Total synthesis of 5-hydroxyomeprazole

Romualdas Striela, Gintaras Urbelis, Jurgis Sūdžius, Sigitas Stončius, Rita Mažeikaitė, and Linas Labanauskas

Center for Physical Sciences and Technology, Akademijos 7, LT-08412 Vilnius, Lithuania E-mail: linas.labanauskas@ftmc.lt

DOI: http://dx.doi.org/10.3998/ark.5550190.p009.501

Abstract

A convenient synthetic route for preparation of 5-hydroxyomeprazole (metabolite of omeprazole) was developed. During this work synthetic possibilities to attain the crucial precursor - [6-(chloromethyl)-4-methoxy-5-methylpyridin-3-yl]methanol - were studied and evaluated.

Keywords: Omeprazole, 5-hydroxyomeprazole, 5-methoxy-2-[[(4-methoxy-3-methyl-5-hydroxymethyl-2-pyridinyl)methyl]sulfinyl]-1H-benzimidazole, omeprazole metabolite, pyridine, total synthesis

Introduction

Omeprazole (1) and its analogues, so-called proton pump inhibitors that inhibit gastric acid secretion by interacting with the $\left(\mathrm{H}^{+} / \mathrm{K}^{+}\right)$-ATPase, is a class of compounds widely used in the treatment of dyspepsia, peptic ulcer disease, gastroesophageal and laryngopharyngeal reflux. The investigation of Omeprazole has disclosed many another useful properties. It was applied for the treatment of gastric ulcer caused by infection with Helicobacter pylori. It is known ${ }^{1,2}$ that in liver omeprazole is metabolized by several cytochrome P-450 (CYP) isoenzymes to products of oxidation - omeprazole sulphone and 5-hydroxyomeprazole (2). Omeprazole and its metabolites are widely used in search for new applications of these compounds, in routine blood analysis, ${ }^{3}$ studies of specific cases of metabolism ${ }^{4}$ or pharmacokinetics, ${ }^{5}$ in investigation of reactions with enzymatic catalysis. ${ }^{6,7}$

Although synthesis of omeprazole (1) and its analogues is well known, ${ }^{8-10}$ to the best of our knowledge no data on the chemical synthesis of its primary metabolite 5-hydroxyomeprazole (2) is published. Present work introduces one of possible routes for a total synthesis of compound 2. Since the structures of 5-hydroxyomeprazole (2) and omeprazole (1) differs only by substituent at 5-position of pyridine ring, we have decided to use the same synthetic strategy, i.e. conversion
of 2-methyl group to 2-chloromethyl group in pyridines 3 and 4 and coupling of obtained intermediates with 5-methoxy-1H-benzimidazolethiol (5) (Scheme 1). While 5-methoxy-1Hbenzimidazolethiol (5) is commercially available, to the best of our knowledge no literature data on the synthesis of pyridine 4 is published.

Scheme 1. Synthetic strategy of Omeprazole (1) and 5-Hydroxyomeprazole (2).

Results and Discussion

The analysis of the available literature data have suggested that the pyridone 7, which can be easily obtained by reaction of β-aminocrotonates 6 with diethylmalonate ${ }^{11}$ (Scheme 2), could be used as a synthetic precursor en route to pyridine 4.

Scheme 2. (i): $\mathrm{NaOC}_{3} \mathrm{H}_{7}$, 1,3-diethyl propanedioate, toluene, 2-propanol, $\mathrm{Ar}, 81{ }^{\circ} \mathrm{C}$. (ii): 1 . $\mathrm{POCl}_{3}, 106{ }^{\circ} \mathrm{C} ; 2 . \mathrm{MeOH}, 0^{\circ} \mathrm{C}$.

Methyl 2,4-dichloro-5,6-dimethylnicotinate (8) was synthesized using the modified procedure reported by Seeman. ${ }^{12}$ Conversion of pyridones to chloropyridines is typically performed by reaction with phosphorus oxychloride and often requires the use of a sealed tube, which both limits the scale of a reaction and causes risk of explosion. In our hands deoxygenative chlorination of ethyl dioxonicotinate 7 could be performed at atmospheric
pressure under mild conditions. The substitution of chlorine at 4-position to methoxy group using 2 equiv. of sodium methoxide in dry methanol at $30^{\circ} \mathrm{C}$ yielded methoxypyridine 9 in good yield (87%). Only small amount of isomer $\mathbf{1 0 a}(10 \%)$ and dimethoxyderivative 10b (3\%) has formed (Scheme 3). By performing the same reaction without cooling (up to $65{ }^{\circ} \mathrm{C}$), the content of compounds 9, 10a and 10b has changed to $28 \%, 5.5 \%$ and 65%, respectively.

Scheme 3. (i): $\mathrm{NaOMe}, \mathrm{MeOH}, 20^{\circ} \mathrm{C}-30^{\circ} \mathrm{C}$. (ii): conc. $\mathrm{HBr}, 122^{\circ} \mathrm{C}$. (iii): 1. $\mathrm{POCl}_{3}, 106^{\circ} \mathrm{C}$; 2. MeOH , $0^{\circ} \mathrm{C}-20^{\circ} \mathrm{C}$.

Synthesis under controlled reaction conditions was reproducible on large scale (500-1000 g) and afforded pyridine 9 in 80% yield. The mixture of compounds $\mathbf{9}$, $\mathbf{1 0 a}$ and $\mathbf{1 0 b}$, recovered from filtrates after recrystallization of compound $\mathbf{9}$, could be recycled to compound $\mathbf{8}$ in two steps. The mixture was first hydrolyzed by refluxing in concentrated hydrobromic acid to yield pyridines 11a-c, which were treated with POCl_{3} and then with methanol to form dichloropyridine 8 in good overall yield (60% of total weight of the mixture of compounds $\mathbf{9}, \mathbf{1 0 a}$ and $\mathbf{1 0 b}$) (Scheme 3).The hydrogenative dehalogenation of compound 9 with Zn in acetic acid ${ }^{13}$ was unsuccessful, whereas hydrogenative dehalogenation using $10 \% \mathrm{Pd} / \mathrm{C}-\mathrm{H}_{2}$ at atmospheric pressure yielded pyridine 12 (Scheme 4) in low yield (27%). Reduction of 9 at increased pressure (80 atm) has led to the formation of compound $\mathbf{1 3}$, apparently as a result of hydrolysis of methoxy group at 4-position of pyridine ring by HCl , released during hydrogenative dehalogenation. Nevertheless, target methoxyderivative $\mathbf{1 2}$ could be synthesized in good overall yield (60%) by heating pyridine $\mathbf{1 3}$ with POCl_{3} and subsequent treatment of obtained chloroderivative $\mathbf{1 4}$ with sodium methoxide (Scheme 4). Reduction of pyridine $\mathbf{1 2}$ with LiAlH_{4} under standard conditions ${ }^{14}$ led to inseparable mixture of products. Gratifyingly, the reduction of pyridine 12 was successful by using $\mathrm{NaBH}_{4}-\mathrm{MeOH}$ system in THF to afford the crucial intermediate, hydroxymethyl derivative 4 in 55% yield.

