## **Supplementary Material**

# Synthesis of bis-oxathiaaza[3.3.3]propellanes *via* nucleophilic addition of (1,ω-alkanediyl)bis(N'-organylthioureas) on dicyanomethylene-1,3-indanedione

Alaa A. Hassan,<sup>a</sup>\* Kamal M. A. El-Shaieb,<sup>a</sup> Amal S. Abd El-Aal,<sup>a</sup> Stefan Bräse,<sup>b</sup> and Martin Nieger<sup>c</sup>

<sup>a</sup> Chemistry Department, Faculty of Science, Minia University, 61519 El-Minia, Egypt. <sup>b</sup> Institute of Organic Chemistry, Karlsruhe Institute of Technology, Fritz-Haber-Weg 6, 76131 Karlsruhe, Germany.

<sup>c</sup> Laboratory of Inorganic Chemistry, Department of Chemistry, University of Helsinki P.O Box 55 (A. I. Virtasen aukio 1), 00014 Helsinki, Finland E-mail: alaahassan2001@mu.edu.eg

Single crystal X-ray diffraction study was carried out on an Agilent Super Nova diffractometer at 173 K with EOS-detector and MoK $\alpha$  radiation ( $\lambda = 0.71073$  Å). Direct Methods (SHELXS-97 [Sheldrick, G.M., *Acta Crystallogr.*, **2008**. *A64*, 112-122.]) were used for structure solution and refinement was carried out using SHELXL-2013 [Sheldrick, G.M., *Acta Crystallogr.*, **2008**. *A64*, 112-122.] (full-matrix least-squares on F<sup>2</sup>). Hydrogen atoms were localized by difference Fourier Synthesis map and refined using a riding model [H(N) free]. A semi-empirical absorption correction and an extinction correction were applied. Compound **7a**: C<sub>40</sub>H<sub>26</sub>N<sub>8</sub>O<sub>4</sub>S<sub>2</sub> · 2 (C<sub>3</sub>H<sub>7</sub>NO), Mr = 893.00 gmol<sup>-1</sup>, colorless plates, crystal size 0.30 × 0.02 × 0.10 mm, triclinic, P-1 (no. 2), a = 9.7515 (5) Å, b = 9.8024 (8) Å, c = 13.4038 (8) Å,  $\alpha = 90.279$  (6)°,  $\beta = 102.516$  (5)°,  $\gamma = 118.268$  (7)°, V = 1092.98(14) Å<sup>3</sup>, Z = 1, D<sub>calcd</sub> = 1.357 Mg m<sup>-3</sup>, F(000)= 466,  $\mu = 0.184$  mm<sup>-1</sup>, T = 173 K, 7638 measured reflections ( $2\theta_{max} = 55^{\circ}$ ), 4954 independent reflections (R<sub>int.</sub> = 0.016) 298 parameters, 2 restraints, R1 ( for 3998 I > 2 $\sigma$ (I)) = 0.044, wR<sup>2</sup> (for all data ) = 0.107, S = 1.03, largest diff. peak and hole = 0.35 eA<sup>-3</sup>, -0.300 eA<sup>-3</sup>.

#### Supplementary data

Crystallographic data for the structure reported in this work have been deposited with Cambridge Crystallographic Data Center on supplementary publication no CCDC-1417181 Copies of the data

can be obtained free of charge on publication to the Director, CCDC, 12 Union Road, Cambridge CB2 IEZ,UK (fax:+44(1223)336033:e-mail: <u>deposit@ccdc.cam.ac.uk.</u>



**Figure 1.** Molecular structure of **7a** in the crystal (displacement parameters are drawn at 50% probability level). The crystallographic numbering does not reflect the systematic IUPAC numbering (SB651\_HY).



Figure 2. Crystal packing of 7a (in the voids are DMF).

|                                           | Z = 1                                            |
|-------------------------------------------|--------------------------------------------------|
| $C_{40}H_{26}N_8O_4S_2{\cdot}2(C_3H_7NO)$ |                                                  |
| $M_r = 893.00$                            | F(000) = 466                                     |
| Triclinic, P-1 (no.2)                     | $D_{\rm x} = 1.357 {\rm ~Mg} {\rm m}^{-3}$       |
| <i>a</i> = 9.7515 (5) Å                   | Mo $K\alpha$ radiation, $\lambda$<br>= 0.71073 Å |
| b = 9.8024 (8) Å                          | Cell parameters from 2581 reflections            |
| <i>c</i> = 13.4038 (8) Å                  | $\theta = 2.4 - 29.6^{\circ}$                    |
| $\alpha = 90.279 \ (6)^{\circ}$           | $\mu = 0.18 \text{ mm}^{-1}$                     |
| $\beta = 102.516 \ (5)^{\circ}$           | <i>T</i> = 173 K                                 |
| $\gamma = 118.268 \ (7)^{\circ}$          | Plates, colourless                               |
| $V = 1092.98 (14) \text{ Å}^3$            | 0.30 × 0.20 × 0.10<br>mm                         |

