Highly chemo- and diastereo-selective synthesis of 2,6-diazabicyclo[3.2.0]heptan-7-ones, pyrrolidines and perhydroazirino[2,3-c]pyrroles

Yogesh Kumar,^a Bilash Kulia,^a Prabhpreet Singh,^b and Gaurav Bhargava*^a

^aDepartment of Chemical Sciences, I. K. Gujral Punjab Technical University, Kapurthala, Punjab 144 603, India

^bDepartment of Chemistry, Guru Nanak Dev University, Amritsar, Punjab 143 005, India E-mail: <u>gaurav@ptu.ac.in</u>

DOI: https://doi.org/10.24820/ark.5550190.p009.845

Abstract

The manuscript describes a simple, convenient and metal-free diastereoselective synthesis of 4-halo-3-aryl/alkyl-6-aryl-2,6-diazabicyclo[3.2.0]heptan-7-ones *via* intramolecular *endo-trig* haloamination of 3-aminoazetidin-2-ones and its facile transformations to previously unknown methyl 4-halo-3-arylaminopyrrolidine-2-carboxylates and *N*-deprotected diazabicyclo[3.1.0]-hexane-2-carboxylic acids in good yields. The synthesis of such heterocyclic system is important in terms of the usefulness as organic synthon as well as their diverse pharmacological profiles.

Keywords: Diazabicyclo[3.2.0]heptanones, pyrrolidines, aziridinopyrrolidines, β -lactams, *endotrig* haloamination

Introduction

Over the past decades, β -lactams have emerged as a useful synthon in organic chemistry. ^{1,2} Numerous researchers have explored the synthesis of a variety of novel heterocyclic systems via β -lactam synthon methodology. Ojima and his co-workers have described the crucial role of β -lactam synthon methodology in the synthesis of paclitaxel, docetaxel and new-generation taxoids *viz*. C-2- and C-3'-modified taxoids, etc. ⁴⁻⁶ Alcaide *et al*. have utilized a variety of lactams as organic synthons for the construction of various alkaloid skeletons. ^{7,8} Mahajan *et al*. have explored the β -lactam synthon approach towards the diastereoselective synthesis of functionalized octahydroisoquinolones, ⁹ pyrroloxazine, ¹⁰ tetra/octahydro-isoquinoline ¹¹ and octahydroindole ¹² ring systems. Literature survey clearly reveals that β -lactams are important synthons for the synthesis of a variety of useful aza-heterocyclic systems. ⁴⁻¹² Functionalized proline esters, the five-membered azaheterocyclic systems, are important organocatalysts as well as having vital roles in

biological systems.¹³⁻¹⁵ The perhydroazirino[2,3-*c*]pyrrole family of natural products has been of interest to the scientific community since their isolation over 50 years ago.¹⁶ Aziridines are valuable intermediates in natural product synthesis as in the case of the (-)-mesembrine, (-)-platynesine, kainoids, sphingosines, epicapreomycidine, actinomycin, (±)-and feldamycin.^{17,18} Members of this family exhibit potent activity against a variety of cancer cell lines, and were found to be particularly active against solid tumors.¹⁹⁻²¹ In addition, aziridinopyrrolidines have shown interesting biological properties which makes them important synthetic targets.²²⁻²⁵ However, the reported methods for preparation of aziridinopyrrolidines are cumbersome and have multistep reaction procedures.¹⁷⁻²¹

Recent publications from our laboratory have reported the synthesis and subsequent transformations of functionalized lactams for the synthesis of (2-oxo-4-styrylazetidin-3-yl)pyridine, butadienyl-4-iminomethylazetidin-2-ones, butenylidene-butadienyl-[2,2'-biazetidine]-4,4'-diones, 1,4-benzodiazepin-2-ones and dienyl thiazolidin-4-ones, 26-28 etc. As a part of our ongoing interest in the synthesis of heterocyclic systems, we have reported earlier the metal free diastereoselective synthesis of diazabicyclo[3.2.0]heptan-7-ones and their transformations to functionalized proline esters. The reactions were highly diastereo- and chemo-selective and resulted in the formation of diazabicyclo[3.2.0]heptan-7-ones via an endo-trig haloamination reaction. The synthesis of such bicyclic system is important as earlier reports by different workers have revealed their usefulness as type C β-lactamase inhibitors. 30,31

The current manuscript summarizes an account of (a) study on halocyclizations of a variety of 3-aminoazetidin-2-ones using different haloaminating reagents; (b) a study on mechanistic insight for haloamination reaction using different substituents at nitrogen position; (c) synthetic transformations of diazabicyclo[3.2.0]heptan-7-ones derivatives; (d) lactam mediated synthesis of functionalized proline esters and (e) synthesis of previously unexplored aziridinopyrrolidines. The synthesis of such azaheterocyclic systems especially 4,6-diaryl-3,6-diazabicyclo[3.1.0]hexane-2-carboxylic acids are an important in view of their biological properties. Moreover, the earlier effort for the synthesis of *N*-deprotected 4,6-diaryl-3,6-diazabicyclo[3.1.0]hexane-2-carboxylic acids was unsuccessful.³²

Results and Discussion

The starting materials 3-aminoazetidin-2-ones **1**, used in halocyclization reactions were prepared by reported methods.³³ These variably substituted 3-aminoazetidin-2-ones **1** were initially investigated for intramolecular ring closure haloamination reactions using different combinations of halogenating reagents and bases in different solvents. The reaction led to the formation of pure 4-halo-3-aryl/alkyl-6-aryl-2,6-diazabicyclo[3.2.0]heptan-7-ones **2a-m** (Scheme 1, Table 1). However, the yield of halocyclized products varied with the type of solvent, base and halogen used in the reactions. The reactions were, initially optimized with different halogenation reagents *viz*. I₂, Br₂, NIS, NBS and NCS. The best yield (90%) was achieved using iodine and potassium

carbonate as base (Table 1; Entry 2). The halocyclization using NIS and NBS resulted in the formation of 4-halo-3-aryl/alkyl-6-aryl-2,6-diazabicyclo[3.2.0]heptan-7-ones in considerably lower yields. The use of sodium carbonate as base in halocyclization reactions of 1 using iodine and bromine resulted in slightly lower yields of the products (Table 1, entries 6-7). When NCS was used as a haloaminating reagent the reactions did not result in the desired product; the starting material remaining intact. The halocyclization was also tested using strong bases *i.e.* sodium hydride and potassium-*t*-butoxide. However, this resulted in deterioration of the products.

Scheme 1. Halocyclization of 3-aminoazetidin-2-ones 1a.

Table 1. Reaction of **1a** under different reaction conditions

S.No.	Reagent	Base	Solvent	Reaction Time ^a	Yield(%) ^b
1	NIS	K ₂ CO ₃	DCM	30	40
2	I_2	K_2CO_3	DCM	90	90
3	Br_2	K_2CO_3	DCM	45	61
4	NBS	K_2CO_3	DCM	60	20
5	NCS	K_2CO_3	DCM	90	-
6	I_2	Na_2CO_3	DCM	90	80
7	Br_2	Na_2CO_3	DCM	90	45
8	I_2	tBuOK	DCM	90	-
9	I_2	NaH	DCM	90	-
10	I_2	K_2CO_3	DMF	80	55
11	I_2	K_2CO_3	THF	90	30

^a Reaction time in minutes. ^bIsolated yield after purification. DCM = dichloromethane

We also studied the effect of a substituent at the alpha position of styryl of 3-aminoazetidin-2-ones in these haloamination reactions. The reactions did not give any haloaminations even at high temperature or using harsh reaction conditions, probably due to the steric hindrance at the alpha position of styryl of 3-aminoazetidin-2-ones.

After optimization of the reaction conditions, diversely substituted 3-aminoazetidin-2-ones **1** were explored in haloaminating reaction with iodine/bromine in the presence of different bases *viz.* K₂CO₃ and Na₂CO₃ (Scheme 2). The reactions led to the formation of regio- and diastereo-isomerically pure 4-halo-3-aryl/akyl-6-aryl-2,6-diazabicyclo[3.2.0]heptan-7-ones **2** in good yields (Table-2; Entries 1-15). There was not much difference in the reactivity as well as yield of the products with changing substituents at the N-1 position of the lactam (Table 2). However the yield of the products in case of bromocyclization is comparatively low (Table 2, Entries 8-13). This is probably due to participation of bromine in side reactions due to its strong acidity.

Scheme 2. Intramolecular *endo-trig*-halocyclization of **1** for the synthesis of 4-halo-3-aryl/alkyl-6-aryl-2,6-diazabicyclo[3.2.0]heptan-7-ones **2**.

We next studied the effect of substituents of the participating nitrogen of 3-aminoazetidin-2-ones in these haloamination reactions (Scheme 3). Two substituents (i) electron withdrawing (tosyl), (ii) electron donating (methyl) were studied in these haloamination reactions. We have also explored the effect of *N*,*N*-dimethyl substitution for these haloamination reactions. The reaction of *N*-mono methylated 3-aminoazetidin-2-ones underwent halocyclization in good to fair yield (Table 3; Entries 1-2). However, the reaction of *N*-tosylated 3-aminoazetidin-2-ones did not give any useful product even at high temperature or using harsh reaction conditions.