Scheme 4. (i): $\mathrm{Pd} / \mathrm{C}, \mathrm{H}_{2}$, $\mathrm{MeOH}, 1 \mathrm{~atm}, 20^{\circ} \mathrm{C}$. (ii): $\mathrm{Pd} / \mathrm{C}, \mathrm{H}_{2}, \mathrm{MeOH}, 80 \mathrm{~atm}, 2^{\circ} \mathrm{C}$. (iii): 1 . $\mathrm{POCl}_{3}, \Delta$; 2. $\mathrm{MeOH}, 0^{\circ} \mathrm{C}-20^{\circ} \mathrm{C}$. (iv): $\mathrm{NaOMe}, \mathrm{MeOH}, 20^{\circ} \mathrm{C}$ to reflux. (v): $\mathrm{NaBH}_{4}-\mathrm{MeOH}$, THF, Δ.

Low overall yield (3.2\%) and long synthetic route (8 steps) prompted us to investigate other synthetic routes to compound 4 . An alternative synthetic strategy involved the use of 2,3-dimethyl-4-methoxypyridine N-oxide (15) (Scheme 5) as a starting material, which in turn was obtained from 2,3-dimethylpyridine N-oxide in 2 steps following the procedure reported by Kuhler. ${ }^{9}$ Pyridine N-oxide was treated with PCl_{3} to afford pyridine 16. Since the substitution of hydrogen in 5-position using LDA or LTMP did not proceed, we synthesized 2,3-dimethyl-4-methoxy-5-bromopyridine (17) (Scheme 5). Surprisingly, however, substitution of bromine to cyano group using CuCN has failed and only unreacted compound $\mathbf{1 7}$ could be recovered. The efforts of formylation of bromide $\mathbf{1 7}$ using Grignard reaction under various conditions led to the reduction of bromine via Grignard reagent and formation of compound 16 (Scheme 5).

With derivative 4 in hand, we focused on the synthesis of hydroxyomeprazole (2). Thus, hydroxy group in pyridine 4 was protected using 2-methylbenzoyl chloride (Scheme 6). The obtained ester 20 was oxidized to N -oxide 21, which was treated with acetic anhydride to furnish Boekelheide rearrangement product 22. Hydrolysis of the latter with aqueous NaOH yielded hydroxymethyl pyridine 23, which was then chlorinated with SOCl_{2} to yield chloromethyl pyridine 24 in excellent yield. Overall yield of five step synthesis was 55% (Scheme 6).

Scheme 5. (i): $\mathrm{PCl}_{3}, \mathrm{DCM}, 40^{\circ} \mathrm{C}$. (ii): NBS, $\mathrm{H}_{2} \mathrm{SO}_{4}, 60^{\circ} \mathrm{C}$. (iii): 1. LDA or LTMP, $-78{ }^{\circ} \mathrm{C} ; 2$. DMF, -78 to $20^{\circ} \mathrm{C}$. (iv): 1. i-PrMgBr, $0^{\circ} \mathrm{C}$; 2. DMF. (v): $\mathrm{CuCN}, \mathrm{DMF}, 153{ }^{\circ} \mathrm{C}$.

Scheme 6. (i): 2-methylbenzoyl chloride, TEA, DCM, $-5-20^{\circ} \mathrm{C}$. (ii): m-CPBA, $\mathrm{CHCl}_{3}, 5-25$ ${ }^{\circ} \mathrm{C}$. (iii): $\mathrm{Ac}_{2} \mathrm{O}, 20-100^{\circ} \mathrm{C}$. (iv): $\mathrm{NaOH}, \mathrm{H}_{2} \mathrm{O}, \mathrm{THF}, 20^{\circ} \mathrm{C}$. (v): $\mathrm{SOCl}_{2}, \mathrm{DCM}, 0$ to $2^{\circ} \mathrm{C}$.

Sulfide 25 has been synthesized under reaction conditions developed for synthesis of Omeprazole by Kuhler ${ }^{9}$ using only one equivalent of NaOH instead of 2 equivalents. The alkylation of 5-methoxy-1H-benzimidazolethiol (5) with 24 in the presence of 2 equivalents of NaOH has proceeded with concomitant hydrolysis of 2-methylbenzoyl ester to furnish mixture of $\mathbf{2 5}$ and deprotected 26. It was found that one equivalent of NaOH is sufficient to affect alkylation without the cleavage of protecting group. Subsequent hydrolysis of $\mathbf{2 5}$ with NaOH in aqueous
methanol overnight furnished 26 in excellent yield (90\%). Since Omeprazole (1) and its analogues are sensitive to acidic conditions, ${ }^{15}$ oxidation of sulfide 26 with m-CPBA was performed in DCM and aqueous NaHCO_{3} solution under argon following the procedure reported by Kuhler. ${ }^{9}$ The 5 -hydroxyomeprazole (2) was isolated in 45% yield (Scheme 7).

Scheme 7. (i): $\mathrm{NaOH}, \mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O}, 20^{\circ} \mathrm{C}$. (ii): $\mathrm{NaOH}, \mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O}, 2{ }^{\circ} \mathrm{C}$. (iii): m-CPBA, $\mathrm{NaHCO}_{3}, \mathrm{MeOH}, \mathrm{DCM}, \mathrm{H}_{2} \mathrm{O}, 2-3{ }^{\circ} \mathrm{C}$.