## **Table 2.** Data collection for **7a**

| Agilent, SuperNova, Single source at offset, Eos diffractometer                                                                                                                                    | 4954 independent reflections                                              |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|
| Radiation source: SuperNova (Mo) X-ray Source                                                                                                                                                      | 3998 reflections with $I > 2\sigma(I)$                                    |
| Detector resolution: 32.0214 pixels mm <sup>-1</sup>                                                                                                                                               | $R_{\rm int} = 0.016$                                                     |
| rotation in ω, 1° scans                                                                                                                                                                            | $\theta_{\text{max}} = 27.5^{\circ}, \ \theta_{\text{min}} = 2.4^{\circ}$ |
| Absorption correction: multi-scan <i>CrysAlis PRO</i> ,<br>Agilent Technologies. Empirical absorption<br>correction using spherical harmonics, implemented<br>in SCALE3 ABSPACK scaling algorithm. | $h = -12 \rightarrow 12$                                                  |
| $T_{\min} = 0.858, T_{\max} = 1.000$                                                                                                                                                               | $k = -12 \rightarrow 12$                                                  |
| 7638 measured reflections                                                                                                                                                                          | $l = -13 \rightarrow 17$                                                  |

#### Table 3. Refinement data for 7a

| Refinement on $F^2$             | Secondary atom site location: difference Fourier map                                                         |
|---------------------------------|--------------------------------------------------------------------------------------------------------------|
| Least-squares matrix: full      | Hydrogen site location: difference Fourier map                                                               |
| $R[F^2 > 2\sigma(F^2)] = 0.044$ | H atoms treated by a mixture of independent and constrained refinement                                       |
| $wR(F^2) = 0.107$               | $w = 1/[\sigma^{2}(F_{o}^{2}) + (0.0373P)^{2} + 0.4217P] \text{ where } P$<br>= $(F_{o}^{2} + 2F_{c}^{2})/3$ |

| <i>S</i> = 1.03                                                   | $(\Delta/\sigma)_{\rm max} = 0.001$                                                                                                   |
|-------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|
| 4954 reflections                                                  | $\Delta \rangle_{\text{max}} = 0.31 \text{ e} \text{ Å}^{-3}$                                                                         |
| 298 parameters                                                    | $\Delta$ <sub>min</sub> = -0.30 e Å <sup>-3</sup>                                                                                     |
| 2 restraints                                                      | Extinction correction: <i>SHELXL</i> ,<br>Fc <sup>*</sup> =kFc[1+0.001xFc <sup>2</sup> $\lambda^3$ /sin(2 $\theta$ )] <sup>-1/4</sup> |
| Primary atom site location:<br>structure-invariant direct methods | Extinction coefficient: 0.0088 (15)                                                                                                   |

**Table 4.** Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters  $(\text{\AA}^2)$  for **7a** 

|            | x               | у               | z               | $U_{\rm iso}$ */ $U_{\rm eq}$ |
|------------|-----------------|-----------------|-----------------|-------------------------------|
| <b>S</b> 1 | 0.50133<br>(5)  | 0.68657<br>(5)  | 0.32202<br>(3)  | 0.03351<br>(14)               |
| C2         | 0.66191<br>(18) | 0.79297<br>(18) | 0.43225<br>(12) | 0.0266 (3)                    |
| N3         | 0.80959<br>(15) | 0.84120<br>(15) | 0.41067<br>(10) | 0.0259 (3)                    |
| C4         | 0.81228<br>(18) | 0.83774<br>(18) | 0.30497<br>(12) | 0.0242 (3)                    |
| C5         | 0.9020 (2)      | 0.7625 (2)      | 0.27211<br>(13) | 0.0288 (4)                    |
| C6         | 1.0661 (2)      | 0.8146 (2)      | 0.29775<br>(16) | 0.0419 (5)                    |
| H6         | 1.1392          | 0.9092          | 0.3417          | 0.050*                        |
| C7         | 1.1193 (3)      | 0.7243 (3)      | 0.2572<br>(2)   | 0.0590 (6)                    |
| H7         | 1.2311          | 0.7573          | 0.2745          | 0.071*                        |
| C8         | 1.0146 (3)      | 0.5867 (3)      | 0.1920<br>(2)   | 0.0611 (6)                    |
| H8         | 1.0552          | 0.5265          | 0.1663          | 0.073*                        |
| C9         | 0.8521 (3)      | 0.5367 (2)      | 0.16434<br>(17) | 0.0482 (5)                    |
| H9         | 0.7798          | 0.4435          | 0.1188          | 0.058*                        |
| C10        | 0.7968 (2)      | 0.6265 (2)      | 0.20494<br>(14) | 0.0331 (4)                    |
| C11        | 0.6311 (2)      | 0.6013 (2)      | 0.18278<br>(14) | 0.0333 (4)                    |
| 011        | 0.51103<br>(17) | 0.49477<br>(16) | 0.12920<br>(12) | 0.0537 (4)                    |

