Supplementary Material

Efficient synthesis of functionalized spiro[imidazolidine-2-thione-oxindoles] via catalyst-free domino Mannich cyclization

Xin-Ni Ping,^a Wei Chen,^b Xiao-Yan Lu,^c and Jian-Wu Xie*^a

 ^a Department of Chemistry and Life Science, Zhejiang Normal University, Jinhua 321004, P. R. China
^b Zhejiang Pharmaceutical College, Ningbo 315100, P. R. China
^c Ningbo No. 2 Hospital, Ningbo 315010, P. R. China
E-mail: <u>xiejw@zjnu.cn</u>

Table of contents

1. Copies of product ¹ H NMR and ¹³ C NMR	S2-S14
1. Crystal data	S15-S23

1. Copies of product ¹H NMR and ¹³C NMR

Page S11

2. Crystal data

data_a

_audit_creation_method	SHELXL-97
chemical_name_systematic	
;	
?	
_chemical_name_common	?
_chemical_melting_point	?
_chemical_formula_moiety	'C3.47 H3.20 N0.53 O0.13 S0.13'
_chemical_formula_sum	
'C3.47 H3.20 N0.53 O0.13 S0.13'	
_chemical_formula_weight	58.74
loop_	
_atom_type_symbol	
_atom_type_description	
_atom_type_scat_dispersion_real	
_atom_type_scat_dispersion_imag	
_atom_type_scat_source	
'C' 'C' 0.0033 0.0016	
'International Tables Vol C Tables 4.	.2.6.8 and 6.1.1.4'
'H' 'H' 0.0000 0.0000	
'International Tables Vol C Tables 4.	.2.6.8 and 6.1.1.4'
'N' 'N' 0.0061 0.0033	
'International Tables Vol C Tables 4.	.2.6.8 and 6.1.1.4'
'O' 'O' 0.0106 0.0060	
'International Tables Vol C Tables 4.	.2.6.8 and 6.1.1.4'
'S' 'S' 0.1246 0.1234	
'International Tables Vol C Tables 4.	.2.6.8 and 6.1.1.4'
_symmetry_cell_setting	Monoclinic
_symmetry_space_group_name_H-N	f P2(1)/c
loop_	
_symmetry_equiv_pos_as_xyz	
'x, y, z'	
'-x, y+1/2, -z+1/2'	
'-x, -y, -z'	
'x, -y-1/2, z-1/2'	

_cell_length_a	13.1311(3)
_cell_length_b	22.3023(4)
cell length c	8.2940(2)
cell angle alpha	90.00
cell angle beta	104.5990(10)
cell angle gamma	90.00
cell volume	2350.51(9)
cell formula units Z	30
cell measurement temperature	296(2)
cell measurement reflns used	?
cell measurement theta min	?
cell measurement theta max	?
_exptl_crystal_description	block
_exptl_crystal_colour	colourless
_exptl_crystal_size_max	0.612
_exptl_crystal_size_mid	0.460
_exptl_crystal_size_min	0.432
_exptl_crystal_density_meas	?
_exptl_crystal_density_diffrn	1.245
_exptl_crystal_density_method	'not measured'
_exptl_crystal_F_000	928
_exptl_absorpt_coefficient_mu	0.163
_exptl_absorpt_correction_type	none
_exptl_absorpt_correction_T_min	?
_exptl_absorpt_correction_T_max	?
_exptl_absorpt_process_details	?
_exptl_special_details	
;	
?	
;	
1:00 m this at the second sector	20((2)
	296(2)
_diffrm_radiation_wavelength	0./10/3
_diffrm_radiation_type	MOK \a
_diffn_radiation_source	nne-locus sealed tube
_diffrm_monochromator	graphite
differ maggingment method	
diffrn detector area regal maan	w scans
diffrn standards number	· ?
diffrn standards interval count	· ?
diffrn standards interval time	• 9
_umm_stanuarus_mtervar_time	•

Page S16

?
78909
0.0435
0.0185
-17
17
-29
28
-10
10
1.83
27.54
5419
4309
>2sigma(I)