Table 2. Synthesis of 4-halo-3-aryl/alkyl-6-aryl-2,6-diazabicyclo[3.2.0]heptan-7-ones **2** by halocyclization reactions

S.No.	\mathbb{R}^1	X ^c	Base	Product	Reaction Time ^a	Yield (%) ^b
1	C_6H_5	I	K_2CO_3	2a	90	90
2	<i>p</i> -CH ₃₋ C ₆ H ₄	I	K_2CO_3	2b	90	82
3	p-Cl-C ₆ H ₄	I	K_2CO_3	2 c	90	65
4	<i>p</i> -CH ₃ O-C ₆ H ₄	I	K_2CO_3	2 d	90	66
5	p-F-C ₆ H ₄	I	K_2CO_3	2e	90	62
6	cyclohexyl	I	K_2CO_3	2f	90	75
7	Benzyl	I	K_2CO_3	2g	90	60
8	C_6H_5	Br	K_2CO_3	2h	45	61
9	p-CH ₃₋ C ₆ H ₄	Br	K_2CO_3	2i	45	55
10	p-Cl-C ₆ H ₄	Br	K_2CO_3	2j	45	50
11	<i>p</i> -CH ₃ O-C ₆ H ₄	Br	K_2CO_3	2k	45	55
12	p -F-C $_6$ H $_4$	Br	K_2CO_3	21	45	60
13	Benzyl	Br	K_2CO_3	2 m	45	45
14	C_6H_5	I	Na_2CO_3	2a	90	80
15	<i>p</i> -CH ₃₋ C ₆ H ₄	I	Na_2CO_3	2 b	90	75

^a Reaction time in minutes. ^b Isolated yield after purification. ^c1.2 equivalent.

The reaction of N,N-disubstituted as well as mono N^5 -tosylatedazetidin-2-one did not provide any desired product and only led to the recovery of the starting material, even after several hours of stirring at different temperatures using even higher amounts of iodine/bromine or using different bases, such as potassium carbonate, sodium carbonate, sodium hydride and potassium-t-butoxide. From these experimental observations, it may be concluded that the *endo-trig* haloamination reaction was not observed in the presence of an electron withdrawing group at the N-position and that the reaction is facilitated by the presence of an electron donating group. However, the reaction of **5b** and **5c** was not observed due to the more steric crowding for *endo-trig* haloamination reaction.

$$X_2, K_2CO_3$$
 X_2, K_2CO_3
 X_3, K_2CO_3
 X_4, K_2CO_3
 X_5, K_1
 X_5, K_2
 X_5, K_1
 X_5, K_2
 $X_5,$

Scheme 3. 4-Halo-2-methyl-3,6-diphenyl-2,6-diazabicyclo[3.2.0] heptan-7-ones 6.

Table 3. 4-Halo-2-methyl-3,6-diphenyl-2,6-diazabicyclo[3.2.0]heptan-7-ones 6

S. No.	\mathbb{R}^1	\mathbb{R}^2	X	Product	Reaction Time ^a	Yield(%) ^b
1	CH_3	Н	I	6a	90	75
2	CH_3	Н	Br	6b	50	40
3	CH_3	CH_3	I	6c	90	0
4	<i>p</i> -tosyl	Н	I	6d	90	0

^a Reaction time in minutes.

The diastereomerically pure, functionalized novel 4-halo-3-aryl/alkyl-6-aryl-2,6-diazabicyclo[3.2.0]heptan-7-ones 2, thus obtained were characterized on the basis of analytical and spectral evidence. The compound, 4-iodo-3,6-diphenyl-2,6-diazabicyclo[3,2.0]heptan-7-one 2a for example, analyzed for C₁₈H₁₇IN₂O showed a molecular ion peak at m/z 391 (M+1) in its mass spectrum. Its IR spectrum showed strong absorption peaks at 1755 cm⁻¹ corresponding to the carbonyl group of a azetidin-2-one. The ¹H NMR (300 MHz) spectrum showed a characteristic doublet at δ 4.91 having J 3.6 Hz corresponding to H₁ proton of the ring, an unresolved doublet of doublet at δ 4.94 having J 3.6Hz corresponding to H₅ of the lactam ring, a multiplet at δ 5.02 corresponding to H₃ & H₄ protons. The ¹³C NMR have shown the presence of one carbonyl carbon at δ 164.2 and four aliphatic carbons at δ 30.7, 67.2, 71.80, and δ 74.7 corresponding to C-4, C-5, C-1 and C-3 respectively. The relative stereochemistry of the different ring protons has been report.²⁹ established with help of earlier The 4-iodo-3,6-diphenyl-2,6the diazabicyclo[3.2.0]heptan-7-one (2a) has shown the anti stereochemistry between H⁵ of azetidin-2-one and H⁴ of the pyrrole ring (Figure 1).

^b Isolated yield after purification.

Figure 1. 4-Iodo-3,6-diphenyl-2,6-diazabicyclo[3.2.0]heptan-7-one 2a.

A proposed mechanism for the formation of azabicyclo[3.2.0]heptanes involves the initial coordination of halogen to the double bond at C-4 position of β -lactam leading to formation of a halonium ion. This is followed by a nucleophilic attack of nitrogen attached to C-3 position of lactam ring to the C-6 position of halonium ion (Scheme-4) thereby yielding corresponding diazabicyclo[3.2.0]heptanes 2 in good yields.

Scheme 4. A plausible mechanism depicting the formation of 4- halo-3-phenyl-6-aryl-2,6-diazabicyclo[3.2.0]heptan-7-ones

The 4-halo-3-aryl/alkyl-6-aryl-2,6-diazabicyclo[3.2.0]heptan-7-ones **2** were explored for the synthesis of pyrrolidine esters by amidolytic ring hydrolysis of N^6 - C^7 bond using different bases *viz.* sodium alkoxide. The reaction resulted in the formation of 4-halo-5-phenyl-3-arylamino-pyrrolidine-2-carboxylic acid methyl esters **7** in excellent yields (90%; Scheme-5, Table 4).

Scheme 5. Synthesis of alkyl 4-iodo-5-aryl-3-(arylamino)pyrrolidine-2-carboxylates 7.

Table 4. Alkyl 4-iodo-5-aryl-3-(arylamino)pyrrolidine-2-carboxylates 7

				_		
S.No.	\mathbb{R}^1	X	Base	Solvent	Producta	Yield (%) ^b
1	C_6H_5	I	NaOCH ₃	CH ₃ OH	7a	85
2	p-CH ₃ C ₆ H ₄	I	NaOCH ₃	CH ₃ OH	7 b	88
3	p-ClC ₆ H ₄	I	NaOCH ₃	CH ₃ OH	7 c	75
4	p-CH ₃ OC ₆ H ₄	I	NaOCH ₃	CH ₃ OH	7 d	79
5	C_6H_5	Br	NaOCH ₃	CH ₃ OH	7e	87
6	p-CH ₃ C ₆ H ₄	Br	NaOCH ₃	CH ₃ OH	7 f	90
7	p-ClC ₆ H ₄	Br	NaOCH ₃	CH ₃ OH	7 g	80
8	p-CH ₃ OC ₆ H ₄	Br	NaOCH ₃	CH ₃ OH	7 h	82
9	C_6H_5	I	$NaOC_2H_5$	C_2H_5OH	7i	86
10	p-CH ₃ C ₆ H ₄	I	$NaOC_2H_5$	C_2H_5OH	7 j	82
11	C_6H_5	Br	$NaOC_2H_5$	C_2H_5OH	7k	73
12	<i>p</i> -CH ₃ C ₆ H ₄	Br	NaOC ₂ H ₅	C ₂ H ₅ OH	71	81

^aIsolated yields after purification. ^bReaction time 90 minutes

The diastereomerically pure, functionalized alkyl 4-iodo-5-aryl-3-(arylamino)pyrrolidine-2-carboxylates (7) thus obtained were characterized on the basis of analytical and spectral evidence. The compound, methyl 4-iodo-5-phenyl-3-(phenylamino)pyrrolidine-2-carboxylate 7a for example, analyzed for $C_{18}H_{19}IN_2O_2$ showed a (M+1) molecular ion peak at m/z 423 in its mass spectrum (Figure 2). The 1H NMR (300 MHz) spectrum showed a characteristic doublet (J 7.5 Hz) at δ 4.70 corresponding to H_2 of the ring, a broad singlet at δ 4.46 corresponding to H_3 and H_4 of the ring, a doublet at δ 4.11 having J 7.2 Hz assigned to H_5 . The ^{13}C NMR have shown the presence

of one carbonyl carbon at δ 172.1 and four aliphatic carbons at δ 71.0, 66.0, 61.7 & 29.3 corresponding to C-5, C-2, C-4 and C-3 respectively.

Figure 2. Methyl 4-iodo-5-phenyl-3-(phenylamino)pyrrolidine-2-carboxylate 7a.

4-Halo-5-phenyl-3-arylaminopyrrolidine-2-carboxylic acid alkyl esters **7** were also explored for the synthesis of 3,6-diazabicyclo[3.1.0]hexane-2-carboxylic acids **8** by intramolecular nucleophilic substitution reaction (90%; Scheme-6). The intramolecular nucleophilic substitution reactions were studied at different temperature using different solvents to provide *N*-deprotected 4,6-diaryl-3,6-diazabicyclo[3.1.0]hexane-2-carboxylic acids **8** in good yields (Table-5, Entries 1-16) at 50°C. We have also studied the one pot formation of **8** by the treatment of **2** with sodium alkoxide in corresponding alcohol at 50 °C. From these observations, it may be concluded that there was initial formation of **7** at 50 °C which underwent intramolecular nucleophilic substitution reaction to yield **8a-d**.

Scheme 6. Synthesis of 4,6-diaryl-3,6-diazabicyclo[3.1.0] hexane-2-carboxylic acids 8

The diastereomerically pure, functionalized novel 4,6-diaryl-3,6-diazabicyclo[3.1.0] hexane-2-carboxylic acids **8** thus obtained were characterized on the basis of analytical and spectral evidence. (Figure 3) The compound, methyl 4,6-diphenyl-3,6-diazabicyclo[3.1.0]hexane-2-carboxylic acid ($C_{17}H_{16}N_2O_2$) **8a** for example, showed a molecular ion peak at m/z (M+1) 281 in its mass spectrum. The ¹H NMR (300MHz) spectrum showed a characteristic doublet (J 1.8 Hz) at δ 4.10 corresponding to H_2 of the ring, a doublet (J 1.8 Hz) at δ 3.68 corresponding to H_5 of the ring, two doublet of doublet at δ 3.23 & 3.08 having J 4.5, 2.1 Hz assigned to H_3 and H_4 respectively. The ¹³C NMR have shown the presence of one carbonyl carbon at δ 173.8 and four aliphatic carbons at δ 64.3, 63.6, 49.7, 49.0 corresponding to C-5, C-2, C-3 and C-4 respectively.