| C12  | 0.63788<br>(18) | 0.74375<br>(19) | 0.23738<br>(12) | 0.0267 (3) |
|------|-----------------|-----------------|-----------------|------------|
| C13  | 0.62873<br>(19) | 0.85742<br>(19) | 0.16584<br>(12) | 0.0280 (4) |
| C14  | 0.76816<br>(19) | 0.99725<br>(19) | 0.19299<br>(12) | 0.0262 (3) |
| N14  | 0.81327<br>(19) | 1.13119<br>(18) | 0.15477<br>(12) | 0.0359 (4) |
| H14A | 0.914 (2)       | 1.207 (2)       | 0.1778<br>(17)  | 0.054*     |
| H14B | 0.747 (2)       | 1.137 (3)       | 0.1019<br>(14)  | 0.054*     |
| 015  | 0.87662<br>(12) | 0.99695<br>(12) | 0.27543<br>(8)  | 0.0269 (3) |
| C16  | 0.4923 (2)      | 0.8296 (2)      | 0.08880<br>(14) | 0.0346 (4) |
| N17  | 0.3808 (2)      | 0.8088 (2)      | 0.02660<br>(14) | 0.0505 (5) |
| N18  | 0.64954<br>(17) | 0.82089<br>(17) | 0.52141<br>(11) | 0.0337 (3) |
| C19  | 0.4960 (2)      | 0.7639 (2)      | 0.54239<br>(14) | 0.0350 (4) |
| C20  | 0.4663 (3)      | 0.8708 (3)      | 0.58898<br>(16) | 0.0484 (5) |
| H20  | 0.5455          | 0.9780          | 0.6030          | 0.058*     |
| C21  | 0.3219 (3)      | 0.8216 (3)      | 0.61498<br>(19) | 0.0618 (7) |
| H21  | 0.3014          | 0.8956          | 0.6454          | 0.074*     |
| C22  | 0.2078 (3)      | 0.6667 (3)      | 0.59722<br>(19) | 0.0601 (6) |
| H22  | 0.1098          | 0.6332          | 0.6169          | 0.072*     |
| C23  | 0.2358 (3)      | 0.5605 (3)      | 0.5510<br>(2)   | 0.0570 (6) |
| H23  | 0.1562          | 0.4535          | 0.5377          | 0.068*     |
| C24  | 0.3794 (2)      | 0.6080 (2)      | 0.52361<br>(17) | 0.0455 (5) |
| H24  | 0.3978          | 0.5335          | 0.4918          | 0.055*     |
| C25  | 0.95697<br>(18) | 0.91077<br>(19) | 0.49401<br>(12) | 0.0275 (4) |
| H25A | 1.0305          | 0.8742          | 0.4799          | 0.033*     |
| H25B | 0.9299          | 0.8748          | 0.5595          | 0.033*     |
| O1D  | 0.14507         | 0.33006         | 0.22949         | 0.0611 (4) |

|      | (17)       | (18)       | (14)            |            |
|------|------------|------------|-----------------|------------|
| C1D  | 0.2159 (2) | 0.2568 (3) | 0.22229<br>(18) | 0.0496 (5) |
| H1D  | 0.2730     | 0.2426     | 0.2847          | 0.060*     |
| N1D  | 0.2202 (2) | 0.1958 (2) | 0.13559<br>(15) | 0.0516 (5) |
| C2D  | 0.3156 (4) | 0.1194 (3) | 0.1349<br>(2)   | 0.0793 (8) |
| H2D1 | 0.3617     | 0.1117     | 0.2059          | 0.119*     |
| H2D2 | 0.4025     | 0.1803     | 0.1016          | 0.119*     |
| H2D3 | 0.2474     | 0.0145     | 0.0968          | 0.119*     |
| C3D  | 0.1552 (3) | 0.2305 (4) | 0.0375<br>(2)   | 0.0821 (9) |
| H3D1 | 0.0988     | 0.2875     | 0.0482          | 0.123*     |
| H3D2 | 0.0798     | 0.1329     | -0.0079         | 0.123*     |
| H3D3 | 0.2429     | 0.2947     | 0.0057          | 0.123*     |