Experimental Section

General. Melting points were determined in open capillaries and are uncorrected. NMR spectra were recorded on Varian Unity Inova (300 MHz for ${ }^{1} \mathrm{H}$ NMR and 75 MHz for ${ }^{13} \mathrm{C}$ NMR) using residual solvent peaks as internal standards. Data for ${ }^{1} \mathrm{H}$ NMR are recorded as follows: chemical shift (δ, ppm), multiplicity ($\mathrm{s}=$ singlet, $\mathrm{d}=$ doublet, $\mathrm{t}=$ triplet, $\mathrm{q}=$ quartet, $\mathrm{m}=$ multiplet or unresolved, broad $\mathrm{s}=$ broad singlet, integration, coupling constant in Hz). Data for ${ }^{13} \mathrm{C}$ NMR are reported in terms of chemical shift (δ, ppm). Silica gel 60 F254 aluminum plates (Merck) were used for TLC analysis. Column chromatography was performed on silica gel 60 ($0.04-0.063$ mm) (Roth). 2,3-Dimethyl-4-methoxypyridine N-oxide (15) was synthesized following procedure reported by Kuhler. ${ }^{9}$

Ethyl 3-amino-2-methylbut-2-enoate (6). Ethyl 2-methyl-3-oxobutanoate ($30 \mathrm{~g}, 0.21 \mathrm{~mol}$) was dissolved in $\mathrm{NH}_{4} \mathrm{OH}(50 \mathrm{~mL})$ and stirred at $20^{\circ} \mathrm{C}$ for 72 h . Precipitate was filtered and washed several times with ice cold water and recrystallized from hexane to yield $12.5 \mathrm{~g}(42 \%)$ of 6 as colorless crystals. Mp $47-48^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.30(\mathrm{t}, 3 \mathrm{H}, J 7.1 \mathrm{~Hz}$), 1.78 (s, $3 \mathrm{H}), 1.97(\mathrm{~s}, 3 \mathrm{H}), 4.16(\mathrm{q}, 2 \mathrm{H}, \mathrm{J} 7.1 \mathrm{~Hz}), 6.32(\operatorname{broad} \mathrm{~s}, 2 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 12.7, 14.9, 21.5, 59.2, 89.2, 156.5, 171.1, in agreement with the literature data. ${ }^{12}$

Ethyl 2-hydroxy-5,6-dimethyl-4-oxo-1,4-dihydropyridine-3-carboxylate (7). Na ($32.8 \mathrm{~g}, 1.43$ mol) was dissolved in a mixture of 2-propanol $(460 \mathrm{~mL})$ and toluene $(100 \mathrm{~mL})$ under argon. 1,3Diethyl propanedioate ($222 \mathrm{~g}, 212 \mathrm{~mL}, 1.39 \mathrm{~mol}$) was added during 30 min at $50^{\circ} \mathrm{C}$. Then, ethyl 3-amino-2-methylbut-2-enoate (6) (199 g, 1.39 mol$)$ solution in toluene (300 mL) was added to reaction mixture during 20 min and heated to reflux for 6 h . 2-Propanol was removed under reduced pressure and residue was washed with water $(3 \times 200 \mathrm{~mL})$. Combined aqueous phases was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 100 \mathrm{~mL})$ and acidified to $\mathrm{pH}=7$. The resulting precipitate was filtered and washed several times with ice cold water and dried in air at $80^{\circ} \mathrm{C}$ to yield 105 g (36\%) of 7 as colorless crystals. Mp $220-221{ }^{\circ} \mathrm{C}$ (dec). ${ }^{1} \mathrm{H}$ NMR (300 MHz , DMSO-D6) $\delta 1.21$ (t, 3H, J 7.1 Hz), $1.85(\mathrm{~s}, 3 \mathrm{H}), 2.19(\mathrm{~s}, 3 \mathrm{H}), 4.16(\mathrm{q}, 2 \mathrm{H}, J 7.1 \mathrm{~Hz}), 11.29(b r o a d ~ s, 1 \mathrm{H}), 13.66$ (broad s, 1H). ${ }^{13} \mathrm{C}$ NMR (75 MHz , DMSO-D6) $\delta 9.5,17.5,52.5,96.0,103.6,150.6,159.9$, 173.1, 173.9, in agreement with the literature data. ${ }^{12}$

Methyl 2,4-dichloro-5,6-dimethylpyridine-3-carboxylate (8). Ethyl 2-hydroxy-5,6-dimethyl-4-oxo-1,4-dihydropyridine-3-carboxylate (7) ($67.5 \mathrm{~g}, 0.32 \mathrm{~mol}$) was suspended in $\mathrm{POCl}_{3}(150$ mL) and the reaction mixture was heated to reflux for 3 h . Excess of POCl_{3} was removed under reduced pressure and the residue was cooled to $0^{\circ} \mathrm{C}$. Methanol (350 mL) was added cautiously and the mixture was stirred for 1 h at $20^{\circ} \mathrm{C}$. Solvent was removed under reduced pressure and water (200 mL) was added to residue. Aqueous phase was basified with solid $\mathrm{K}_{2} \mathrm{CO}_{3}$ to $\mathrm{pH}=8$ and extracted with DCM $(3 \times 100 \mathrm{ml})$. Organic phases were combined, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and DCM was removed under reduced pressure. Residue was recrystallized from 2-propanol to yield $60 \mathrm{~g}(80 \%)$ of $\mathbf{8}$ as light yellow crystals. Mp $89-90{ }^{\circ} \mathrm{C}$. Anal. calcd. for $\mathrm{C}_{9} \mathrm{H}_{9} \mathrm{Cl}_{2} \mathrm{NO}_{2}$ (233.0): C (46.18\%), H (3.88\%), N (5.98\%). Found: C (46.37\%), H (3.65\%), N (6.08\%). ${ }^{1} \mathrm{H}$ NMR (300 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 2.32(\mathrm{~s}, 3 \mathrm{H}), 2.54(\mathrm{~s}, 3 \mathrm{H}), 3.96(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 23.8,25.6$, 53.5, 127.8, 129.6, 142.7, 148.9, 159.7, 164.6.

Methyl 2-chloro-4-methoxy-5,6-dimethylpyridine-3-carboxylate (9). Na ($3.9 \mathrm{~g}, 0.171 \mathrm{~mol}$) was dissolved in dry $\mathrm{MeOH}(200 \mathrm{~mL})$ and the reaction mixture was cooled to $20^{\circ} \mathrm{C}$. Methyl 2,4-dichloro-5,6-dimethylpyridine-3-carboxylate (8) ($20 \mathrm{~g}, 0.085 \mathrm{~mol}$) was added in portions at $20-$ $30^{\circ} \mathrm{C}$ and the mixture was stirred at $20^{\circ} \mathrm{C}$ for 14 h . Reaction mixture was concentrated under reduced pressure and the residue was dissolved in water (300 mL) and extracted with DCM ($3 \times$ 100 mL). Organic phases were combined and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Solvent was removed under reduced pressure and residue was recrystallized from 2-propanol to yield $17 \mathrm{~g}(87 \%)$ of 9 as colorless crystals. Mp $52-53{ }^{\circ} \mathrm{C}$. Anal. calcd. for $\mathrm{C}_{10} \mathrm{H}_{12} \mathrm{ClNO}_{3}$ (229.0): C (52.30\%), H (5.27\%), N (6.10\%). Found: C (52.59\%), H (5.09\%), N (5.92\%). ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $2.14(\mathrm{~s}, 3 \mathrm{H}), 2.45(\mathrm{~s}, 3 \mathrm{H}), 3.83(\mathrm{~s}, 3 \mathrm{H}), 3.93(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 24.0,25.3$, 53.7, 62.0, 127.8, 129.6, 143.0, 149.2, 161.0, 164.0.