S.No	\mathbb{R}^1	X	Base	Solvent	Product	Yield (%) ^a
1	C_6H_5	I	NaOCH ₃	СН ₃ ОН	8a	90
2	p-CH ₃ C ₆ H ₄	I	NaOCH ₃	CH ₃ OH	8 b	88
3	p-ClC ₆ H ₄	I	NaOCH ₃	CH ₃ OH	8c	82
4	p-CH ₃ OC ₆ H ₄	I	NaOCH ₃	CH ₃ OH	8d	85
5	C_6H_5	Br	NaOCH ₃	CH ₃ OH	8a	87
6	<i>p</i> -CH ₃ C ₆ H ₄	Br	NaOCH ₃	CH ₃ OH	8 b	79
7	p-ClC ₆ H ₄	Br	NaOCH ₃	CH ₃ OH	8c	82
8	p-CH ₃ OC ₆ H ₄	Br	NaOCH ₃	CH ₃ OH	8d	80
9	C_6H_5	I	$NaOC_2H_5$	C_2H_5OH	8a	84
10	p-CH ₃ C ₆ H ₄	I	$NaOC_2H_5$	C_2H_5OH	8b	78
11	<i>p</i> -ClC ₆ H ₄	I	$NaOC_2H_5$	C_2H_5OH	8c	81
12	p-CH ₃ OC ₆ H ₄	I	$NaOC_2H_5$	C_2H_5OH	8d	76
13	C_6H_5	Br	$NaOC_2H_5$	C_2H_5OH	8a	85
14	p-CH ₃ C ₆ H ₄	Br	$NaOC_2H_5$	C_2H_5OH	8b	78
15	p-ClC ₆ H ₄	Br	$NaOC_2H_5$	C_2H_5OH	8c	79

NaOC₂H₅

Table 5. 4,6-diaryl-3,6-diazabicyclo[3.1.0] hexane-2-carboxylic acids **8**

p-CH₃OC₆H₄

16

C₂H₅OH

8d

82

Figure 3. 4,6-Diphenyl-3,6-diazabicyclo[3.1.0]hexane-2-carboxylic acid **8a**.

Br

A plausible mechanism involves the initial formation of 4-halo-5-phenyl-3-arylamino-pyrrolidine-2-carboxylate ester **7** as an intermediate in the transformation of 4-halo-3-phenyl-6-aryl-2,6-diazabicyclo[3.2.0]heptan-7-one (**2**) into 4,6-diaryl-3,6-diazabicyclo[3.1.0]hexane-2-carboxylic acid (**8**) (Scheme-7). The intramolecular nucleophilic attack of nitrogen in intermediate **9** to the adjacent halogenated carbon of pyrrole ring thereby yielding corresponding diazabicyclo-[3.1.0]hexane-2-carboxylic acid in good yields.

^a Isolated yields after purification

Scheme 7. Plausible mechanism depicting the formation of 4,6-diaryl-3,6-diazabicyclo[3.1.0]-hexane-2-carboxylic acids **8**.

Conclusions

We have developed a simple, convenient and metal free diastereoselective method for the functionally decorated 4-halo-3,6-diaryl-2,6-diazabicyclo[3.2.0]heptan-7-ones via intramolecular endo-trig haloamination of 3-aminoazetidin-2-ones in good to excellent yield and competitive exo-trig haloamination was not observed. These diazabicyclo[3.2.0]heptan-7-ones served as novel β -lactam synthons for the synthesis of highly functionalized proline esters. The one pot amidiolytic ring opening of diazabicyclo[3.2.0]heptan-7-ones with sodium alkoxide also provided an easy access to previously unknown N-deprotected diazabicyclo[3.1.0]hexane-2-carboxylic acids in good yields.

Experimental Section

General. Oxygen- and moisture-sensitive reactions were carried out under nitrogen atmosphere. Solvents were purified and dried by standard methods prior to use. All commercially available reagents and solvents (purchased from Aldrich, Merck, Spectrochem, Acros) were used without further purification unless otherwise noted. Analytical thin layer chromatography (TLC) was

conducted on Merck Kieselgel 60 F254. Compounds were visualized with both short- and long-wavelength UV light. Column chromatography was performed on silica gel (100-200 mesh). Melting points were determined in capillary tubes using a Mel-Temp apparatus and are not corrected. Infrared spectra were obtained as films on KBr salt plates except where otherwise specified, using a Perkin Elmer FT-IR spectrometer. 1 H NMR spectra were obtained with CDCl₃ at 300 & 500 MHz, using Bruker spectrometers (residual chloroform referenced to 7.26 ppm) or DMSO- d_6 (residual DMSO referenced to 2.50 ppm and residual water in DMSO- d_6 appearing at 3.33 ppm). Chemical shift values are expressed as parts per million downfield from TMS and J values are in hertz. Splitting patterns are indicated as s: singlet, d: doublet, t: triplet, m: multiplet, dd: doublet doublet, ddd: doublet of a doublet of a doublet, and br: broad peak. 13 C NMR spectra were recorded with CDCl₃ at 75 MHz, using Bruker spectrometers (residual chloroform referenced to 77.0 ppm) or DMSO- d_6 (residual DMSO referenced to 39.5 ppm). Infrared spectra were recorded on a Perkin Elmer FT-IR spectrometer. HRMS were recorded on Bruker high resolution spectrometer (Bruker microTOF QII).

General procedure of compound 4-halo-3,6-diaryl-2,6-diazafor synthesis bicyclo[3.2.0]heptan-7-one 2. To a solution of compounds 1 (0.1 g, 1 equiv) in DCM (10 mL) was added bromine/iodine (1.2 equiv). The reaction was stirred for 10 minutes. This was followed by addition of K₂CO₃ at 0 °C. The solution was stirred at 0 °C for 1–2 h. The progress of the reaction was monitored with the help of tlc. After completion of the reaction, reaction mixture was diluted with DCM and washed with Na₂S₂O₃/water solution followed by brine solution. The dichloromethane solution was dried over anhydrous Na₂SO₄ and solvent was evaporated. Crude residue was purified by flash column chromatography using silica gel (100:200 mesh) in EtOAc/cyclohexane (2:8) as an elutent system to get compounds 2.

4-Iodo-3,6-diphenyl-2,6-diazabicyclo[3.2.0]heptan-7-one (2a). Yield: 90%; White solid, mp 118–119 °C; $\delta_{\rm H}$ ¹H NMR (300 MHz, CDCl₃) 7.36 (d, *J* 7.2 Hz, 2H), 7.10-7.19 (m 5H), 6.97-7.04 (t, *J* 7.5 Hz, 1H), 6.90 (d, *J* 7.5 Hz, 2H), 5.02 (d, *J* 3.9 Hz, 2H), 4.94 (bs, 1H), 4.91 (d, *J* 3.6 Hz, 1H). $\delta_{\rm C}$ NMR (75 MHz, CDCl₃) δ 164.2, 139.6, 136.1, 129.0, 128.2, 127.2, 125.3, 124.4, 116.8, 74.7, 71.8, 67.8, 30.7. MS (EI) m/z 391 (M+1)⁺, $v_{\rm max}$ (KBr)/cm⁻¹ 1755, HRMS calculated for C₁₇H₁₅IN₂O (M+H)⁺ 391.0307, found 391.0314.

X-Ray crystal data and structure refinement. CCDC 972460 contains the supplementary crystallographic data. $C_{17}H_{15}I_1N_2O_1$, V=2958.9(2) Å³ Mr = 390.21, Z=8, orthorhombic, a=9.8710(5) Å, m=2.165 mm⁻¹, b=16.0822(8) Å, T=100(2) K, c=18.6387(8) Å, a=90, b=90 g=90; b=104.719(2), $T_{min}=0.655$, $T_{max}=0.677$, $R_{int}=0.0252$, 3047 measured reflections, wR(F2) = 0.0759, S=1.155

4-Iodo-3-phenyl-6-(p-tolyl)-2,6-diazabicyclo[3.2.0]heptan-7-one (2b). Yield: 82%; White solid, mp 129–131 °C; $\delta_{\rm H}$ ¹H NMR (300 MHz, CDCl₃) 7.37 (dd, J 6.9, 0.9 Hz, 2H), 7.11-7.21 (m, 3H), 6.96 (d, J 8.1 Hz, 1H), 6.78 (dd, J 6.6, 1.8 Hz, 2H), 5.01 (d, J 3.6 Hz, 2H), 4.91 (bs, 2H), 2.24 (s, 3H). $\delta_{\rm C}$ NMR (75 MHz, CDCl₃) δ 163.9, 139.7, 134.2, 133.6,

129.5, 128.2, 127.1, 125.4, 116.8, 74.8, 71.8, 67.8, 30.8, 20.9. MS (EI) m/z 405 (M+1)⁺, v_{max} (KBr)/cm⁻¹ 1755, HRMS calculated for $C_{18}H_{17}IN_2O$ (M+H)⁺ 405.0464, found 405.0488.. **6-(4-Chlorophenyl)-4-iodo-3-phenyl-2,6-diazabicycle[3.2.0]heptan-7-one** (**2c**). Yield: 65%; Pale yellow solid, mp 143–144; δ_{H} ¹H NMR (300 MHz, CDCl₃) 7.35 (dd, J 8.1, 1.2 Hz, 2H), 7.10-7.20 (m, 5H), 6.83 (d, J 6.6 Hz, 2H), 5.01 (d, J 3.6 Hz, 2H), 4.92 (bs, 2H). δ_{C} NMR (75 MHz, CDCl₃) δ 164.1, 139.5, 134.6, 129.1, 128.9, 128.3, 127.2, 125.3, 118.0, 74.5, 72.2, 67.9, 30.3. MS (EI) m/z 425 (M+1)⁺, v_{max} (KBr)/cm⁻¹ 1755, HRMS calculated for $C_{17}H_{14}CIIN_{2}O$ (M+H)⁺ 424.9918, found 424.9915.