_computing_data_collection	'Bruker XSCANS'
_computing_cell_refinement	'Bruker XSCANS'
_computing_data_reduction	'Bruker SHELXTL'
_computing_structure_solution	'SHELXS-97 (Sheldrick, 1990)'
_computing_structure_refinement	'SHELXL-97 (Sheldrick, 1997)'
_computing_molecular_graphics	'Bruker SHELXTL'
_computing_publication_material	'Bruker SHELXTL'

_refine_special_details

;

Refinement of F^2^ against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2^, conventional R-factors R are based on F, with F set to zero for negative F^2^. The threshold expression of $F^2^> 2 \operatorname{sigma}(F^2^>)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2^ are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

;

_refine_ls_structure_factor_coef Fsqd _refine_ls_matrix_type full _refine_ls_weighting_scheme calc _refine_ls_weighting_details 'calc w=1/[\s^2^(Fo^2^)+(0.0596P)^2^+1.4692P] where P=(Fo^2^+2Fc^2^)/3' _atom_sites_solution_primary direct _atom_sites_solution_secondary difmap _atom_sites_solution_hydrogens . refine ls hydrogen treatment .

_refine_ls_extinction_method	SHELXL
_refine_ls_extinction_coef	0.0070(11)
_refine_ls_extinction_expression	
'Fc^**=kFc[1+0.001xFc^2^\l^3^	/sin(2\q)]^-1/4^'
_refine_ls_number_reflns	5419
_refine_ls_number_parameters	290
_refine_ls_number_restraints	0
_refine_ls_R_factor_all	0.0734
_refine_ls_R_factor_gt	0.0573
_refine_ls_wR_factor_ref	0.1518
_refine_ls_wR_factor_gt	0.1391
_refine_ls_goodness_of_fit_ref	1.067
_refine_ls_restrained_S_all	1.067
_refine_ls_shift/su_max	0.000
_refine_ls_shift/su_mean	0.000

loop_

atom site label atom site type symbol _atom_site_fract_x _atom_site_fract y atom site fract z atom site U iso or equiv _atom_site_adp_type atom site occupancy atom site symmetry multiplicity _atom_site_calc_flag atom site refinement flags _atom_site_disorder_assembly atom site disorder group S S -0.00720(5) 0.57115(3) 0.79465(7) 0.04878(18) Uani 1 1 d . . . O O 0.27892(13) 0.45997(7) 1.0499(2) 0.0561(4) Uani 1 1 d . . . N1 N 0.26763(15) 0.35895(8) 0.9984(2) 0.0480(4) Uani 1 1 d . . . C1 C 0.14755(15) 0.41913(8) 0.8082(2) 0.0359(4) Uani 1 1 d . . . N2 N 0.06337(13) 0.45785(7) 0.8318(2) 0.0393(4) Uani 1 1 d . . . H2A H 0.0162 0.4466 0.8810 0.047 Uiso 1 1 calc R . . C2 C 0.17857(15) 0.45121(8) 0.6597(2) 0.0353(4) Uani 1 1 d . . . H2B H 0.1375 0.4337 0.5551 0.042 Uiso 1 1 calc R . . N3 N 0.13899(13) 0.51218(7) 0.6755(2) 0.0405(4) Uani 1 1 d . . . C3 C 0.06711(14) 0.51304(9) 0.7685(2) 0.0366(4) Uani 1 1 d . . . N4 N 0.15026(13) 0.56095(7) 0.5789(2) 0.0412(4) Uani 1 1 d . . . C4 C 0.12329(16) 0.35362(9) 0.7745(3) 0.0400(4) Uani 1 1 d . . . C5 C 0.0464(2) 0.26298(13) 0.6520(4) 0.0722(8) Uani 1 1 d . . . H5A H -0.0055 0.2428 0.5736 0.087 Uiso 1 1 calc R . .