Recycling procedure. Mixture of compounds $\mathbf{9}$, 10a and $\mathbf{1 0 b}(50 \mathrm{~g})$ was dissolved in conc. HBr $(200 \mathrm{~mL})$ and heated to reflux for 12 h , then cooled to $20^{\circ} \mathrm{C}$ and kept overnight. Precipitate was filtered off, washed with ice cold water $(3 \times 100 \mathrm{~mL})$ and air dried to yield 40 g of colorless solid that was suspended in $\mathrm{POCl}_{3}(150 \mathrm{ml})$ and heated to reflux for 3 h . Excess of POCl_{3} was removed under reduced pressure and the residue was cooled to $0{ }^{\circ} \mathrm{C}$. Methanol (350 mL) was
added cautiously and the mixture was stirred for 1 h at $20^{\circ} \mathrm{C}$. Solvent was removed under reduced pressure and water (200 mL) was added to residue. Aqueous phase was basified with solid $\mathrm{K}_{2} \mathrm{CO}_{3}$ to $\mathrm{pH}=8$ and extracted with $\mathrm{DCM}(3 \times 100 \mathrm{ml})$. Organic phases were combined, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and DCM was removed under reduced pressure. Residue was recrystallized from 2-propanol to yield 30 g (60% of total weight of the mixture of compounds $\mathbf{9}, \mathbf{1 0 a}$ and $\mathbf{1 0 b}$) of light yellow crystals that were identified as compound 8 .

Methyl 4-methoxy-5,6-dimethylpyridine-3-carboxylate (12)

Method A: Methyl 2-chloro-4-methoxy-5,6-dimethylpyridine-3-carboxylate (9) ($15 \mathrm{~g}, 0.065$ mol) was dissolved in $\mathrm{MeOH}(150 \mathrm{~mL})$ under argon atmosphere. Reaction vessel was degassed and $10 \% \mathrm{Pd} / \mathrm{C}(0.42 \mathrm{~g})$ was added. The hydrogen gas was attached and reaction mixture was stirred for 12 h at $20^{\circ} \mathrm{C}$ (1.5 L of H_{2} was consumed). Reaction mixture was filtered, MeOH was evaporated and residue was dissolved in DCM $(300 \mathrm{~mL})$ and washed with $2 \mathrm{M} \mathrm{NaOH}(3 \times 100$ $\mathrm{mL})$. Organic phases were combined, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and filtered. Solvent was removed under reduced pressure and residue was purified by silica gel column chromatography (EtOAchexane from $1: 2$ to $1: 1$) to yield $3.5 \mathrm{~g}(27 \%)$ of $\mathbf{1 2}$ as colorless oil.
Method B. $\mathrm{Na}(2.8 \mathrm{~g}, 0.12 \mathrm{~mol})$ was dissolved in $\mathrm{MeOH}(150 \mathrm{~mL})$ and obtained solution was cooled to $20^{\circ} \mathrm{C}$. Methyl 4-chloro-5,6-dimethylpyridine-3-carboxylate (14) ($21.5 \mathrm{~g}, 0.11 \mathrm{~mol}$) was added in portion of 5 g during 30 min and reaction mixture heated to reflux for 5 h . Solvents were removed under reduced pressure and residue was dissolved in water (100 mL) and extracted with DCM ($5 \times 50 \mathrm{~mL}$). Organic phases were combined and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Solvent was removed under reduced pressure and residue was purified by vacuum distillation (1 Torr) to yield $15.4 \mathrm{~g}(75 \%)$ of $\mathbf{1 2}$ as colorless oil. B. p. $112{ }^{\circ} \mathrm{C}$ (1 Torr). Anal. calcd. for $\mathrm{C}_{10} \mathrm{H}_{13} \mathrm{NO}_{3}$ (195.1): C (61.53\%), $\mathrm{H}(6.71 \%)$, N (7.18\%). Found: C (61.74\%), H (6.48\%), N (7.56\%). ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 2.18(\mathrm{~s}, 3 \mathrm{H}), 2.50(\mathrm{~s}, 3 \mathrm{H}), 3.83(\mathrm{~s}, 3 \mathrm{H}), 3.89(\mathrm{~s}, 3 \mathrm{H})$, $8.68(\mathrm{~s}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 11.7,23.6,52.6,61.9,117.9,125.9,157.3,163.3$, 165.1, 165.8.

Methyl 5,6-dimethyl-4-oxo-1,4-dihydropyridine-3-carboxylate (13). Methyl 2-chloro-4-methoxy-5,6-dimethylpyridine-3-carboxylate (9) ($45.9 \mathrm{~g}, 0.2 \mathrm{~mol}$) was dissolved in MeOH (300 mL) under argon atmosphere and placed in steel autoclave. Reaction vessel was degassed and $10 \% \mathrm{Pd} / \mathrm{C}(0.5 \mathrm{~g})$ was added. The hydrogen gas was attached and pressure was increased to 80 atm. Reaction mixture was stirred at $20^{\circ} \mathrm{C}$ for 12 h . Catalyst was filtered and washed with $\mathrm{MeOH}(2 \times 50 \mathrm{~mL})$. Methanol was evaporated, the residue was dissolved in $\mathrm{H}_{2} \mathrm{O}(300 \mathrm{~mL})$ and neutralized with $2 \mathrm{M} \mathrm{NaOH}(\mathrm{pH}=7)$. Precipitate were filtered of, washed with ice cold water and dried in air yielding $25.3 \mathrm{~g}(70 \%)$ of $\mathbf{1 3}$ as colorless crystals. Mp $231^{\circ} \mathrm{C}(\mathrm{dec})$. Anal. calcd. for $\mathrm{C}_{9} \mathrm{H}_{11} \mathrm{NO}_{3}$ (181.1): C (59.66\%), H (6.12\%), N (7.73\%). Found: C (59.91\%), H (5.91\%), N (7.45\%). ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl} 3$) $\delta 2.58(\mathrm{~s}, 3 \mathrm{H}), 2.70(\mathrm{~s}, 3 \mathrm{H}), 3.83(\mathrm{~s}, 3 \mathrm{H}), 7.94(\mathrm{~s}, 1 \mathrm{H})$, 12.15 (broad s, 1H). ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl} 3$) $\delta 11.7,18.8,52.6,109.4,117.9,125.9,148.6$, 165.1, 179.0.