4-Iodo-6-(4-methoxyphenyl)-3-phenyl-2,6-diazabicyclo[3.2.0]heptan-7-one (2d). Yield: 66%; White solid, mp 137-139; $\delta_{\rm H}$ ¹H NMR (300 MHz, CDCl₃) 7.37 (d, *J* 7.2 Hz, 2H), 7.10-7.19 (m, 5H), 6.80 (dd, *J* 6.6, 1.8 Hz, 2H), 5.01 (d, *J* 3.6 Hz, 2H), 4.91 (bs, 2H), 3.21 (s, 3H). $\delta_{\rm C}$ NMR (75 MHz, CDCl₃) δ 164.0, 139.7, 134.2, 133.7, 129.5, 128.2, 127.1, 125.3, 116.8, 74.8, 71.7, 67.8, 55.9, 30.8. MS (EI) m/z 421 (M+1)⁺, $v_{\rm max}$ (KBr)/cm⁻¹ 1755, HRMS calculated for C₁₈H₁₇IN₂O₂ (M+H)⁺ 421.0413, found 421.0411.

6-(4-Fluorophenyl)-4-iodo-3-phenyl-2,6-diazabicycle[3.2.0]heptan-7-one (**2e**). Yield: 62%; Pale yellow solid, mp 124–127; $\delta_{\rm H}$ ¹H NMR (300 MHz, CDCl₃) 7.34-7.37 (m, 2H, ArH), 7.10-7.26 (m, 5H, ArH), 6.82-6.85 (m, 2H, ArH), 5.00 (d, *J* 3.6 Hz, 2H, H₃ & H₄), 4.92 (m, 2H, H₁ & H₅). $\delta_{\rm C}$ NMR (75 MHz, CDCl₃) δ 163.9, 139.7, 134.2, 133.7, 129.6, 128.3, 128.0, 127.2, 125.4, 116.9, 74.8, 71.8, 67.9, 30.8. MS (EI) m/z 409 (M+1)⁺, $v_{\rm max}$ (KBr)/cm⁻¹ 1750, HRMS calculated (M+H)⁺ 409.0213, found 409.0207, Anal. Calc. for C₁₇H₁₄FIN₂O: C, 50.02; H, 3.46; N, 6.86; found: C, 50.06; H, 3.51; N, 6.81.

6-Cyclohexyl-4-iodo-3-phenyl-2,6-diazabicyclo[3.2.0]heptan-7-one (**2f**). Yield: 75%; Pale yellow solid, mp 110–111; $\delta_{\rm H}$ ¹H NMR (500 MHz, CDCl₃) 7.18-7.39 (m, 5H, ArH), 5.07 (d, *J* 4.0 Hz, 2H, H₃ & H₄), 5.02 (s, 1H, H₁) 5.00 (d, *J* 3.5 Hz, 1H, H₅), 3.57-3.62 (m, 1H, cyclohexyl-H), 0.85-1.95(m, 10H, cyclohexyl-H), $\delta_{\rm C}$ NMR (75 MHz, CDCl₃) δ 164.5, 128.8, 128.7, 126.7 123.6, 74.7, 71.8, 67.9, 52.7, 31.8, 30.6, 29.7, 25.0. MS (EI) m/z 397 (M+1)⁺, $v_{\rm max}$ (KBr)/cm⁻¹ 1755, HRMS calculated (M+H)⁺ 397.0777, found 397.0773, Anal. Calc. for C₁₇H₂₁IN₂O: C, 51.53; H, 5.34; N, 7.07; found: C, 51.60; H, 5.39; N, 7.04. **6-Benzyl-4-iodo-3-phenyl-2,6-diazabicyclo[3.2.0]heptan-7-one** (**2g**). Yield: 60%; Yellow solid, mp 125–126; $\delta_{\rm H}$ ¹H NMR (500 MHz, CDCl₃) 7.21-7.36 (m, 10H, ArH), 5.04 (d, *J* 3.5 Hz, 2H, H₃ & H₄), 4.94 (s, 1H, H₁) 4.92 (d, *J* 3.5 Hz, 1H, H₅), 4.09-4.14 (m, 2H, CH₂). $\delta_{\rm C}$ NMR (75 MHz, CDCl₃) δ 170.1, 143.4, 128.8, 128.7, 128.5, 127.9, 127.2, 126.6, 123.5, 74.4, 70.3, 65.8, 47.26, 29.7. MS (EI) m/z 405 (M+1)⁺, $v_{\rm max}$ (KBr)/cm⁻¹ 1752, HRMS calculated (M+H)⁺ 405.0464, found 405.0462, Anal. Calc. for C₁₈H₁₇IN₂O: C, 53.48; H, 4.24; N, 6.93; found: C, 53.52; H, 4.29; N, 6.89.

4-Bromo-3,6-diphenyl-2,6-diazabicyclo[3.2.0]heptan-7-one (2h). Yield: 61%; Brown solid, mp 131–132; $\delta_{\rm H}^{-1}{\rm H}$ NMR (300 MHz, CDCl₃) 7.38 (m, 2H, ArH), 7.10-7.22 (m, 5H, ArH), 6.97-7.04 (m, 1H, ArH), 6.93 (m, 2H, ArH), 5.02 (bs, 1H, H₃), 4.92 (d, *J* 3.6 Hz, 1H, H₄), 4.91 (bs, 1H, H₁), 4.83 (d, *J* 3.6 Hz, 1H, H₅). $\delta_{\rm C}$ NMR 75 MHz, CDCl₃) δ 164.1, 139.0, 136.1, 129, 128.2, 127.2, 125.4, 124.5, 116.7, 73.1, 71.7, 66.1, 52.7. MS (EI) m/z 343

 $(M+1)^+$, Anal. Calc. for $C_{17}H_{15}BrN_2O$: C, 59.49; H, 4.41; N, 8.16; found: C, 59.41; H, 4.38; N, 8.20.

- **4-Bromo-3-phenyl-6-(p-tolyl)-2,6-diazabicyclo[3.2.0]heptan-7-one** (**2i**). Yield: 55%; Brown solid; $\delta_{\rm H}$ ¹H NMR (300 MHz, CDCl₃) 7.39(m, 2H, ArH), 7.10-7.23 (m, 3H, ArH), 6.97 (m, 2H, ArH), 6.80 (m, 2H, ArH), 5.02 (s, 1H, H₃), 4.91 (d, *J* 3.6 Hz, 1H, H₄), 4.90 (bs, 1H, H₁), 4.81 (d, *J* 3.6 Hz, 1H, H₅), 2.24 (s, 3H, CH₃). $\delta_{\rm C}$ NMR (75 MHz, CDCl₃) $\delta_{\rm C}$ 163.8, 139.0, 134.2, 133.6, 129.5, 128.2, 127.2, 125.4, 116.8, 73.1, 71.6, 66.2, 52.7, 20.9. MS (EI) m/z 357 (M+1)⁺, Anal. Calc. for C₁₈H₁₇BrN₂O: C, 60.52; H, 4.80; N, 7.84; found: C, 60.49; H, 4.75; N, 7.87.
- **4-Bromo-6-(4-chlorophenyl)-3-phenyl-2,6-diazabicyclo[3.2.0]heptan-7-one** (2j). Yield: 50%; Light brown solid, $\delta_{\rm H}{}^{1}{\rm H}$ NMR (300 MHz, CDCl₃) 7.30-7.40 (m, 3H, ArH), 7.16-7.22 (m, 2H), 7.13 (m, 2H, ArH), 6.86 (m, 2H, ArH), 5.02 (s, 1H, H₃), 4.93 (d, *J* 3.6 Hz, 1H, H₄), 4.89 (s, 1H, H₁), 4.81 (d, *J* 3.6 Hz, 1H, H₅). $\delta_{\rm C}$ NMR (75 MHz, CDCl₃) $\delta_{\rm C}$ 163.5, 134.5, 129.6, 129.1, 128.8, 128.3, 127.5, 125.5, 117.9, 73.0, 71.5, 66.0, 51.6. MS (EI) m/z 377 (M+1)⁺, Anal. Calc. for C₁₇H₁₄BrClN₂O: C, 54.06; H, 3.74; N, 7.42; found: C, 54.03; H, 3.68; N, 7.45.
- **4-Bromo-6-(4-methoxyphenyl)-3-phenyl-2,6-diazabicyclo[3.2.0]heptan-7-one** (**2k).** Yield: 55%; Brown solid, $\delta_{\rm H}$ ¹H NMR (300 MHz, CDCl₃) 7.37-7.51 (m, 4H, ArH), 7.10-7.18 (m, 2H, ArH), 7.06 (m, 2H, ArH), 6.86 (m, 2H, ArH), 5.01 (s, 1H, H₃), 4.92 (d, *J* 3.6 Hz, 1H, H₄), 4.91 (s, 1H, H₁), 4.83 (d, *J* 3.6 Hz, 1H, H₅), 3.18 (s, 3H, OCH₃). $\delta_{\rm C}$ NMR (75 MHz, CDCl₃) δ 164.0, 134.3, 129.7, 129.2, 128.8, 128.3, 127.5, 125.4, 116.8, 73.1, 71.6, 66.2, 57.8, 52.7. MS (EI) m/z 373 (M+1)⁺, Anal. Calc. for C₁₈H₁₇BrN₂O₂: C, 57.92; H, 4.59; N, 7.51; found: C, 57.91; H, 4.55; N, 7.57.
- **4-Bromo-6-(4-fluorophenyl)-3-phenyl-2,6-diazabicyclo[3.2.0]heptan-7-one (2l)**. Yield: 60%; Brown solid, $\delta_{\rm H}{}^{1}{\rm H}$ NMR (300 MHz, CDCl₃) 7.02-7.29 (m, 7H, ArH), 6.78-6.81 (m, 2H, ArH), 4.76-4.96 (m, 2H, H₃ & H₄), 4.66 (t, *J* 3.3 Hz, 1H, H₅), 4.66 (s, 1H, H₁). $\delta_{\rm C}$ NMR (75 MHz, CDCl₃) δ 163.5, 134.5, 129.6, 129.1, 128.8, 128.3, 127.5, 125.5, 117.9, 73.0, 71.5, 66.0, 51.6. MS (EI) m/z 361 (M+1)⁺, Anal. Calc. for C₁₇H₁₄FBrN₂O: C, 56.53; H, 3.91; N, 7.76; found: C, 56.55; H, 3.96; N, 7.73.
- **6-Benzyl-4-bromo-3-phenyl-2,6-diazabicyclo[3.2.0]heptan-7-one (2m)**. Yield: 45%; Yellow solid, $\delta_{\rm H}{}^{1}{\rm H}$ NMR (500 MHz, CDCl₃) 7.23-7.37 (m, 10H, ArH), 5.01 (s, 1H, H₃), 4.93 (d, *J* 3.5 Hz, 1H, H₄), 4.81 (s, 1H, H₁), 4.68 (d, *J* 3.5 Hz, 1H, H₅), 4.10-4.15 (m, 2H, CH₂). $\delta_{\rm C}$ NMR (75 MHz, CDCl₃) δ 169.1, 143.4, 128.8, 128.7, 128.6, 127.8, 127.2, 126.7, 123.5, 73.0, 69.9, 65.8, 50.6, 47.2. MS (EI) m/z 357 (M+1)⁺, Anal. Calc. for C₁₈H₁₇IN₂O: C, 60.52; H, 4.80; N, 7.84; found: C, 60.54; H, 4.85; N, 7.80.

