-2-phenylaziridine when the reaction was carried out at -

50 oC for 6 hours.  

 

N
SO2R

Ph

+ HO
Cl

1. Cu(OTf)2, TBAHS
    DCM, 0 - -50 oC

2. KOH, THF, r. t.
    20 min-6 h

O
N

Ph SO2R

yields: 56-62%
ee: 82-90%

R = Ph, 4-MeOPh, 4-FPh

126                       265                                                       266

 
 

Scheme 81  

 

McGhee has described the synthesis of 2,5-disubstituted and 2,3,5-trisubstituted morpholines 270 from 

carbamate-protected aziridines 267 in either a two-step sequence (Scheme 82), or a one-pot domino reaction 

sequence.143 In the two-step sequence, Lewis acid catalyzed selective attack of allyl alcohol 268 at the more 

substituted carbon atom of aziridines afforded aminoalkenes 269, which underwent hydroamination in the 

presence of palladium catalyst 271 to afford substituted morpholines 270. They also showed a one-pot ring 

opening-hydroamination eliminating the need to isolate the amioalkene intermediate procedure using AgBF4 

as the latter can also act as a mild Lewis acid.  
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Scheme 82 

 

Xia and coworkers have reported a metal-free one-pot synthesis of 2-substituted and 2,3-disubstituted 

morpholines from N-tosyl-substituted 2-arylaziridines.144 This group has used a simple and inexpensive reagent 

ammonium persulfate as an oxidant for aziridine ring-opening with 2-haloethanols. Use of optically pure 

aziridines in reactions led to the synthesis of chiral morpholines in 95-99% ee but in low to moderate yields. It 

is assumed that aziridine participates in single electron transfer (SET) with the persulfate anion to generate the 

radical cation 273 (Scheme 83). A concerted ring-opening and nucleophilic addition gives an amino radical 

intermediate 274. This radical is converted to a haloamine alkoxy intermediate 275 by abstraction of a 

hydrogen atom from alcohol. Finally, the cyclization in presence of a base gives morpholines. 
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(14 examples)
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110                                                                         272

265

 
 

Scheme 83 

 

Samzadeh-Kirmani has reported a single-pot reaction of 2-substituted aziridines, nitromethane, and 

isothiocyanates forming 1,4-thiomorpholine.145 The reaction gave the best yield when potassium carbonate 

was used as base in THF. The reaction occurs at 60 oC in eight hours. 

Pathipati and coworkers have reported the expansion of aziridine ring to a six-membered heterocyclic 

series with three heteroatoms, one oxygen and two nitrogen atoms, in the ring.146 A series of 1,2,4-

oxadiazinanes 278 have been synthesized by reactions of aziridines 276 with nitrones 277 in the presence of 
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indium(III) chloride as a Lewis acid catalyst (Scheme 84). The N-benzylaziridines reacted even without catalyst 

but furnished low yields. The N-ethylaziridine, however, did not react in the absence of a catalyst. Also, N-

tosylaziridine did not undergo annulation probably due to weak Lewis acid activation or less nucleophilicity of 

the N-tosyl group. 
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Scheme 84 

 

Wulff and coworkers have reported the formation of morpholine-2,3,6-triones 280 from the reaction of cis-

1-benzhydryl-3-arylaziridine-2-carboxylic acids 279 with oxalyl chloride (Scheme 85).45 The authors have 

suggested two possible mechanisms for the formation of products. The first possibility is an initial ring-opening 

of the aziridine 281 to give the β-chloramine 282 which may cyclize to morpholine-2,3,6-triones. Alternatively, 

a nucleophilic addition of the aziridine nitrogen to acyl chloride unit may form an aziridinium ion 283 which 

can be opened by chloride ion.  
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6. Synthesis of Seven-membered Heterocycles 

 

6.1 Synthesis of azepanes 

Azepane motif is present in a number of important heterocyclic compounds and bioactive alkaloids.147 The 

functionalized azepanes have flexible ring structures and this conformational diversity is important for their 

bioactivity. The structural flexibility of azepanes offers potent inhibition against various enzymes.148 

The ring-expansion of aziridines to seven-membered heterocyclic systems is a difficult to achieve goal. De 

Kimpe and coworkers reported the formation of azepanes through piperidines, obtained in turn, by a ring-

expansion of 2-(2-cyano-2-phenylethyl)aziridine.149 Later on, this group has described the ring-expansion of 2-

(4-chlorobutyl)-1-tosyl-2-(trifluoromethyl)aziridine to azepanes (Scheme 86).13 Of the two possible 

mechanisms, the first involved an initial cleavage of aziridine ring by alkyl amines at C-3 position followed by 

substitution of chloride with iodide leading to the formation of an intermediate 284 (path a). The intermediate 

284 may cyclize to azepanes 286 via an intermediate 287. Another possible mechanism involved an initial 

substitution at alkyl halide side-chain of aziridines by amines furnishing another aziridines 285 which 

underwent an intramolecular ring-opening (path b).  
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Scheme 86 

 

6.2 Synthesis of diazepinones 

Saito and coworkers have reported a [5+2]-cycloaddition reaction of 1-benzyl-2-vinylaziridines 288 with 

sulfonyl isocyanates 289 under mild conditions forming cyclic ureas, diazepinones 291 in good yields (Scheme 

87).150 It is worth mentioning that the reaction did not require any catalyst. The reaction was, however, 

extremely sensitive to solvents. The seven-membered heterocyclic products were obtained in 

dichloromethane. The change of solvent from dichloromethane to DMF led to the formation of imidazolidin-2-

ones. The reaction may proceed through an aziridinium ion 290, generated by nucleophilic attack of aziridine 

nitrogen atom on the electrophilic carbon atom of the isocyanate. 
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Scheme 87 