Methyl 4-chloro-5,6-dimethylpyridine-3-carboxylate (14). Methyl 5,6-dimethyl-4-oxo-1,4-dihydropyridine-3-carboxylate (13) ($24.5 \mathrm{~g}, 0.135 \mathrm{~mol}$) was suspended in $\mathrm{POCl}_{3}(50 \mathrm{~mL})$ and reaction mixture was stirred at $50{ }^{\circ} \mathrm{C}$ for 4 h , then the excess of POCl_{3} was removed under reduced pressure. $\mathrm{MeOH}(50 \mathrm{~mL})$ was added slowly to residue that was cooled to $0^{\circ} \mathrm{C}$. Reaction mixture was stirred at $20^{\circ} \mathrm{C}$ for 4 h . Excess of MeOH was removed under reduced pressure and residue was dissolved in $\mathrm{H}_{2} \mathrm{O}(100 \mathrm{~mL})$ and NaOH was added to $\mathrm{pH}=8-9$. Aqueous solution was extracted with DCM $(3 \times 50 \mathrm{~mL})$. Organic phases were combined and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Solvent was removed under reduced pressure to yield $21.5 \mathrm{~g}(80 \%)$ of $\mathbf{1 4}$ as light yellow crystals. Mp $40-41{ }^{\circ} \mathrm{C}$. Anal. calcd. for $\mathrm{C}_{9} \mathrm{H}_{10} \mathrm{ClNO}_{2}$ (199.0): $\mathrm{C}(54.15 \%)$, $\mathrm{H}(5.05 \%), \mathrm{N}$ (7.02\%). Found: C (54.38\%), H (4.86\%), N (6.82\%). ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 2.36$ ($\mathrm{s}, 3 \mathrm{H}$), $2.56(\mathrm{~s}$, $3 \mathrm{H}), 3.90(\mathrm{~s}, 3 \mathrm{H}), 8.65(\mathrm{~s}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 16.1,24.4,52.8,124.4,131.4$, 143.4, 148.2, 161.8, 165.4.