General procedure for synthesis of 4-halo-2-alkyl-3,6-diaryl-2,6-diazabicyclo[3.2.0]heptan-7-ones (6). To a solution of compounds 5 (0.1 g, 1 equiv) in DCM (10 mL) was added bromine/iodine (1.2 equiv). The reaction was stirred for 10 minutes. This was followed by addition of K_2CO_3 at 0 °C. The solution was stirred at 0 °C. The progress of the reaction

was monitored with the help of tlc. After completion of the reaction, reaction mixture was diluted with DCM and washed with Na₂S₂O₃/water solution followed by brine solution. The dichloromethane solution was dried over anhydrous Na₂SO₄ and solvent was evaporated. Crude residue was purified by flash column chromatography using silica gel (100:200 mesh) in EtOAc/cyclohexane (2:8) as an elutent system to get compounds **6**.

- **3-(Methylamino)-1-phenyl-4-(**(E)-styryl)azetidin-2-one (**5a**). White solid, $\delta_{\rm H}$ ¹H NMR (500 MHz, CDCl₃) 7.48 (m, 2H, ArH), 7.43-7.45 (m, 2H, ArH), 7.28-7.38 (m, 5H, ArH), 7.10 (m, 1H, ArH), 6.85 (d, J 16.5 Hz, 1H, H₆), 6.53 (dd, J 16.0, 8.0 Hz, 1H, H₅), 4.86 (t, J 6.5 Hz, 1H, H₃), 4.46 (d, J 5.5 Hz, 1H, H₃), 2.90 (s, 3H, NCH₃). $\delta_{\rm C}$ NMR (75 MHz, CDCl₃) δ 165.9, 138.3, 136.0, 135.3, 129.1, 128.3, 128.1, 126.6, 124.3, 116.7, 57.5, 56.1, 32.4. MS (EI) m/z 279 (M+1)⁺, Anal. Calc. for C₁₈H₁₈N₂O: C, 77.67; H, 6.52; N, 10.06; found: C, 77.71; H, 6.54; N, 10.02.
- **3-(Dimethylamino)-1-phenyl-4-(**(*E*)**-styryl**)**azetidin-2-one** (**5b**). White solid, $\delta_{\rm H}{}^{1}{\rm H}$ NMR (500 MHz, CDCl₃) 7.46-7.51 (m, 4H, ArH), 7.28-7.40 (m, 5H, ArH), 7.07 (m, 1H, ArH), 6.75 (d, *J* 16.0 Hz, 1H, H₆), 6.30 (dd, *J* 15.5, 9.0 Hz, 1H, H₅), 4.88 (t, *J* 6.5 Hz, 1H, H₃), 4.45 (d, *J* 6.0 Hz, 1H, H₃), 2.92 (s, 6H, N(CH₃)₂). $\delta_{\rm C}$ NMR (75 MHz, CDCl₃) $\delta_{\rm I}$ 165.9, 138.7, 136.6, 135.6, 130.1, 128.7, 128.1, 126.6, 124.6, 124.3, 116.3, 57.5, 56.8, 38.3. MS (EI) m/z 293 (M+1)⁺, Anal. Calc. for C₁₉H₂₀N₂O: C, 78.05; H, 6.89; N, 9.58; found: C, 78.11; H, 6.93; N, 9.54.
- **4-Methyl-***N***-(2-oxo-1-phenyl-4-(**(*E*)**-styryl**)**azetidin-3-yl**)**benzenesulfonamide** (5c). White solid, $\delta_{\rm H}$ ¹H NMR (500 MHz, CDCl₃) 7.74-7.77 (m, 2H, ArH), 7.06-7.31 (m, 12H, ArH), 6.45 (d, *J* 15.5 Hz, 1H, H₆), 5.93 (dd, *J* 16.0, 9.0 Hz, 1H, H₅), 5.06 (t, *J* 6.5 Hz, 1H, H₃), 4.78 (d, *J* 6.5 Hz, 1H, H₃), 2.71 (s, 3H, CH₃). $\delta_{\rm C}$ NMR (75 MHz, CDCl₃) δ 166.2, 139.4, 137.0, 136.3, 136.0, 135.3, 131.5, 130.1, 129.4, 128.7, 128.1, 126.6, 124.6, 124.3, 117.1, 57.5, 56.1, 16.2. MS (EI) m/z 419 (M+1)⁺, Anal. Calc. for C₂₄H₂₂N₂O₃S: C, 68.88; H, 5.30; N, 6.69; found: C, 68.95; H, 5.33; N, 6.65.
- **4-Iodo-2-methyl-3,6-diphenyl-2,6-diazabicyclo[3.2.0]heptan-7-one** (**6a**). Yield: 75%; White solid, $\delta_{\rm H}$ ¹H NMR (500 MHz, CDCl₃) 7.43-7.45 (m, 2H, ArH), 7.28-7.38 (m, 5H, ArH), 7.10 (m, 1H, ArH), 6.92 (m, 1H, ArH), 5.03 (d, *J* 4.0 Hz, 2H, H₃ & H₄), 4.95 (s, 1H, H₁), 4.92 (d, *J* 3.0 Hz, 1H, H₅), 2.40 (s, 3H, CH₃). $\delta_{\rm C}$ NMR (75 MHz, CDCl₃) δ 163.9, 139.4, 136.3, 129.4, 128.3, 127.4, 125.3, 124.6, 116.3, 74.7, 71.6, 67.5, 43.7, 30.7. MS (EI) m/z 405 (M+1)⁺, HRMS calculated (M+H)⁺ 405.0464, found 405.0655, Anal. Calc. for C₁₈H₁₇IN₂O: C, 53.48; H, 4.24; N, 6.93; found: C, 53.54; H, 4.30; N, 6.89.
- **4-Bromo-2-methyl-3,6-diphenyl-2,6-diazabicyclo[3.2.0]heptan-7-one (6b)**. Yield: 40%; Brown solid; $\delta_{\rm H}$ ¹H NMR (500 MHz, CDCl₃) 7.43-7.49 (m, 4H, ArH), 7.28-7.37 (m, 5H, ArH), 7.10 (m, 1H, ArH), 5.00 (s, IH, H₃), 4.81-4.89 (m, 2H, H₁ & H₄), 4.82 (d, I 3.5 Hz, 1H, H₅), 2.44 (s, 3H, CH₃). $\delta_{\rm C}$ NMR (75 MHz, CDCl₃) δ 165.3, 138.0, 135.6, 129.1, 128.7,

128.4, 126.7, 124.3, 117.0, 73.8, 71.9, 66.2, 52.7, 45.8. (EI) m/z 357 (M+1)⁺, Anal. Calc. for C₁₈H₁₇BrN₂O: C, 60.52; H, 4.80; N, 7.84; found: C, 60.50; H, 4.71; N, 7.78.

Typical procedure for the preparation of alkyl 4-iodo-5-aryl-3- (arylamino)pyrrolidine-2-carboxylates (7). To a solution of compounds 2 (30mg, 1 eq) in methanol/ethanol (5 mL), NaOMe/NaOEt (3 eq) was added and the reaction mixture was stirred at 0 °C for 1.5 h. The progress of the reaction was monitored with the help of TLC. After completion of the reaction, the mixture was quenched with ice and pH adjust to 6-7 extracted with ethyl acetate (3 times). The combined organic layers were washed with water and brine, dried over anhydrous Na₂SO₄ and the solvent was evaporated to get compound (7) as a pure product as solid.