Table 7. Atomic displacement parameters  $Å^2$  for 7a.

|            | $U^{11}$       | $U^{22}$       | $U^{33}$    | $U^{12}$        | $U^{13}$        | $U^{23}$        |
|------------|----------------|----------------|-------------|-----------------|-----------------|-----------------|
| <b>S</b> 1 | 0.0190<br>(2)  | 0.0430<br>(3)  | 0.0300 (2)  | 0.01033<br>(19) | 0.00122<br>(16) | 0.00262<br>(18) |
| C2         | 0.0230<br>(8)  | 0.0271<br>(8)  | 0.0272 (8)  | 0.0118 (7)      | 0.0022 (6)      | 0.0038<br>(6)   |
| N3         | 0.0182<br>(6)  | 0.0319<br>(7)  | 0.0219 (7)  | 0.0096 (6)      | 0.0006 (5)      | 0.0017<br>(5)   |
| C4         | 0.0201<br>(7)  | 0.0251<br>(8)  | 0.0237 (8)  | 0.0103 (6)      | 0.0002 (6)      | 0.0029<br>(6)   |
| C5         | 0.0310<br>(8)  | 0.0331<br>(9)  | 0.0275 (8)  | 0.0199 (7)      | 0.0066 (7)      | 0.0076<br>(7)   |
| C6         | 0.0321<br>(9)  | 0.0472<br>(11) | 0.0512 (12) | 0.0242 (9)      | 0.0080 (8)      | 0.0053<br>(9)   |
| C7         | 0.0450<br>(12) | 0.0678<br>(15) | 0.0812 (18) | 0.0408<br>(12)  | 0.0159<br>(12)  | 0.0055<br>(13)  |
| C8         | 0.0687<br>(15) | 0.0613<br>(15) | 0.0809 (18) | 0.0498<br>(14)  | 0.0273<br>(13)  | 0.0080<br>(13)  |
| C9         | 0.0618<br>(13) | 0.0385<br>(11) | 0.0534 (13) | 0.0307<br>(11)  | 0.0161<br>(11)  | 0.0026<br>(9)   |
| C10        | 0.0400<br>(10) | 0.0297<br>(9)  | 0.0337 (9)  | 0.0201 (8)      | 0.0096 (8)      | 0.0061<br>(7)   |
| C11        | 0.0353         | 0.0285         | 0.0311 (9)  | 0.0123 (8)      | 0.0062 (7)      | 0.0025          |