C6 C 0.1214(3) 0.23082(12) 0.7643(4) 0.0786(9) Uani 1 1 d . . . H6A H 0.1191 0.1892 0.7606 0.094 Uiso 1 1 calc R ... C7 C 0.04714(19) 0.32575(11) 0.6543(3) 0.0550(6) Uani 1 1 d . . . H7A H -0.0023 0.3478 0.5770 0.066 Uiso 1 1 calc R . . C8 C 0.1997(2) 0.25878(11) 0.8823(4) 0.0662(7) Uani 1 1 d . . . H8A H 0.2512 0.2367 0.9561 0.079 Uiso 1 1 calc R . . C9 C 0.19927(18) 0.32043(9) 0.8869(3) 0.0457(5) Uani 1 1 d . . . C10 C 0.23949(16) 0.41719(9) 0.9673(2) 0.0410(4) Uani 1 1 d . . . C11 C 0.3572(2) 0.34092(14) 1.1328(3) 0.0676(7) Uani 1 1 d . . . H11A H 0.3415 0.3030 1.1784 0.081 Uiso 1 1 calc R ... H11B H 0.3685 0.3706 1.2210 0.081 Uiso 1 1 calc R ... C12 C 0.4587(3) 0.3344(2) 1.0720(5) 0.1214(16) Uani 1 1 d ... H12A H 0.4489 0.3026 0.9897 0.146 Uiso 1 1 calc R ... H12B H 0.4710 0.3713 1.0181 0.146 Uiso 1 1 calc R ... C13 C 0.5510(4) 0.3209(4) 1.2067(8) 0.209(4) Uani 1 1 d . . . H13A H 0.6114 0.3168 1.1623 0.314 Uiso 1 1 calc R ... H13B H 0.5397 0.2842 1.2600 0.314 Uiso 1 1 calc R ... H13C H 0.5626 0.3529 1.2867 0.314 Uiso 1 1 calc R ... C14 C 0.29388(15) 0.44685(9) 0.6639(2) 0.0404(4) Uani 1 1 d ... C15 C 0.3255(2) 0.39857(12) 0.5831(3) 0.0613(6) Uani 1 1 d . . . H15A H 0.2757 0.3716 0.5247 0.074 Uiso 1 1 calc R . . C16 C 0.4304(3) 0.39044(19) 0.5888(4) 0.0918(11) Uani 1 1 d . . . H16A H 0.4514 0.3574 0.5370 0.110 Uiso 1 1 calc R ... C17 C 0.5032(3) 0.4308(2) 0.6704(5) 0.1013(14) Uani 1 1 d . . . H17A H 0.5737 0.4254 0.6725 0.122 Uiso 1 1 calc R ... C18 C 0.4731(2) 0.47957(19) 0.7500(4) 0.0873(10) Uani 1 1 d ... H18A H 0.5232 0.5071 0.8048 0.105 Uiso 1 1 calc R ... C19 C 0.36767(18) 0.48742(12) 0.7478(3) 0.0593(6) Uani 1 1 d ... H19A H 0.3470 0.5199 0.8025 0.071 Uiso 1 1 calc R . . C20 C 0.18335(15) 0.55063(9) 0.4499(3) 0.0409(4) Uani 1 1 d . . . H20A H 0.1938 0.5113 0.4209 0.049 Uiso 1 1 calc R ... C21 C 0.20518(16) 0.59968(9) 0.3468(3) 0.0427(5) Uani 1 1 d . . . C22 C 0.20879(19) 0.58800(11) 0.1853(3) 0.0535(5) Uani 1 1 d ... H22A H 0.1979 0.5491 0.1440 0.064 Uiso 1 1 calc R . . C23 C 0.2284(3) 0.63335(16) 0.0841(4) 0.0792(9) Uani 1 1 d . . . H23A H 0.2303 0.6250 -0.0249 0.095 Uiso 1 1 calc R . . C24 C 0.2447(4) 0.68950(17) 0.1427(5) 0.1271(18) Uani 1 1 d . . . H24A H 0.2589 0.7200 0.0749 0.153 Uiso 1 1 calc R ... C25 C 0.2404(5) 0.70167(16) 0.3005(6) 0.151(2) Uani 1 1 d . . . H25A H 0.2508 0.7408 0.3398 0.181 Uiso 1 1 calc R ... C26 C 0.2211(3) 0.65742(13) 0.4041(4) 0.0886(11) Uani 1 1 d . . . H26A H 0.2187 0.6666 0.5125 0.106 Uiso 1 1 calc R ...