2,3-Dimethyl-4-methoxypyridine (16). 2,3-Dimethyl-4-methoxypyridine N -oxide (15) (36.7 g, $0.24 \mathrm{~mol})$ was dissolved in DCM $(200 \mathrm{~mL})$ and reaction mixture was cooled to $0^{\circ} \mathrm{C}$. Phosphorus trichloride ($25.1 \mathrm{~mL}, 0.29 \mathrm{~mol}$) was added drop-wise and the reaction mixture heated to reflux for 3 h . Solvent was evaporated under reduced pressure and residue was dissolved in water (100 $\mathrm{mL})$, then $\mathrm{K}_{2} \mathrm{CO}_{3}$ was added to $\mathrm{pH}=10$. Aqueous phase was extracted with $\mathrm{DCM}(5 \times 50 \mathrm{~mL})$, organic phases were combined and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Solvent was evaporated over reduced pressure and residue was distilled under vacuum to yield $31.2 \mathrm{~g}(95 \%)$ of 16 as colorless oil. Bp $75-76{ }^{\circ} \mathrm{C}(2 \mathrm{Torr}) .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl} 3$) $\delta 2.08(\mathrm{~s}, 3 \mathrm{H}), 2.43(\mathrm{~s}, 3 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H}), 6.58$ $(\mathrm{d}, 1 \mathrm{H}, J 5.7 \mathrm{~Hz}), 8.18(\mathrm{~d}, 1 \mathrm{H}, J 5.7 \mathrm{~Hz}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 11.9,24.5,55.7,112.7$, $121.9,152.7,157.4,160.1$, in agreement with the literature data. ${ }^{16}$
5-Bromo-2,3-dimethyl-4-methoxypyridine (17). 2,3-Dimethyl-4-methoxypyridine (16) (21 g , 0.15 mol) was added drop-wise to $\mathrm{H}_{2} \mathrm{SO}_{4}(80 \mathrm{~mL})$ cooled to $0{ }^{\circ} \mathrm{C}$, then the reaction mixture was heated to $60^{\circ} \mathrm{C}$. NBS ($30 \mathrm{~g}, 0.17 \mathrm{~mol}$) was added in portions (5 g each) and reaction kept at 60 ${ }^{\circ} \mathrm{C}$ for 2 h . After complete reaction, mixture was poured on ice (200 g), basified with $\mathrm{K}_{2} \mathrm{CO}_{3}$ and extracted with DCM ($5 \times 50 \mathrm{~mL}$). Organic phases were combined and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Solvent was evaporated over reduced pressure to yield $26 \mathrm{~g}(80 \%)$ of $\mathbf{1 7}$ as light yellow oil. Anal. calcd. for $\mathrm{C}_{8} \mathrm{H}_{10} \mathrm{BrNO}$ (216.1): C (44.47\%), $\mathrm{H}(4.66 \%), \mathrm{N}(6.48 \%)$. Found: C (44.72\%), H (4.24\%), N (6.71\%). ${ }^{1} \mathrm{H}$ NMR (300 MHz, CDCl_{3}) $\delta 2.24(\mathrm{~s}, 3 \mathrm{H}), 2.47(\mathrm{~s}, 3 \mathrm{H}), 3.85(\mathrm{~s}, 3 \mathrm{H}), 8.39$ (s, 1H). ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 10.9,24.1,61.7,111.7,147.9,155.7,157.4,159.1$.
(4-Methoxy-5,6-dimethylpyridin-3-yl)methanol (4). Methyl 4-methoxy-5,6-dimethylpyridine-3-carboxylate (12) ($15 \mathrm{~g}, 0.077 \mathrm{~mol}$) and $\mathrm{NaBH}_{4}(20.5 \mathrm{~g}, 0.54 \mathrm{~mol})$ was added to THF (1.5 L), then the reaction mixture was heated to reflux for $15-20 \mathrm{~min}$. $\mathrm{MeOH}(60 \mathrm{~mL}, 0.27 \mathrm{~mol})$ was added drop-wise during 30 min and the reaction mixture was heated to reflux for 3 h . Reaction mixture was cooled to $10{ }^{\circ} \mathrm{C}$ and saturated aqueous solution of $\mathrm{NH}_{4} \mathrm{Cl}(100 \mathrm{~mL})$ was added keeping reaction temperature below $30^{\circ} \mathrm{C}$. Then, reaction mixture was stirred at $20^{\circ} \mathrm{C}$ for 4 h . The resulting precipitate was filtered and washed with DCM (100 mL). Aqueous filtrates were extracted with DCM ($5 \times 50 \mathrm{~mL}$). Organic phases were combined and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Solvent was removed under reduced pressure and residue was mixed with water (50 mL) and
acidified with aqueous $\mathrm{HCl}(35 \%)$ to $\mathrm{pH}=5$. Aqueous solution was extracted with $\mathrm{DCM}(3 \times 25$ mL), organic phases were combined and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Solvent was removed under reduced pressure and residue was recrystallized from toluene to yield $7 \mathrm{~g}(55 \%)$ of $\mathbf{4}$ as colorless crystals. Mp $87-89{ }^{\circ} \mathrm{C}$. Anal. calcd. for $\mathrm{C}_{9} \mathrm{H}_{13} \mathrm{NO}_{2}$ (167.1): C (64.65\%), H (7.84\%), N (8.38\%). Found:C (64.91\%), H (7.52\%), N (8.21\%). ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 2.16(\mathrm{~s}, 3 \mathrm{H}), 2.44$ (s, 3H), 3.41 (broad s, 1H), $3.80(\mathrm{~s}, 3 \mathrm{H}), 4.65(\mathrm{~s}, 2 \mathrm{H}), 8.18(\mathrm{~s}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 21.9$, 23.7, 58.7, 62.7, 124.9, 127.7, 147.4, 159.1, 163.9.
(4-Methoxy-5,6-dimethylpyridin-3-yl)methyl 2-methylbenzoate (20). (4-Methoxy-5,6-dimethylpyridin-3-yl)methanol (4) ($65 \mathrm{~g}, 0.39 \mathrm{~mol}$) was dissolved in a mixture of DCM (750 mL) and TEA ($65.5 \mathrm{ml}, 0.47 \mathrm{~mol}$). Reaction mixture was cooled to $-5^{\circ} \mathrm{C}$ and 2-methylbenzoyl chloride ($61 \mathrm{ml}, 0.47 \mathrm{~mol}$) was added drop-wise keeping reaction temperature below $-2{ }^{\circ} \mathrm{C}$. After addition of 2-methylbenzoyl chloride the reaction mixture was stirred at $20^{\circ} \mathrm{C}$ for 10 h . Reaction mixture was concentrated under reduced pressure to 150 mL and $\mathrm{Et}_{2} \mathrm{O}(500 \mathrm{~mL})$ was added. Precipitate was filtered of and washed with $\mathrm{Et}_{2} \mathrm{O}(2 \times 150 \mathrm{ml})$. Organic phases were combined and solvent removed under reduced pressure. Residue was purified by silica gel column chromatography ($\mathrm{DCM}-\mathrm{MeOH} 40: 1$) to yield $100 \mathrm{~g}(80 \%)$ of 20 as colorless glass. Anal. calcd. for $\mathrm{C}_{17} \mathrm{H}_{19} \mathrm{NO}_{3}$ (285.1): C (71.56\%), $\mathrm{H}(6.71 \%)$, $\mathrm{N}(4.91 \%)$. Found: C (71.32\%), H (6.46\%), N (4.73\%). ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 2.21(\mathrm{~s}, 3 \mathrm{H}), 2.51(\mathrm{~s}, 3 \mathrm{H}), 2.58(\mathrm{~s}, 3 \mathrm{H}), 3.82(\mathrm{~s}, 3 \mathrm{H})$, 5.33 (s, 2H), $7.15-7.24$ (m, 2H), 7.37 (td, 1H, J $7.7 \mathrm{~Hz}, J 1.5 \mathrm{~Hz}$), 7.88 (dd, 1H, J 7.7 Hz, J 1.5 $\mathrm{Hz}), 8.41(\mathrm{~s}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 12.1,22.1,23.1,60.2,61.7,122.9,125.2,125.9$, $129.4,130.9,132.0,132.4,140.7,148.7,160.4,164.5,167.4$.
4-Methoxy-2,3-dimethyl-5-[(2-methylbenzoyloxy)methyl]pyridin-1-ium-1-olate (21). (4-Methoxy-5,6-dimethylpyridin-3-yl)methyl 2-methylbenzoate (20) (85 g, 0.298 mol) was dissolved in DCM (550 ml). Reaction mixture was cooled to $5^{\circ} \mathrm{C}$ and m-CPBA ($74 \mathrm{~g}, 0.3 \mathrm{~mol}$, $70-75 \%$ suspension in water) was added in portions of $10-12 \mathrm{~g}$ during 40 min . After addition of m-CPBA the reaction mixture was stirred at $25{ }^{\circ} \mathrm{C}$ for 24 h . Reaction mixture was washed with saturated solution of $\mathrm{Na}_{2} \mathrm{CO}_{3}(3 \times 500 \mathrm{~mL})$. Aqueous phase was extracted with $\mathrm{DCM}(2 \times$ 100 mL), organic phases were combined and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. DCM was removed under reduced pressure to yield $83 \mathrm{~g}(92 \%)$ of $\mathbf{2 1}$ as colorless crystals. Mp $95-96{ }^{\circ} \mathrm{C}$. Anal. calcd. for $\mathrm{C}_{17} \mathrm{H}_{19} \mathrm{NO}_{4}$ (301.1): C (67.76\%), H (6.36\%), N (4.65\%). Found: C (67.42\%), H (6.16\%), N (4.27\%). ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 2.25(\mathrm{~s}, 3 \mathrm{H}), 2.50(\mathrm{~s}, 3 \mathrm{H}), 2.58(\mathrm{~s}, 3 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H})$, 5.29 (s, 2H), 7.18 - 7.28 (m, 2H), 7.40 (td, 1H, J $7.7 \mathrm{~Hz}, J 1.5 \mathrm{~Hz}$), 7.90 (dd, 1H, J 7.7 Hz, J 1.5 $\mathrm{Hz}), 8.30(\mathrm{~s}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 12.9,14.8,22.1,58.9,62.0,125.9,126.1,128.6$, 128.7, 130.9, 131.0, 132.1, 132.8, 141.1, 150.1, 155.0, 166.8.