Г

|     | (9)            | (9)            |             |                |                | (7)            |
|-----|----------------|----------------|-------------|----------------|----------------|----------------|
| 011 | 0.0417<br>(8)  | 0.0395<br>(8)  | 0.0584 (10) | 0.0085 (7)     | -0.0005<br>(7) | -0.0164<br>(7) |
| C12 | 0.0212<br>(7)  | 0.0292<br>(8)  | 0.0251 (8)  | 0.0109 (7)     | 0.0002 (6)     | 0.0003<br>(6)  |
| C13 | 0.0248<br>(8)  | 0.0325<br>(9)  | 0.0240 (8)  | 0.0144 (7)     | -0.0006<br>(6) | 0.0026<br>(6)  |
| C14 | 0.0257<br>(8)  | 0.0308<br>(8)  | 0.0232 (8)  | 0.0168 (7)     | 0.0011 (6)     | 0.0012<br>(6)  |
| N14 | 0.0314<br>(8)  | 0.0329<br>(8)  | 0.0364 (9)  | 0.0147 (7)     | -0.0029<br>(7) | 0.0091<br>(7)  |
| 015 | 0.0224<br>(5)  | 0.0265<br>(6)  | 0.0262 (6)  | 0.0106 (5)     | -0.0016<br>(4) | 0.0045<br>(4)  |
| C16 | 0.0310<br>(9)  | 0.0349<br>(9)  | 0.0306 (9)  | 0.0137 (8)     | -0.0009<br>(7) | 0.0035<br>(7)  |
| N17 | 0.0396<br>(9)  | 0.0489<br>(10) | 0.0458 (10) | 0.0178 (8)     | -0.0130<br>(8) | 0.0069<br>(8)  |
| N18 | 0.0291<br>(7)  | 0.0423<br>(9)  | 0.0285 (8)  | 0.0165 (7)     | 0.0073 (6)     | 0.0047<br>(6)  |
| C19 | 0.0315<br>(9)  | 0.0501<br>(11) | 0.0285 (9)  | 0.0230 (9)     | 0.0092 (7)     | 0.0120<br>(8)  |
| C20 | 0.0482<br>(12) | 0.0570<br>(13) | 0.0451 (12) | 0.0270<br>(11) | 0.0178<br>(10) | 0.0010<br>(10) |
| C21 | 0.0644<br>(15) | 0.0829<br>(18) | 0.0587 (15) | 0.0461<br>(15) | 0.0293<br>(12) | 0.0060<br>(13) |
| C22 | 0.0475<br>(13) | 0.0885<br>(19) | 0.0621 (15) | 0.0397<br>(14) | 0.0311<br>(11) | 0.0280<br>(13) |
| C23 | 0.0453<br>(12) | 0.0561<br>(14) | 0.0752 (17) | 0.0237<br>(11) | 0.0277<br>(12) | 0.0289<br>(12) |
| C24 | 0.0425<br>(11) | 0.0471<br>(12) | 0.0579 (13) | 0.0265<br>(10) | 0.0216<br>(10) | 0.0195<br>(10) |
| C25 | 0.0211<br>(7)  | 0.0334<br>(9)  | 0.0237 (8)  | 0.0126 (7)     | -0.0012<br>(6) | 0.0034<br>(6)  |
| 01D | 0.0389<br>(8)  | 0.0463<br>(9)  | 0.0858 (13) | 0.0160 (7)     | 0.0035 (8)     | -0.0015<br>(8) |
| C1D | 0.0381<br>(11) | 0.0503<br>(12) | 0.0526 (13) | 0.0182<br>(10) | 0.0041 (9)     | 0.0114<br>(10) |
| N1D | 0.0502<br>(10) | 0.0527<br>(11) | 0.0491 (11) | 0.0213 (9)     | 0.0157 (9)     | 0.0153<br>(9)  |
| C2D | 0.092<br>(2)   | 0.0783<br>(19) | 0.089 (2)   | 0.0499<br>(17) | 0.0427<br>(18) | 0.0208<br>(16) |
| C3D | 0.0672<br>(17) | 0.106<br>(2)   | 0.0490 (15) | 0.0279<br>(17) | 0.0022<br>(13) | 0.0184<br>(15) |

| S1—C2     | 1.7771<br>(16) | N14—H14B             | 0.871<br>(15) |
|-----------|----------------|----------------------|---------------|
| S1—C12    | 1.8245<br>(17) | C16—N17              | 1.146 (2)     |
| C2—N18    | 1.268 (2)      | N18—C19              | 1.423 (2)     |
| C2—N3     | 1.385 (2)      | C19—C24              | 1.385 (3)     |
| N3—C4     | 1.423 (2)      | C19—C20              | 1.390 (3)     |
| N3—C25    | 1.4652<br>(18) | C20—C21              | 1.381 (3)     |
| C4—O15    | 1.4739<br>(18) | С20—Н20              | 0.9500        |
| C4—C5     | 1.509 (2)      | C21—C22              | 1.372 (4)     |
| C4—C12    | 1.550 (2)      | C21—H21              | 0.9500        |
| C5—C6     | 1.388 (2)      | C22—C23              | 1.370 (3)     |
| C5—C10    | 1.390 (2)      | С22—Н22              | 0.9500        |
| C6—C7     | 1.378 (3)      | C23—C24              | 1.385 (3)     |
| С6—Н6     | 0.9500         | С23—Н23              | 0.9500        |
| С7—С8     | 1.387 (3)      | C24—H24              | 0.9500        |
| С7—Н7     | 0.9500         | C25—C25 <sup>i</sup> | 1.529 (3)     |
| C8—C9     | 1.378 (3)      | С25—Н25А             | 0.9900        |
| C8—H8     | 0.9500         | С25—Н25В             | 0.9900        |
| C9—C10    | 1.390 (3)      | O1D—C1D              | 1.225 (3)     |
| С9—Н9     | 0.9500         | C1D—N1D              | 1.322 (3)     |
| C10—C11   | 1.474 (2)      | C1D—H1D              | 0.9500        |
| C11—O11   | 1.203 (2)      | N1D—C2D              | 1.445 (3)     |
| C11—C12   | 1.540 (2)      | N1D—C3D              | 1.447 (3)     |
| C12—C13   | 1.495 (2)      | C2D—H2D1             | 0.9800        |
| C13—C14   | 1.369 (2)      | C2D—H2D2             | 0.9800        |
| C13—C16   | 1.403 (2)      | C2D—H2D3             | 0.9800        |
| C14—N14   | 1.318 (2)      | C3D—H3D1             | 0.9800        |
| C14—O15   | 1.3551<br>(18) | C3D—H3D2             | 0.9800        |
| N14—H14A  | 0.888 (15)     | C3D—H3D3             | 0.9800        |
| C2—S1—C12 | 92.11 (7)      | C14—N14—<br>H14B     | 118.1<br>(14) |
| N18—C2—N3 | 122.07         | H14A—N14—            | 123 (2)       |