Methyl 4-iodo-5-phenyl-3-(phenylamino)pyrrolidine-2-carboxylate (**7a**). Yield: 85%; White solid; $\delta_{\rm H}$ ¹H NMR (500 MHz, CDCl₃) 7.52 (m, 2H, ArH), 7.31-7.39 (m, 3H, ArH), 7.19 (t, *J* 7.5 Hz, 2H, ArH), 6.76 (t, *J* 7.5 Hz, 1H, ArH), 6.63 (d, *J* 7.8 Hz, 2H, ArH), 4.70 (d, *J* 7.5 Hz, 1H, H₂), 4.46 (bs, 2H, H₃ & H₄), 4.11 (d, *J* 7.2 Hz, 1H, H₅), 3.64 (s, 3H, COOCH₃). $\delta_{\rm C}$ NMR (75 MHz, CDCl₃) δ 172.1, 145.8, 139.3, 129.3, 128.9, 128.4, 127, 118.7, 113.9, 71.0, 66.0, 61.7, 52.3, 29.3. MS (EI) m/z 423 (M+1)⁺, HRMS calculated (M+H)⁺ 423.0569, found 423.0561, Anal. Calc. for C₁₈H₁₉IN₂O₂: C, 51.20; H, 4.54; N, 6.63; found: C, 51.12; H, 4.49; N, 6.69.

Methyl 4-iodo-5-phenyl-3-(p-tolylamino)pyrrolidine-2-carboxylate (**7b**). Yield: 88%; White solid; $\delta_{\rm H}$ ¹H NMR (300 MHz, CDCl₃) 7.51 (m, 2H, ArH), 7.31-7.38 (m, 3H, ArH), 6.99 (m, 2H, ArH), 6.53 (d, *J* 8.4 Hz, 2H, ArH), 4.69 (d, *J* 7.2 Hz, 1H, H₂), 4.43 (bs, 2H, H₃ & H₄), 4.06-4.10 (m, 1H, H₅), 3.66 (s, 3H, COOCH₃), 2.23 (s, 3H, CH₃). δ_C NMR (75 MHz, CDCl₃) δ 172.3, 143.5, 140.1, 129.6, 128.7, 128.2, 126.9, 120.3, 114.1, 71.3, 66.5, 61.8, 52.2, 33.9, 20.4. MS (EI) m/z 437 (M+1)⁺, HRMS calculated (M+H)⁺ 437.0726, found 437.0726, Anal. Calc. for C₁₉H₂₁IN₂O₂: C, 52.31; H, 4.85; N, 6.42; found: C, 52.29; H, 4.80; N, 6.44.

Methyl 3-((4-chlorophenyl)amino)-4-iodo-5-phenylpyrrolidine-2-carboxylate (**7c**). Yield: 75%; White solid; $\delta_{\rm H}{}^{1}{\rm H}$ NMR (500 MHz, CDCl₃) 7.43-7.45 (m, 2H, ArH), 7.28-7.39 (m, 3H, ArH), 7.12 (d, *J* 8.0 Hz, 2H, ArH), 6.81-6.89 (m, 2H, ArH), 4.69 (d, *J* 6.0 Hz, 1H, H₂), 4.48 (bs, 2H, H₃ & H₄), 4.12 (d, *J* 7.0 Hz, 1H, H₅), 3.63 (s, 3H, CH₃). $\delta_{\rm C}$ NMR (75 MHz, CDCl₃) δ 171.4, 146.6, 139.4, 129.1, 128.5, 128.4, 127.1, 117.3, 114.2, 71.2, 65.8, 61.8, 52.6, 29.7. MS (EI) m/z 457 (M+1)⁺, HRMS calculated (M+H)⁺ 457.0180, found 457.0177, Anal. Calc. for C₁₈H₁₈ClIN₂O₂: C, 47.34; H, 3.97; N, 6.13; found: C, 47.31; H, 3.92; N, 6.17.

Methyl 4-iodo-3-((4-methoxyphenyl)amino)-5-phenylpyrrolidine-2-carboxylate (7d). Yield: 79%; White solid; $\delta_{\rm H}$ ¹H NMR (500 MHz, CDCl₃) 7.32-7.38 (m, 4H, ArH), 7.10-7.25 (m, 3H, ArH), 6.83-6.87 (m, 2H, ArH), 4.69 (d, *J* 6.5 Hz, 1H, H₂), 4.49 (bs, 2H, H₃ & H₄), 4.15 (d, *J* 7.5 Hz, 1H, H₅), 3.77 (s, 3H, OCH₃), 3.60 (s, 3H, COOCH₃). $\delta_{\rm C}$ NMR (75 MHz, CDCl₃) δ 169.0, 145.6, 137.7, 129.1, 128.7, 128.3, 127.0, 117.0, 113.6, 71.2, 66.5,

61.3, 55.8, 52.0, 29.6. MS (EI) m/z 453 (M+1)⁺, HRMS calculated (M+H) 453.0675, found 453.0669, Anal. Calc. for C₁₉H₂₁IN₂O₃: C, 50.46; H, 4.68; N, 6.19; found: C, 50.39; H, 4.63; N, 6.21.

Methyl 4-bromo-5-phenyl-3-(phenylamino)pyrrolidine-2-carboxylate (**7e**). Yield: 87%; White solid; $\delta_{\rm H}$ ¹H NMR (300 MHz, CDCl₃) 7.50 (m, 2H, ArH), 7.29-7.38 (m, 3H, ArH), 7.17 (t, *J* 6.6 Hz, 2H, ArH), 6.75 (t, *J* 7.5 Hz, 1H, ArH), 6.61 (d, *J* 7.8 Hz, 2H, ArH), 4.60 (d, *J* 6.0 Hz, 1H, H₂), 4.48 (d, *J* 6 Hz, 1H, H₅), 4.40 (bs, 1H, H₃), 4.07 (dd, *J* 3.9, 2.1 Hz, 1H, H₄), 3.68 (s, 3H, COOCH₃). $\delta_{\rm C}$ NMR (75 MHz, CDCl₃) δ 171.6, 145.6, 139.4, 129.4, 128.8, 126.9, 118.7, 113.9, 69.8, 64.5, 61.8, 56.3, 52.3, 33.8. MS (EI) m/z 375 (M+1)⁺, HRMS calculated (M+H)⁺ 375.0708, found 375.0704, Anal. Calc. for C₁₈H₁₉BrN₂O₂: C, 57.61; H, 5.10; N, 7.47; found: C, 57.59; H, 5.04; N, 7.50.

Methyl 4-bromo-5-phenyl-3-(p-tolylamino)pyrrolidine-2-carboxylate (**7f**). Yield: 90%; White solid; $\delta_{\rm H}$ ¹H NMR (300 MHz, CDCl₃) 7.5 (m, 2H, ArH), 7.28-7.38 (m, 3H, ArH), 6.98 (d, *J* 7.8 Hz, 2H, ArH), 6.51 (d, *J* 7.8 Hz, 2H, ArH), 4.60 (d, *J* 5.7 Hz, 1H, H₂), 4.47 (d, *J* 5.7 Hz, 1H, H₅), 4.36 (bs, 1H, H₃), 4.06 (dd, *J* 6, 3.6 Hz, 1H, H₄), 3.68 (s, 3H, COOCH₃), 2.22 (s, 3H, CH₃). $\delta_{\rm C}$ NMR (75 MHz, CDCl₃) δ 171.8, 143.3, 139.9, 129.8, 128.8, 128.2, 128.0, 126.8, 114.1, 70.0, 64.9, 61.9,56, 52.2, 29.7, 20.4. MS (EI) m/z 389 (M+1)⁺, HRMS calculated (M+H)⁺ 389.0865, found 389.0852, Anal. Calc. for C₁₉H₂₁BrN₂O₂: C, 58.62; H, 5.44; N, 7.20; found: C, 58.60; H, 5.41; N, 7.28.

Methyl 4-bromo-3-((4-chlorophenyl)amino)-5-phenylpyrrolidine-2-carboxylate (7g). Yield: 80%; Brown solid; $\delta_{\rm H}$ ¹H NMR (500 MHz, CDCl₃) 7.42-7.45 (m, 2H, ArH), 7.28-7.38 (m, 3H, ArH), 7.11 (t, *J* 6.5 Hz, 2H, ArH), 6.81-6.87 (m, 2H, ArH), 4.62 (d, *J* 5.5 Hz, 1H, H₂), 4.46 (d, *J* 5.5 Hz, 1H, H₅), 4.37 (bs, 1H, H₃), 4.08 (dd, *J* 6.0 & 3.0 Hz, 1H, H₄), 3.65 (s, 3H, COOCH₃). $\delta_{\rm C}$ NMR (75 MHz, CDCl₃) δ 169.7, 145.2, 139.0, 129.6, 129.1, 128.7, 125.1, 116.7, 114.3, 70.9, 64.7, 60.9, 56.1, 53.0. MS (EI) m/z 409(M+1)⁺, HRMS calculated (M+H)⁺ 409.0318, found 409.0313, Anal. Calc. for C₁₈H₁₈BrClN₂O₂: C, 52.77; H, 4.43; N, 6.84; found: C, 52.73; H, 4.39; N, 6.87.