atom site aniso label atom site aniso U 11 _atom_site aniso U 22 atom site aniso U 33 atom site aniso U 23 atom site aniso U 13 atom site aniso U 12 S 0.0539(3) 0.0469(3) 0.0471(3) 0.0022(2) 0.0157(2) 0.0190(2) O 0.0556(10) 0.0554(10) 0.0517(9) -0.0139(7) 0.0030(7) -0.0024(8) N1 0.0518(11) 0.0460(10) 0.0436(9) 0.0062(8) 0.0071(8) 0.0090(8) C1 0.0357(10) 0.0338(9) 0.0384(9) -0.0010(7) 0.0099(8) 0.0008(7) N2 0.0359(8) 0.0382(9) 0.0466(9) 0.0014(7) 0.0156(7) 0.0039(7) C2 0.0358(9) 0.0323(9) 0.0375(9) -0.0005(7) 0.0087(7) 0.0026(7) N3 0.0439(9) 0.0336(8) 0.0473(9) 0.0046(7) 0.0175(7) 0.0078(7) C3 0.0325(9) 0.0402(10) 0.0357(9) -0.0019(8) 0.0059(7) 0.0042(8) N4 0.0418(9) 0.0341(8) 0.0485(9) 0.0049(7) 0.0130(7) 0.0012(7) C4 0.0426(11) 0.0346(10) 0.0466(11) -0.0024(8) 0.0181(9) -0.0034(8) C5 0.0775(19) 0.0568(16) 0.089(2) -0.0252(15) 0.0328(16) -0.0287(14) C6 0.113(3) 0.0352(13) 0.101(2) -0.0036(14) 0.051(2) -0.0127(15) C7 0.0503(13) 0.0519(13) 0.0640(14) -0.0109(11) 0.0168(11) -0.0101(10) C8 0.092(2) 0.0368(12) 0.0744(17) 0.0108(11) 0.0301(15) 0.0061(12) C9 0.0573(13) 0.0361(10) 0.0488(11) 0.0055(9) 0.0227(10) 0.0037(9) C10 0.0408(10) 0.0436(11) 0.0397(10) -0.0003(8) 0.0122(8) 0.0022(8) C11 0.0667(16) 0.0769(18) 0.0541(14) 0.0159(13) 0.0057(12) 0.0214(14) C12 0.082(2) 0.176(4) 0.102(3) 0.022(3) 0.014(2) 0.060(3) C13 0.108(4) 0.348(10) 0.169(5) 0.070(6) 0.030(4) 0.103(5) C14 0.0365(10) 0.0433(11) 0.0426(10) 0.0061(8) 0.0122(8) 0.0059(8) C15 0.0589(15) 0.0694(16) 0.0587(14) -0.0025(12) 0.0207(12) 0.0197(12) C16 0.071(2) 0.134(3) 0.077(2) 0.003(2) 0.0304(17) 0.050(2) C17 0.0453(17) 0.178(4) 0.088(2) 0.031(3) 0.0288(17) 0.034(2) C18 0.0430(15) 0.126(3) 0.088(2) 0.022(2) 0.0074(14) -0.0174(17) C19 0.0434(12) 0.0658(16) 0.0666(15) 0.0030(12) 0.0099(11) -0.0067(11) C20 0.0389(10) 0.0364(10) 0.0469(11) 0.0013(8) 0.0097(8) 0.0002(8) C21 0.0373(10) 0.0419(11) 0.0501(11) 0.0016(9) 0.0131(9) -0.0021(8) C22 0.0530(13) 0.0576(14) 0.0507(12) 0.0010(10) 0.0143(10) -0.0048(11) C23 0.092(2) 0.094(2) 0.0569(16) 0.0095(15) 0.0277(15) -0.0137(18) C24 0.229(6) 0.074(2) 0.103(3) 0.015(2) 0.087(3) -0.036(3) C25 0.304(7) 0.058(2) 0.131(3) -0.021(2) 0.128(4) -0.072(3) C26 0.150(3) 0.0559(16) 0.0754(18) -0.0171(14) 0.058(2) -0.0416(19)

_geom_special_details

;

All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken

into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

loop_

;