Geometric parameters (Å, °) for  ${\bf 7a}$ 

|                | (14)           | H14B                    |                |
|----------------|----------------|-------------------------|----------------|
| N18—C2—S1      | 126.61<br>(13) | C14—O15—C4              | 108.30<br>(11) |
| N3—C2—S1       | 111.30<br>(12) | N17—C16—C13             | 178.9 (2)      |
| C2—N3—C4       | 117.03<br>(12) | C2—N18—C19              | 120.80<br>(15) |
| C2—N3—C25      | 120.23<br>(13) | C24—C19—C20             | 118.90<br>(18) |
| C4—N3—C25      | 122.28<br>(13) | C24—C19—N18             | 123.59<br>(17) |
| N3—C4—O15      | 110.09<br>(12) | C20—C19—N18             | 117.43<br>(17) |
| N3—C4—C5       | 116.58<br>(13) | C21—C20—C19             | 120.2 (2)      |
| O15—C4—C5      | 108.85<br>(13) | C21—C20—H20             | 119.9          |
| N3—C4—C12      | 109.35<br>(13) | C19—C20—H20             | 119.9          |
| 015—C4—<br>C12 | 106.09<br>(12) | C22—C21—C20             | 120.5 (2)      |
| C5—C4—C12      | 105.29<br>(13) | C22—C21—H21             | 119.7          |
| C6—C5—C10      | 120.52<br>(17) | C20—C21—H21             | 119.7          |
| C6—C5—C4       | 128.68<br>(16) | C23—C22—C21             | 119.7 (2)      |
| C10—C5—C4      | 110.76<br>(14) | C23—C22—H22             | 120.2          |
| C7—C6—C5       | 117.71<br>(19) | C21—C22—H22             | 120.2          |
| С7—С6—Н6       | 121.1          | C22—C23—C24             | 120.5 (2)      |
| С5—С6—Н6       | 121.1          | С22—С23—Н23             | 119.7          |
| C6—C7—C8       | 122.0 (2)      | C24—C23—H23             | 119.7          |
| С6—С7—Н7       | 119.0          | C19—C24—C23             | 120.2 (2)      |
| С8—С7—Н7       | 119.0          | C19—C24—H24             | 119.9          |
| C9—C8—C7       | 120.4 (2)      | C23—C24—H24             | 119.9          |
| C9—C8—H8       | 119.8          | N3—C25—C25 <sup>i</sup> | 112.39<br>(16) |
| С7—С8—Н8       | 119.8          | N3—C25—<br>H25A         | 109.1          |
| C8—C9—C10      | 118.1 (2)      | C25 <sup>i</sup> —C25—  | 109.1          |

|                  |                | H25A                           |           |
|------------------|----------------|--------------------------------|-----------|
| С8—С9—Н9         | 120.9          | N3—C25—<br>H25B                | 109.1     |
| С10—С9—Н9        | 120.9          | C25 <sup>i</sup> —C25—<br>H25B | 109.1     |
| C5—C10—C9        | 121.17<br>(17) | H25A—C25—<br>H25B              | 107.9     |
| C5—C10—          | 110.85         | O1D—C1D—                       | 126.0 (2) |
| C11              | (15)           | N1D                            |           |
| C9—C10—          | 127.92         | O1D—C1D—                       | 117.0     |
| C11              | (17)           | H1D                            |           |
| O11—C11—         | 128.27         | N1D—C1D—                       | 117.0     |
| C10              | (18)           | H1D                            |           |
| O11—C11—         | 124.49         | C1D—N1D—                       | 121.7 (2) |
| C12              | (17)           | C2D                            |           |
| C10—C11—         | 107.17         | C1D—N1D—                       | 120.2 (2) |
| C12              | (14)           | C3D                            |           |
| C13—C12—         | 113.09         | C2D—N1D—                       | 117.0 (2) |
| C11              | (14)           | C3D                            |           |
| C13—C12—         | 102.01         | N1D—C2D—                       | 109.5     |
| C4               | (12)           | H2D1                           |           |
| C11—C12—         | 104.96         | N1D—C2D—                       | 109.5     |
| C4               | (13)           | H2D2                           |           |
| C13—C12—S1       | 115.58<br>(12) | H2D1—C2D—<br>H2D2              | 109.5     |
| C11—C12—S1       | 111.88<br>(12) | N1D—C2D—<br>H2D3               | 109.5     |
| C4—C12—S1        | 108.13<br>(11) | H2D1—C2D—<br>H2D3              | 109.5     |
| C14—C13—         | 125.02         | H2D2—C2D—                      | 109.5     |
| C16              | (16)           | H2D3                           |           |
| C14—C13—         | 109.73         | N1D—C3D—                       | 109.5     |
| C12              | (13)           | H3D1                           |           |
| C16—C13—         | 125.00         | N1D—C3D—                       | 109.5     |
| C12              | (15)           | H3D2                           |           |
| N14—C14—         | 115.07         | H3D1—C3D—                      | 109.5     |
| O15              | (14)           | H3D2                           |           |
| N14—C14—         | 131.58         | N1D—C3D—                       | 109.5     |
| C13              | (15)           | H3D3                           |           |
| O15—C14—         | 113.34         | H3D1—C3D—                      | 109.5     |
| C13              | (14)           | H3D3                           |           |
| C14—N14—<br>H14A | 118.6 (15)     | H3D2—C3D—<br>H3D3              | 109.5     |