[6-(Hydroxymethyl)-4-methoxy-5-methylpyridin-3-yl]methyl-2-methylbenzoate

Compound (21) (83 g, 0.276 mol) was dissolved in $\mathrm{Ac}_{2} \mathrm{O}(170 \mathrm{~mL})$ at $20^{\circ} \mathrm{C}$. Reaction mixture was slowly heated to $100^{\circ} \mathrm{C}$ and stirred for $2 \mathrm{~h} . \mathrm{Ac}_{2} \mathrm{O}$ was removed under reduced pressure and $\mathrm{Et}_{2} \mathrm{O}(300 \mathrm{~mL})$ was added to the residue. Organic phase was washed with saturated solution of $\mathrm{Na}_{2} \mathrm{CO}_{3}(2 \times 300 \mathrm{~mL})$. Aqueous phases extracted with $\mathrm{Et}_{2} \mathrm{O}(2 \times 300 \mathrm{~mL})$. Organic phases were combined, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and solvent was removed under reduced pressure to yield (90 g ,
$0,262 \mathrm{~mol}$) of $\mathbf{2 2}$ as a syrup that was dissolved in THF (500 ml) and aqueous solution of NaOH $(11 \mathrm{~g} 500 \mathrm{ml})$ was added at room temperature. Reaction mixture was stirred at $20^{\circ} \mathrm{C}$ for 3 h , then THF was removed under reduced pressure and the residue was extracted with DCM (3×200 mL). Organic phases were combined and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Solvent was removed under reduced pressure and residue was recrystallized from toluene to yield 70 g of $\mathbf{2 3}$ as white crystals (84% from compound 21). M. p. $98-100{ }^{\circ} \mathrm{C}$. Anal. calcd. for $\mathrm{C}_{17} \mathrm{H}_{19} \mathrm{NO}_{4}$ (301.1): C (67.76\%), H (6.36\%), N (4.65\%). Found: C (67.89\%), H (6.13\%), N (4.24\%). ${ }^{1} \mathrm{H}$ NMR (300 MHz, CDCl_{3}) $\delta 2.14(\mathrm{~s}, 3 \mathrm{H}), 2.59(\mathrm{~s}, 3 \mathrm{H}), 3,86(\mathrm{~s}, 3 \mathrm{H}), 4.67(\mathrm{~s}, 2 \mathrm{H}), 5.38(\mathrm{~s}, 2 \mathrm{H}), 7.17-7.26(\mathrm{~m}, 2 \mathrm{H}), 7.39$ (td, $1 \mathrm{H}, J 7.7 \mathrm{~Hz}, J 1.5 \mathrm{~Hz}$), $7.88(\mathrm{dd}, 1 \mathrm{H}, J 7.7 \mathrm{~Hz}, J 1.5 \mathrm{~Hz}), 8.50(\mathrm{~s}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (75 MHz , CDCl_{3}) $\delta 9.7,22.1,60.0,61.8,61.9,123.1,124.3,126.1,129.2,130.9,132.1,132.5,140.9$, 147.6, 159.3, 164.8, 167.3.
[6-(Chloromethyl)-4-methoxy-5-methylpyridin-3-yl]methyl 2-methylbenzoate hydrochloride (24). Compound (23) ($5 \mathrm{~g}, 0.017 \mathrm{~mol}$) was dissolved in DCM (20 ml) and reaction mixture was cooled to $0^{\circ} \mathrm{C}$ and SOCl_{2} solution in $\mathrm{DCM}(2.14 \mathrm{~g}, 0.018 \mathrm{~mol}, 10 \mathrm{ml})$ was added drop-wise keeping reaction temperature below $2{ }^{\circ} \mathrm{C}$. After addition of SOCl_{2} reaction mixture was stirred at $20^{\circ} \mathrm{C}$ for 30 min . DCM was removed under reduced pressure and excess of SOCl_{2} was removed by evaporating several portions of DCM under reduced pressure to yield $5.88 \mathrm{~g}(97 \%)$ of 24 as light yellow crystals which were used for further reaction without purification. Mp $148-155{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl} 3$) $\delta 2.48(\mathrm{~s}, 3 \mathrm{H}), 2.58(\mathrm{~s}, 3 \mathrm{H}), 4.18(\mathrm{~s}$, $3 \mathrm{H}), 5.13(\mathrm{~s}, 2 \mathrm{H}), 5.46(\mathrm{~s}, 2 \mathrm{H}), 7.20-7.30(\mathrm{~m}, 2 \mathrm{H}), 7.44(\mathrm{td}, 1 \mathrm{H}, J 7.5 \mathrm{~Hz}, J 1.2 \mathrm{~Hz}), 7.91$ (dd, $1 \mathrm{H}, J 7.5 \mathrm{~Hz}, J 1.2 \mathrm{~Hz}), 8.62(\mathrm{~s}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 10.9,21.1,41.1,60.5,66.0$, $121.4,122.9,125.7,130.1,130.7,131.7,131.9,140.0,145.3,157.9,158.4,167.7$.
(4-Methoxy-6-\{[(5-methoxy-1H-1,3-benzodiazol-2-yl)sulfanyl]methyl\}-5-methylpyridin-3yl)methyl 2-methylbenzoate (25). 5-Methoxy-1H-1,3-benzodiazole-2-thiol (5) (0.59 g, 0.00324 mol) was dissolved in methanol $(2 \mathrm{~mL})$ and aqueous solution of $\mathrm{NaOH}(0.13 \mathrm{~g}, 0.00324 \mathrm{~mol}$, 1.62 mL). After 15 min solution of compound $24 \mathrm{in} \mathrm{MeOH}(1.05 \mathrm{~g}, 0.003 \mathrm{~mol}, 2 \mathrm{~mL})$ was added drop-wise during 15 min and reaction mixture was heated to reflux for 3 h , then MeOH was removed under reduced pressure and water (25 mL) was added to the residue. Aqueous phase was extracted with $\mathrm{DCM}(5 \times 10 \mathrm{~mL})$, organic phases were combined, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and DCM was removed under reduced pressure to yield $1.3 \mathrm{~g}(93 \%)$ of $\mathbf{2 5}$ as light yellow glass. Anal. calcd. for $\mathrm{C}_{25} \mathrm{H}_{25} \mathrm{~N}_{3} \mathrm{O}_{4} \mathrm{~S}$ (463.2): C (64.78\%), H (5.44\%), N (9.06\%). Found: C (64.43\%), $\mathrm{H}(5.69 \%), \mathrm{N}(8.77 \%) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 2.35(\mathrm{~s}, 3 \mathrm{H}), 2.59(\mathrm{~s}, 3 \mathrm{H}), 3.82(\mathrm{~s}, 3 \mathrm{H})$ 3.88 (s, 3H), 5.28 (s, 2H), 5.38 (s, 2H), 6.81 (dd, 1H, J $8.7 \mathrm{~Hz}, J 2.7 \mathrm{~Hz}$), 7.02 (d, 1H, J 2.7 Hz), $7.17-7.26(\mathrm{~m}, 2 \mathrm{H}), 7.35-7.43(\mathrm{~m}, 2 \mathrm{H}), 7.90(\mathrm{dd}, 1 \mathrm{H}, J 7.7 \mathrm{~Hz}, J 1.2 \mathrm{~Hz}), 8.56(\mathrm{~s}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 11.8,21.7,25.2,55.5,60.5,66.5,98.6,114.8,115.6,122.7,125.7$, $127.2,130.1,130.5,131.7,131.8,134.1,140.0,140.2,147.4,149.3,156.9,157.2,157.8,167.7$.
(4-Methoxy-6-(((5-methoxy-1H-benzo[d]imidazol-2-yl)thio)methyl)-5-methylpyridin-3-
yl)methanol (26). Compound $25(1.3 \mathrm{~g}, 0.00281 \mathrm{~mol})$ was dissolved in $\mathrm{MeOH}(5 \mathrm{ml})$ and aqueous solution of $\mathrm{NaOH}(0.14 \mathrm{~g}, 0.00351 \mathrm{~mol}, 1 \mathrm{ml})$. Reaction mixture was stirred at $20^{\circ} \mathrm{C}$ for 24 h and MeOH was removed under reduced pressure and water $(20 \mathrm{~mL})$ was added to residue.