Methyl 4-bromo-3-((4-methoxyphenyl)amino)-5-phenylpyrrolidine-2-carboxylate (**7h**). Yield: 82%; Brown solid; $\delta_{\rm H}{}^{1}{\rm H}$ NMR (500 MHz, CDCl₃) 7.47-7.49 (m, 2H, ArH), 7.28-7.42 (m, 3H, ArH), 7.22-7.23 (m, 2H, ArH), 7.04-7.06 (m, 2H, ArH), 4.61 (d, *J* 6.0 Hz, 1H, H₂), 4.46 (d, *J* 5.5 Hz, 1H, H₅), 4.34 (bs, 1H, H₃), 4.09 (dd, *J* 6.5 & 3.5 Hz, 1H, H₄), 3.69 (s, 3H, OCH₃), 3.52 (s, 3H, COOCH₃). $\delta_{\rm C}$ NMR (75 MHz, CDCl₃) δ 171.8, 146.0, 139.0, 129.1, 128.7, 128.1, 126.6, 118.4, 114.3, 70.9, 64.7, 61.3, 57.5, 56.1, 52.7. MS (EI) m/z 405 (M+1)⁺, HRMS calculated (M+H)⁺ 405.0814, found 405.0806, Anal. Calc. for C₁₉H₂₁BrN₂O₃: C, 56.31; H, 5.22; N, 6.91; found: C, 56.29; H, 5.17; N, 6.96.

Ethyl 4-iodo-5-phenyl-3-(phenylamino)pyrrolidine-2-carboxylate (7i). Yield: 86%; White solid; $\delta_{\rm H}$ ¹H NMR (500 MHz, CDCl₃) 7.28-40 (m, 5H, ArH), 7.06-7.12 (m, 2H, ArH), 6.76 (t, *J* 7.5 Hz, 1H, ArH), 6.62 (d, *J* 7.5 Hz, 2H, ArH), 4.70 (d, *J* 6.0 Hz, 1H, H₂), 4.46 (m, 2H, H₃ & H₄), 4.17 (m, 2H, CH₂), 4.08 (d, *J* 7.0 Hz, 1H, H₅), 1.27 (t, *J* 7.5 Hz, 3H, CH₂CH₃). δ_C NMR (75 MHz, CDCl₃) δ 170.7, 145.6, 139.4, 129.4, 128.7, 128.3, 127.0,

118.7, 113.6, 71.2, 66.1, 61.3, 60.3, 29.3, 14.5. MS (EI) m/z 437 (M+1)⁺, HRMS calculated (M+H) 437.0726, found 437.0720, Anal. Calc. for $C_{19}H_{21}IN_2O_2$: C, 52.31; H, 4.85; N, 6.42; found: C, 52.27; H, 4.79; N, 6.47.

Ethyl 4-iodo-5-phenyl-3-(p-tolylamino)pyrrolidine-2-carboxylate (**7j).** Yield: 82%; White solid; $\delta_{\rm H}$ ¹H NMR (500 MHz, CDCl₃) 7.35-7.49 (m, 4H, ArH), 7.22-7.28 (m, 3H, ArH), 7.05 (d, *J* 8.5 Hz, 2H, ArH), 4.68 (d, *J* 7.0 Hz, 1H, H₂), 4.39-4.50 (m, 2H, H₃ & H₄), 4.10-4.18 (m, 3H, CH₂ & H₅), 2.27 (s, 3H, CH₃), 1.28 (t, *J* 7.5 Hz, 3H, CH₂CH₃). $\delta_{\rm C}$ NMR (75 MHz, CDCl₃) δ 171.4, 143.5, 139.4, 129.4, 128.7, 128.1, 126.3, 120.8, 114.3, 71.2, 66.5, 62.0, 60.3, 33.8, 20.7, 13.8. MS (EI) m/z 451 (M+1)⁺, HRMS calculated (M+H)⁺ 451.0882, found 451.0879, Anal. Calc. for C₂₀H₂₃IN₂O₂: C, 53.34; H, 5.15; N, 6.22; found: C, 53.31; H, 5.10; N, 6.27.

Ethyl 4-bromo-5-phenyl-3-(phenylamino)pyrrolidine-2-carboxylate (7k). Yield: 73%; Brown solid; $\delta_{\rm H}{}^{1}{\rm H}$ NMR (500 MHz, CDCl₃) 7.50 (m, 2H, ArH), 7.32-7.48 (m, 5H, ArH), 7.23-7.28 (m, 2H, ArH), 7.02 (t, *J* 7.5 Hz, 1H, ArH), 4.61 (d, *J* 5.5 Hz, 1H, H₂), 4.46 (d, *J* 5.5 Hz, 1H, H₅), 4.39 (bs, 1H, H₃), 4.06-4.13 (m, 3H, CH₂ & H₄), 1.19 (t, *J* 7.5 Hz, 3H, CH₂CH₃). δ_C NMR (75 MHz, CDCl₃) δ 171.1, 145.2, 139.4, 129.4, 129.1, 127.8, 126.3, 118.7, 114.0, 69.9, 64.4, 61.6, 60.6, 56.9, 14.5. MS (EI) m/z 390 (M+1)⁺, HRMS calculated (M+H)⁺ 389.0865, found 389.0855, Anal. Calc. for C₁₉H₂₁BrN₂O₂: C, 58.62; H, 5.44; N, 7.20; found: C, 58.59; H, 5.36; N, 7.24.

Ethyl 4-bromo-5-phenyl-3-(p-tolylamino)pyrrolidine-2-carboxylate (7l). Yield: 81%; Brown solid; $\delta_{\rm H}{}^{1}{\rm H}$ NMR (500 MHz, CDCl₃) 7.28-7.49 (m, 5H, ArH), 7.22 (m, 2H, ArH), 7.05 (m, 2H, ArH), 4.59 (d, *J* 6.0 Hz, 1H, H₂), 4.47 (d, *J* 6.0 Hz, 1H, H₅), 4.36 (bs, 1H, H₃), 4.08-4.17 (m, 3H, CH₂ & H₄), 2.21 (s, 3H, CH₃), 1.28 (t, *J* 7.5 Hz, 3H, CH₂CH₃). $\delta_{\rm C}$ NMR (75 MHz, CDCl₃) δ 170.1, 143.4, 139.8, 129.7, 129.4, 128.7, 128.1, 126.6, 114.3, 70.3, 64.7, 62.0, 60.6, 56.1, 29.7, 21.5, 13.7. MS (EI) m/z 404 (M+1)⁺, HRMS calculated (M+H)⁺ 403.1021, found 403.1014, Anal. Calc. for C₂₀H₂₃BrN₂O₂: C, 59.56; H, 5.75; N, 6.95; found: C, 59.51; H, 5.73; N, 6.98.

Typical procedure for the preparation of 4,6-diaryl-3,6-diazabicyclo[3.1.0] hexane-2-carboxylic acids (8). To a solution of compound **2** (30mg, 1 eq) in methanol/ethanol (5 mL), NaOMe/NaOEt (6.5 eq) was added and the reaction mixture was stirred at room temperature for 1 hr. Then the reaction mixture was heated up to 50 °C for 30 minutes. The progress of the reaction was monitored with the help of TLC. After completion of the reaction, the mixture was quenched with ice and pH adjust to 6-7. Now, the reaction mixture was concentrated under reduced pressure and purified *via* flash column chromatography using silica gel (100:200 mesh) in MeOH/DCM (1:9) as an elutent system to get compound 6 as a pure product.

4,6-Diphenyl-3,6-diazabicyclo[3.1.0]hexane-2-carboxylic acid (8a). Yield: 90%; Brown solid; $\delta_{\rm H}$ ¹H NMR (300 MHz, MeOD) 7.68 (dd, J 8.4 & 1.5 Hz, 2H, ArH), 7.31-7.42 (m, 3H, ArH), 7.12 (t, J 7.8 Hz, 2H, ArH), 6.58 (d, J 7.8 Hz, 3H, ArH), 4.10 (d, J 1.8 Hz, 1H,

H₂), 3.68 (d, J 1.8 Hz, 1H, H₅), 3.23 (dd, J 4.5, 2.1 Hz, 1H, H₃), 3.08 (dd, J 4.5, 2.1 Hz, 1H, H₄). $\delta_{\rm C}$ NMR (75 MHz, DMSOD₆) δ 173.8, 154.1, 141.8, 129.07, 128.6, 127.8, 127.5, 121.7, 120.9, 64.3, 63.6, 49.7, 49.0. MS (EI) m/z 281 (M+1)⁺, HRMS calculated (M+H)⁺ 281.1290, found 281.1289, Anal. Calc. for C₁₇H₁₆N₂O₂: C, 72.84; H, 5.75; N, 9.99; found: C, 72.78; H, 5.71; N, 10.02.

4-Phenyl-6-(p-tolyl)-3,6-diazabicyclo[3.1.0]hexane-2-carboxylic acid (8b). Yield: 88%; Brown solid; $\delta_{\rm H}{}^{1}{\rm H}$ NMR (500 MHz, MeOD) 7.51 (m, 2H, ArH), 7.25-7.48 (m, 3H, ArH), 7.03 (m, 2H, ArH), 6.70 (d, *J* 7.5 Hz, 2H, ArH), 4.09 (d, *J* 2.0 Hz, 1H, H₂), 3.65 (d, *J* 2.0 Hz, 1H, H₅), 3.19 (dd, *J* 4.0, 2.0 Hz, 1H, H₃), 3.08 (dd, *J* 4.5, 2.0 Hz, 1H, H₄), 2.27 (s, 3H, CH₃). $\delta_{\rm C}$ NMR (75 MHz, DMSO-D₆) δ 172.8, 154.5, 141.7, 129.1, 128.5, 127.5, 127.4, 121.8, 121.3, 64.3, 63.9, 49.8, 49.2, 21.4. MS (EI) m/z 295 (M+1)⁺, HRMS calculated (M+H)⁺ 295.1447, found 295.1440, Anal. Calc. for C₁₈H₁₈N₂O₂: C, 73.45; H, 6.16; N, 9.52; found: C, 73.38; H, 6.10; N, 9.54.