| C12—S1—           | 170.23     | C5—C4—C12—          | -108.46   |
|-------------------|------------|---------------------|-----------|
| C2—N18            | (16)       | C13                 | (14)      |
| C12—S1—           | -11.52     | N3—C4—C12—          | -116.30   |
| C2—N3             | (12)       | C11                 | (14)      |
| N18—C2—           | -165.20    | O15—C4—             | 125.00    |
| N3—C4             | (16)       | C12—C11             | (13)      |
| S1—C2—N3—<br>C4   | 16.45 (17) | C5—C4—C12—<br>C11   | 9.69 (16) |
| N18—C2—<br>N3—C25 | 7.3 (2)    | N3—C4—C12—<br>S1    | 3.26 (15) |
| S1—C2—N3—         | -171.07    | 015—C4—             | -115.44   |
| C25               | (11)       | C12—S1              | (12)      |
| C2—N3—            | 103.49     | C5—C4—C12—          | 129.26    |
| C4—O15            | (15)       | S1                  | (12)      |
| C25—N3—           | -68.83     | C2—S1—C12—          | -109.09   |
| C4—O15            | (18)       | C13                 | (12)      |
| C2—N3—            | -131.93    | C2—S1—C12—          | 119.56    |
| C4—C5             | (15)       | C11                 | (12)      |
| C25—N3—<br>C4—C5  | 55.8 (2)   | C2—S1—C12—<br>C4    | 4.45 (12) |
| C2—N3—            | -12.70     | C11—C12—            | -116.71   |
| C4—C12            | (19)       | C13—C14             | (16)      |
| C25—N3—           | 174.99     | C4—C12—             | -4.52     |
| C4—C12            | (13)       | C13—C14             | (18)      |
| N3—C4—            | -68.6 (2)  | S1—C12—             | 112.51    |
| C5—C6             |            | C13—C14             | (14)      |
| 015—C4—<br>C5—C6  | 56.6 (2)   | C11—C12—<br>C13—C16 | 68.8 (2)  |
| C12—C4—           | 169.97     | C4—C12—             | -178.97   |
| C5—C6             | (18)       | C13—C16             | (17)      |
| N3—C4—            | 113.55     | S1—C12—             | -61.9 (2) |
| C5—C10            | (16)       | C13—C16             |           |
| O15—C4—           | -121.23    | C16—C13—            | -3.7 (3)  |
| C5—C10            | (14)       | C14—N14             |           |
| C12—C4—           | -7.84 (18) | C12—C13—            | -178.10   |
| C5—C10            |            | C14—N14             | (18)      |
| C10—C5—           | -2.2 (3)   | C16—C13—            | 174.72    |
| C6—C7             |            | C14—O15             | (16)      |
| C4—C5—            | -179.79    | C12—C13—            | 0.3 (2)   |
| C6—C7             | (19)       | C14—O15             |           |
| C5—C6—            | 0.7 (4)    | N14—C14—            | -176.88   |
| C7—C8             |            | O15—C4              | (15)      |
| C6—C7—            | 0.9 (4)    | C13—C14—            | 4.47 (18) |