_geom_bond_atom_site_label_1 geom bond atom site label 2 _geom_bond_distance _geom_bond_site_symmetry_2 _geom_bond_publ flag S C3 1.6692(19).? O C10 1.212(2).? N1 C10 1.357(3).? N1 C9 1.407(3).? N1 C11 1.458(3) . ? C1 N2 1.454(2).? C1 C4 1.506(3).? C1 C10 1.548(3).? C1 C2 1.564(3).? N2 C3 1.344(2).? C2 N3 1.473(2).? C2 C14 1.509(3) . ? N3 C3 1.361(2).? N3 N4 1.381(2) . ? N4 C20 1.273(3) . ? C4 C7 1.370(3).? C4 C9 1.394(3).? C5 C6 1.375(5).? C5 C7 1.400(4).? C6 C8 1.378(4).? C8 C9 1.376(3).? C11 C12 1.547(5).? C12 C13 1.458(6).? C14 C19 1.379(3).? C14 C15 1.386(3).? C15 C16 1.378(4).? C16 C17 1.361(6).? C17 C18 1.381(5).? C18 C19 1.392(4).? C20 C21 1.460(3).? C21 C26 1.370(3).? C21 C22 1.378(3).?

C22 C23 1.379(4) . ? C23 C24 1.341(5) . ? C24 C25 1.352(5) . ? C25 C26 1.374(4) . ?

loop_

_geom_angle_atom_site_label_1 _geom_angle_atom_site_label_2 geom angle atom site label 3 _geom_angle _geom_angle_site_symmetry_1 _geom_angle_site_symmetry 3 _geom_angle_publ_flag C10 N1 C9 111.16(17) ...? C10 N1 C11 122.5(2) . . ? C9 N1 C11 126.3(2) ...? N2 C1 C4 117.94(16) . . ? N2 C1 C10 110.95(15) ...? C4 C1 C10 102.35(16) ...? N2 C1 C2 101.07(14)..? C4 C1 C2 112.49(15)..? C10 C1 C2 112.45(15) . . ? C3 N2 C1 112.78(15)..? N3 C2 C14 115.59(16) . . ? N3 C2 C1 100.62(14) . . ? C14 C2 C1 114.28(15)..? C3 N3 N4 120.58(16) . . ? C3 N3 C2 111.97(15)..? N4 N3 C2 125.68(15) . . ? N2 C3 N3 107.90(16) ...? N2 C3 S 125.45(15) . . ? N3 C3 S 126.61(15)..? C20 N4 N3 117.05(17) . . ? C7 C4 C9 120.9(2) . . ? C7 C4 C1 131.0(2) ...? C9 C4 C1 107.98(18) . . ? C6 C5 C7 120.7(3) . . ? C5 C6 C8 121.6(2) . . ? C4 C7 C5 117.7(3) . . ? C9 C8 C6 117.7(3) . . ? C8 C9 C4 121.3(2) . . ? C8 C9 N1 128.5(2)..? C4 C9 N1 110.23(18) . . ? O C10 N1 126.1(2) . . ?

O C10 C1 126.17(19)..? N1 C10 C1 107.78(17)..? N1 C11 C12 111.9(2) . . ? C13 C12 C11 112.8(4) . . ? C19 C14 C15 119.7(2) . . ? C19 C14 C2 122.87(19) . . ? C15 C14 C2 117.4(2) . . ? C16 C15 C14 120.3(3) . . ? C17 C16 C15 120.1(3) . . ? C16 C17 C18 120.6(3) . . ? C17 C18 C19 119.7(3) . . ? C14 C19 C18 119.6(3) . . ? N4 C20 C21 121.03(19) . . ? C26 C21 C22 118.4(2) . . ? C26 C21 C20 122.4(2) . . ? C22 C21 C20 119.2(2) . . ? C21 C22 C23 120.7(2) . . ? C24 C23 C22 120.1(3) . . ? C23 C24 C25 119.8(3) . . ? C24 C25 C26 121.4(3) . . ? C21 C26 C25 119.6(3) . . ?

_diffrn_measured_fraction_theta_max	0.999
_diffrn_reflns_theta_full	27.54
_diffrn_measured_fraction_theta_full	0.999
_refine_diff_density_max 0.422	
_refine_diff_density_min -0.394	
_refine_diff_density_rms 0.048	