 

6.3 Synthesis of benzodiazepines, benzoxazepines and benzothiazepines 

Ghorai and coworkers have reported a simple and stereospecific method for the synthesis of 2,3,4,5-

tetrahydrobenzodiazepines 293 from aziridines 82 (Scheme 88).151 An SN2-type ring-opening of N-activated 

aziridines with 2-bromobenzylamine 292 followed by an intramolecular cyclization through copper-mediated 

C-N bond formation led to the formation of products. The scope of the reaction is quite wide as a diverse array 

of aziridines could be employed successfully to furnish the products in excellent yields (up to 94% yield) with 

very high enantioselectivity (up to 99% ee). 
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    MeCN, D, 3.5-15 h
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R1

Ar = aryl; R1 = Ar; R2 = H, R1R2 = C-hex
(14 examples)

yields: up to 94%
ee up to: 99%

82                   292                                                                           293

 
 

Scheme 88 

 

Ghorai group has also reported similar ring-opening of N-activated aziridines 110 with 2-

bromobenzylalcohol 294, and 2-bromobenzylthiol 297 forming ring-opened products 295 and 298, 

respectively. The copper-catalyzed cyclization of these products led to synthesis of corresponding 

tetrahydrobenzoxazepines 296 (Scheme 89) and tetrahydrobenzothiazepines 299 (Scheme 90).152 
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Scheme 90  
 

The aziridine ring opening with hydroxyphenyl acrylates and aminophenyl acrylates followed by 

intramolecular C-N bond formation through the palladium-catalyzed aza-Michael reaction is reported recently 

as a straightforward approach for the synthesis of 2,3,4,5-tetrahydrobenzoxazepines 302 (Scheme 91) and 

2,3,4,5-tetrahydrobenzodiazepine 305, respectively (Scheme 92). The products are obtained in high yields (up 

to 82%) with an excellent enantioselectivity (ee up to 94%).153 The relative stereochemistry at 2,5-positions 

was observed as cis. The reaction is quite general as a number of activated aziridines with various aryl groups 

at C-2 position and different arylsulfonyl groups on ring nitrogen have been employed. According to proposed 

mechanism, the SN2-type reaction of acrylates occurs at the benzylic carbon of the aziridines leading to ring 

opening. The ring-opened products 301 and 304 undergo a Wacker-type reaction involving addition of N-

sulfonylaryl group to the palladium-coordinated olefinic moiety generating the intermediates 306 and 307. 

The intermediate 307, on reductive elimination affords the desired product and the catalyst Pd(0) is 

regenerated.   
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Scheme 92 

 

 

7. Concluding Remarks 

 

Aziridine ring is undoubtedly a powerful building block for synthesis of diverse types of heterocyclic 

compounds. Different types of aziridines are easily prepared in laboratory using well-known methods. The 

investigation on reactivity of aziridine ring with focus on application in synthesis of other heterocyclic 

compounds has seen resurgence of interest in recent years. Although N-sulfonylaziridines and 2-vinylaziridnes 

appear to be of great interest N-alky/aryl-substituted aziridines have also been thoroughly investigated. The 

review of literature revealed the application of aziridines in synthesis of four- to seven-membered heterocyclic 

compounds containing one or more heteroatoms in the ring. Many of these heterocyclic motifs are of 

immense biological importance. The nucleophilic ring-opening of aziridines has led to the synthesis of 

azetidines. The synthesis of β-lactams is reported by a Pd-catalyzed carbonylation reaction of aziridines, and 

by reaction of aziridines with oxalyl chloride. The Lewis acid catalyzed nucleophilic ring-opening with different 

types of nucleophiles followed by [3+2]-cycloaddition with a range of dipolarophiles constitutes a general 

approach for the synthesis of five-membered heterocycles pyrrolidines, oxazolidines, and thiazolidines. These 

reactions occur in both intra- and intermolecular fashions. The ring-opening of appropriate C-2 chloroalkyl-

substituted aziridines followed by cyclization is known to form four- to seven-membered heterocyclic 

compounds. The fixation of carbon dioxide by aziridines using a number of catalysts is an important method 

for the preparation of oxazolidinones. Although the Lewis acid-catalyzed cycloadditions are more common a 

Lewis base-catalyzed fixation of carbon dioxide with N-arylsulfonyl-substituted aziridinofullerenes has been 

developed to synthesize oxazolidinone-fused fullerenes. Asymmetric synthesis of some five-membered 

heterocycles is reported as well. The ring-expansion of 2-(2-cyanoethyl)aziridines using LiAlH4, palladium-

catalyzed ring-expansion of 2-vinylaziridines, and magnesium bromide-initiated ring-expansion of aziridines 

serve as useful methods for the syntheses of piperidines, dihydropyridin-2-ones, and piperazines, respectively. 

A [3+3]-cycloaddition reaction of 3-isothiocyanato-2-oxindoles with N-(2-picolinoyl)aziridines leading to the 

formation of pyrimidine ring spiro-fused to 2-oxindole ring is described. A copper-catalyzed aziridine ring-
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opening with various nucleophiles followed by cyclization constitutes an important method for a convenient 

entry into the five- to seven-membered aza-, oxaza-, and thiazaheterocycles. A bulk of literature in a short 

span of time indicates continuing interest in the area and more interesting outcome.  
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