| C8—C9               |            | O15—C4                         |           |
|---------------------|------------|--------------------------------|-----------|
| C7—C8—              | -1.1 (4)   | N3—C4—O15—                     | -125.32   |
| C9—C10              |            | C14                            | (13)      |
| C6—C5—              | 2.0 (3)    | C5—C4—O15—                     | 105.76    |
| C10—C9              |            | C14                            | (14)      |
| C4—C5—              | -179.94    | C12—C4—                        | -7.11     |
| C10—C9              | (16)       | O15—C14                        | (16)      |
| C6—C5—              | -175.48    | N3—C2—N18—                     | -177.20   |
| C10—C11             | (16)       | C19                            | (15)      |
| C4—C5—<br>C10—C11   | 2.5 (2)    | S1—C2—N18—<br>C19              | 0.9 (2)   |
| C8—C9—<br>C10—C5    | -0.4 (3)   | C2—N18—<br>C19—C24             | 54.9 (2)  |
| C8—C9—              | 176.7 (2)  | C2—N18—                        | -128.4    |
| C10—C11             |            | C19—C20                        | (2)       |
| C5—C10—             | -178.95    | C24—C19—                       | -0.6 (3)  |
| C11—O11             | (19)       | C20—C21                        |           |
| C9—C10—             | 3.7 (3)    | N18—C19—                       | -177.45   |
| C11—O11             |            | C20—C21                        | (19)      |
| C5—C10—<br>C11—C12  | 3.9 (2)    | C19—C20—<br>C21—C22            | 1.4 (4)   |
| C9—C10—             | -173.37    | C20—C21—                       | -1.6 (4)  |
| C11—C12             | (18)       | C22—C23                        |           |
| 011—C11—<br>C12—C13 | -75.3 (2)  | C21—C22—<br>C23—C24            | 1.0 (4)   |
| C10—C11—            | 101.90     | C20—C19—                       | 0.0 (3)   |
| C12—C13             | (16)       | C24—C23                        |           |
| 011—C11—            | 174.29     | N18—C19—                       | 176.68    |
| C12—C4              | (18)       | C24—C23                        | (19)      |
| C10—C11—<br>C12—C4  | -8.47 (18) | C22—C23—<br>C24—C19            | -0.2 (3)  |
| 011—C11—<br>C12—S1  | 57.3 (2)   | C2—N3—C25—<br>C25 <sup>i</sup> | -97.0 (2) |
| C10—C11—            | -125.50    | C4—N3—C25—                     | 75.1 (2)  |
| C12—S1              | (13)       | C25 <sup>i</sup>               |           |
| N3—C4—              | 125.55     | 01D—C1D—                       | 176.1 (2) |
| C12—C13             | (14)       | N1D—C2D                        |           |
| 015—C4—<br>C12—C13  | 6.84 (16)  | O1D—C1D—<br>N1D—C3D            | 8.5 (3)   |

Symmetry code: (i) -*x*+2, -*y*+2, -*z*+1.

Hydrogen-bond geometry (Å, °) for 7a.

| D—H···A                                         | <i>D</i> —Н | Н…А         | $D \cdots A$   | <i>D</i> —<br>H…A |
|-------------------------------------------------|-------------|-------------|----------------|-------------------|
| N14—<br>H14 <i>A</i> …O1 <i>D</i> <sup>ii</sup> | 0.89<br>(2) | 1.94<br>(2) | 2.806<br>(2)   | 166 (2)           |
| N14—<br>H14 <i>B</i> …N17 <sup>iii</sup>        | 0.87<br>(2) | 2.12<br>(2) | 2.985<br>(2)   | 170 (2)           |
| C25—<br>H25 <i>B</i> ····O15 <sup>i</sup>       | 0.99        | 2.44        | 3.0677<br>(19) | 121               |
| C3 <i>D</i> —<br>H3 <i>D</i> 3…O11              | 0.98        | 2.58        | 3.141<br>(3)   | 116               |

Symmetry codes: (i) -*x*+2, -*y*+2, -*z*+1; (ii) *x*+1, *y*+1, *z*; (iii) -*x*+1, -*y*+2, -*z*.

#### <sup>1</sup>H-NMR of (7a):-



# <sup>13</sup>C-NMR of (7a):-



# <sup>1</sup>H-NMR of (7b):-



# <sup>13</sup>C-NMR of (7b):-



# 1 <sup>1</sup>H-NMR of (7c):-



# 2

## 3 $\frac{^{13}\text{C-NMR of (7c):-}}{^{13}\text{C-NMR of (7c):-}}$



# 5 <u><sup>1</sup>H-NMR of (7d):-</u>





# 7 <sup>13</sup>C-NMR of (7d):-



8 9

## 10 11 **<u><sup>1</sup>H-NMR of (7e):-</u>**



# 13 <sup>13</sup>C-NMR of (7e):-

12



14

15