6-(4-Chlorophenyl)-4-phenyl-3,6-diazabicyclo[3.1.0]hexane-2-carboxylic acid (8c). Yield: 82%; Brown solid; $\delta_{\rm H}{}^{1}{\rm H}$ NMR (500 MHz, MeOD) 7.25-7.51 (m, 5H, ArH), 6.99-7.02 (m, 2H, ArH), 6.71-6.76 (m, 2H, ArH), 4.10 (d, J 2.0 Hz, 1H, H₂), 3.64 (d, J 2.0 Hz, 1H, H₅), 3.20 (dd, J 4.5, 2.0 Hz, 1H, H₃), 3.08 (m, 1H, H₄). $\delta_{\rm C}$ NMR (75 MHz, DMSO-D₆) δ 172.1, 154.5, 141.8, 129.4, 128.3, 127.4, 127.0, 121.5, 120.8, 64.4, 63.3, 48.9, 47.9. MS (EI) m/z 315 (M+1)⁺, HRMS calculated (M+H)⁺ 315.0900, found 315.0891, Anal. Calc. for C₁₇H₁₅ClN₂O₂: C, 64.87; H, 4.80; N, 8.90; found: C, 64.85; H, 4.85; N, 8.96.

6-(4-Methoxyphenyl)-4-phenyl-3,6-diazabicyclo[3.1.0]hexane-2-carboxylic acid (8d). Yield: 85%; Brown solid; $\delta_{\rm H}{}^{1}{\rm H}$ NMR (500 MHz, MeOD) 7.23-7.53 (m, 5H, ArH), 6.74-7.02 (m, 4H, ArH), 4.10 (d, J 1.5 Hz, 1H, H₂), 3.66 (d, J 1.5 Hz, 1H, H₅), 3.23 (dd, J 4.5, 2.0 Hz, 1H, H₃), 3.19 (s, 3H, OCH₃) 3.07 (dd, J 4.5 & 2.0 Hz, 1H, H₄). $\delta_{\rm C}$ NMR (75 MHz, DMSO-D₆) δ 173.8, 154.2, 141.5, 129.8, 128.7, 127.7, 127.4, 121.9, 120.4, 64.4, 63.0, 55.8, 49.9, 48.9. MS (EI) m/z 311 (M+1)⁺, HRMS calculated (M+H)⁺ 311.1396, found 310.1388, Anal. Calc. for C₁₈H₁₈N₂O₃: C, 69.66; H, 5.85; N, 9.03; found: C, 69.63; H, 5.78; N, 9.08.

Acknowledgements

The financial support from Department of Science and Technology (DST), New Delhi, under Scheme No:- SB/FT/CS-079/2012 and Board of Research in Nuclear Sciences (BRNS), India (Scheme No. 2013/37C/11/BRNS/198) is highly acknowledged. Mr. Yogesh Kumar acknowledge the UGC Scheme RGNF (Award No:- F1-17.1/2011-12/RGNF-SC-PUN-2309/(SA-III/Website)). I. K. Gujral Punjab Technical University (PTU), Kapurthala is acknowledged for providing research facilities.

References

- 1. Alcaide, B.; P. Almendros, *Curr. Med. Chem.* **2004**, *11*, 1921. http://dx.doi.org/10.2174/0929867043364856
- 2. Ojima, I. Adv. Asym. Synth. 1995, 1, 95.
- 3. A. Kamath, I. Ojima, *Tetrahedron* **2012**, *60*, 10640. http://dx.doi.org/10.1016/j.tet.2012.07.090
- 4. Ojima, I. *Acc. Chem. Res.* **1995**, *28*, 383. http://dx.doi.org/10.1021/ar00057a004
- 5. Ojima, I.; Das, M. *J. Nat. Prod.* **2009**, *72*, 554. http://dx.doi.org/10.1021/np8006556
- 6. Geng, X.; Miller, M.; Lin, S.; Ojima, I. *Org. Lett.* **2003**, *5*, 3733. http://dx.doi.org/10.1021/ol0354627
- 7. Alcaide, B.; Almendros, P.; Alonso, J. M.; Aly, M. F. *Chem. Eur. J.* **2003**, *9*, 3415. http://dx.doi.org/10.1002/chem.200304712
- 8. Alcaide, B.; Almendros, P.; Aragoncillo, C. *Chem. Eur. J.* **2002**, *8*, 3646. http://dx.doi.org/10.1002/1521-3765(20020816)8:16<3646::AID-CHEM3646>3.0.CO;2-M
- 9. Singh, P.; Bhargava, G.; Kumar, V.; Mahajan, M. P. *Tetrahedron Lett.* **2010**, *51*, 4272. http://dx.doi.org/10.1016/j.tetlet.2010.06.038
- 10. Anand, A.; Bhargava, G.; Kumar, V.; Mahajan, M. P. *Tetrahedron Lett.* **2010**, *51*, 2312. http://dx.doi.org/10.1016/j.tetlet.2010.02.127
- Raj, R.; Mehra, V.; Singh, P.; Kumar, V.; Bhargava, G.; Mahajan, M. P.; Handa, S.; Slaughter, L. M. Eur. J. Org. Chem. 2011, 14, 2697. http://dx.doi.org/10.1002/ejoc.201100130
- 12. Singh, P.; Raj, R.; Bhargava, G.; Hendricks, D. T.; Handa, S.; Slaughter, L. M.; Kumar, V. *Eur. J. Med. Chem.* **2012**, *58*, 513. http://dx.doi.org/10.1016/j.ejmech.2012.10.049
- 13. Davis, F. A.; Xu, H.; Wu, Y.; Zhang, *J. Org. Lett.* **2006**, *8*, 2273. http://dx.doi.org/10.1021/ol060521c
- 14. Rogge ,B.; Itagaki ,Y.; Fishkin , N.; Levi , E.; Rühl , ℝ.; Yi ,S.-S.; Nakanishi , K.; Hammerling, U. *J. Nat. Prod.* **2005**, *68*, 1536. http://dx.doi.org/10.1021/np0496791
- 15. Fache, F.; Schultz, E.; Tomasino, M. L.; Lemaire, M. *Chem. Rev.* **2000**, *100*, 2159. http://dx.doi.org/10.1021/cr9902897
- 16. Hata, T.; Sano, Y.; Sugawara, R.; Matsumae, A.; Kanamori, K.; Shima, T.; Hoshi, T. *J. Antibiot.* **1956**, *9*, 141.
- 17. Sim, T. B.; Kang, S. H.; Lee, K. S.; Lee, W. K.; Yun, H.; Dong, Y.; Ha, H.-J. *J. Org. Chem.* **2003**, *68*, 104.
 - http://dx.doi.org/10.1021/jo0261911

18. Park, C. S.; Kim, M. S.; Sim, T. B.; Pyun, D. K.; Lee, C. H.; Choi, D.; Lee, W. K.; Chang, J.-W.; Ha, H.-J. *J. Org. Chem.* **2003**, *68*, 43. http://dx.doi.org/10.1021/jo0255451

19. Zwanenburg, B.; ten Holte, P. *Stereoselective Heterocyclic Synthesis III*; Metz, P., Ed.; *Topics in Current Chemistry* 216; Springer-Verlag: Berlin, Heidelberg, 2001; p 93.

20. McCoull, W.; Davis, F. A. *Synthesis* **2000**, *10*, 1347. http://dx.doi.org/10.1055/s-2000-7097

21. Sweeney, J. B. *Chem. Soc. Rev.* **2002**, *31*, 247. http://dx.doi.org/10.1039/B006015L

22. Brown, F. *Vaccine* **2002**, *20*, 322. http://dx.doi.org/10.1016/S0264-410X(01)00342-5

23. Louw, A.; Swart, P.; Allie, F. *Biochem. Pharmacol.* **2000**, *59*, 167. http://dx.doi.org/10.1016/S0006-2952(99)00302-0

24. Dvorakova, K.; Payne, C. M.; Tome, M. E.; Briehl, M. M.; McClure, T.; Dorr, R. T. *Biochem. Pharmacol.* **2000**, *60*, 749.

http://dx.doi.org/10.1016/S0006-2952(00)00380-4

25. Furmeier, S.; Metzger, J. O. *Eur. J. Org. Chem.* **2003**, 649. http://dx.doi.org/10.1002/ejoc.200390105

26. Kumar, Y.; Singh, P.; Bhargava, G. *Synlett* **2015**, *26*, 363. http://dx.doi.org/10.1055/s-0034-1379505

27. Bains, D.; Kumar, Y.; Singh, P.; Bhargava, G. *J. Heterocyclic Chem.* **2016**, *53*, 1665, DOI 10.1002/jhet.2465.

http://dx.doi.org/10.1002/jhet.2465

28. B. Kuila, Kumar, Y.; Mahajan, D.; Kumar, K.; Singh, P.; Bhargava, G. *RSC Adv.* **2016**, *6*, 57485-57489.

http://dx.doi.org/10.1039/C6RA10021J

29. Kumar, Y.; Kuila, B.; Mahajan, D.; Singh, P.; Mohapatra, B.; Bhargava, G. *Tetrahedron Lett.* 2014, **55**, 2793.

http://dx.doi.org/10.1016/j.tetlet.2014.02.105

30. Paukner, S.; Hesse, L.; Prezelj, A.; Solmajer, T.; Urleb, U. Antimicrob. Agents Chemother. **2009**, *53*, 505.

http://dx.doi.org/10.1128/AAC.00085-08

31. Silver, L. L. *Expert Opin. Ther. Patents*, **2007**, *17*, 1175. http://dx.doi.org/10.1517/13543776.17.9.1175

32. Herdeis, C.; Aschenbrenner, A.; Kirfel, A.; Schwabenlainder, F. *Tetrahedron: Asymm.* **1997**, 8, 2421-2432.

http://dx.doi.org/10.1016/S0957-4166(97)00261-9

33. Steen, F. H. V.; Koten, G. V. *Tetrahedron* **1991**, *47*, 7503 and reference cited therein. http://dx.doi.org/10.1016/S0040-4020(01)88276-4