Aqueous phase was extracted with $\mathrm{DCM}(5 \times 10 \mathrm{ml} \mathrm{DCM})$, organic phases were combined, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and DCM was removed under reduced pressure to yield $0.87 \mathrm{~g}(90 \%)$ of 26 as colorless glass. Anal. calcd. for $\mathrm{C}_{17} \mathrm{H}_{19} \mathrm{~N}_{3} \mathrm{O}_{3} \mathrm{~S}$ (345.1): C (59.11\%), H (5.54\%), N (12.17\%). Found: C (58.86\%), H (5.79\%), N (11.92\%). ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 2.23$ (s, 3H), 3.78 (s, $3 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H}), 4.29(\mathrm{~s}, 2 \mathrm{H}), 4.74(\mathrm{~s}, 2 \mathrm{H}), 6.76(\mathrm{dd}, 1 \mathrm{H}, J 8.7 \mathrm{~Hz}, J 2.7 \mathrm{~Hz}), 6.94$ (d, 1H, J 2.7 $\mathrm{Hz}), 7.33(\mathrm{~d}, 1 \mathrm{H}, J 8.7 \mathrm{~Hz}), 8.40(\mathrm{~s}, 1 \mathrm{H}){ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 11.6,35.4,56.1,58.7$, $61.6,111.6,125.8,125.9,129.5,131.2,147.4,147.7,150.4,156.2,157.8,164.2,165.0$.
(4-Methoxy-6-(((5-methoxy-1H-benzo[d]imidazol-2-yl)sulfinyl)methyl)-5-methylpyridin-3yl)methanol (5-Hydroxyomeprazole) (2). Compound 26 ($3 \mathrm{~g}, 0.0087 \mathrm{~mol}$) was dissolved in the mixture of $\mathrm{DCM}(65 \mathrm{~mL})$ and $\mathrm{MeOH}(15 \mathrm{~mL})$ under argon. Aqueous solution of $\mathrm{NaHCO}_{3}(1.5 \mathrm{~g}$ $/ 25 \mathrm{~mL}$) was added and the reaction mixture was cooled to $2^{\circ} \mathrm{C}$. Solution of m-CPBA in DCM $(2 \mathrm{~g}, 30 \mathrm{~mL})$ was added drop-wise keeping reaction temperature below $3^{\circ} \mathrm{C}$. Reaction mixture was stirred at $2{ }^{\circ} \mathrm{C}$ for 1 h , then an aqueous solution of $\mathrm{NaOH}(1.07 \mathrm{~g} / 70 \mathrm{~mL})$ was added. After 15 min organic phase was separated. Ethyl formate (3.30 g) was added to the water phase and cooled to $5{ }^{\circ} \mathrm{C}$. Aqueous phase was extracted with DCM ($8 \times 50 \mathrm{~mL}$), organic phases were combined, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and DCM was removed under reduced pressure to yield 2.3 g of $\mathbf{2}$ as violet glass that was tritured with acetonitrile $(30 \mathrm{~mL})$ and cooled to $5^{\circ} \mathrm{C}$. The crystals were filtered, washed with ice cold acetonitrile and air dried to yield $1.41 \mathrm{~g}(45 \%)$ of $\mathbf{2}$ as light violet crystals. Mp $136-138{ }^{\circ} \mathrm{C}$. Anal. calcd. for $\mathrm{C}_{17} \mathrm{H}_{19} \mathrm{~N}_{3} \mathrm{O}_{4} \mathrm{~S}$ (361.1): C (56.50\%), H (5.30\%), N (11.63\%). Found: C (56.73\%), H (5.12\%), N (11.23\%). ${ }^{1} \mathrm{H}$ NMR (300 MHz, DMSO-D6) $\delta 2.19$ $(\mathrm{s}, 3 \mathrm{H}), 3.74(\mathrm{~s}, 3 \mathrm{H}), 3.83(\mathrm{~s}, 3 \mathrm{H}), 4.56(\mathrm{~s}, 2 \mathrm{H}), 4.63\left(\mathrm{ABq}, 2 \mathrm{H}, \Delta \delta_{\mathrm{AB}}=0.075, J_{\mathrm{AB}}=15 \mathrm{~Hz}\right), 5.29$ (broad s, 1H), 6.95 (dd, 1H, J $9 \mathrm{~Hz}, ~ J 3 \mathrm{~Hz}$), 7.12 (d, 1H, J 3 Hz), 7.57 (d, 1H, J 9 Hz), 8.35 (s, $1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 11.6,35.4,56.1,58.7,61.6,111.6,125.8,125.9,129.5$, 131.2, 147.4, 147.7, 150.4, 156.2, 157.8, 163.2, 165.5.

References

1. Lindberg, P.; Olbe, L.; Carlsson, E. Nat. Rev. Drug Discov. 2003, 2, 132-139. http://dx.doi.org/10.1038/nrd1010
2. Abelo, A; Anderson, T. B.; Antonsson, M.; Naudot, A.K.; Skanberg, I.; Weidolf, L. J. Pharm. Exp. Ther. 2000, 28, 966-972.
3. Song, Q.; Naidong, W. J. Chromatogr. B. 2006, 830(1), 135-142. http://dx.doi.org/10.1016/j.jchromb.2005.10.042
4. Shu, Y.; Wang, L.-Sh.; Xu, Zh.-H.; He, N.; Xiao, W.-M.; Wang, W.; Huang, S.-L.; Zhou, H.-H.; J. Pharm. Exp. Ther. 2000, 295(2), 844-851.
5. Nazir, Sh.; Iqbal, Z.; Ahmad, L.; Shah, Y.; Khan, A.; Nasir, F.; Akhlaq, M. Afr. J. Pharm. Pharmacol. 2013, 7(16), 865-872.
6. Ryu, S. H.; Park, B. Y.; Kim, S. Y.; Park, S. H.; Jung, H. J.; Park, M.; Park, K. D.; Ahn, T.; Kang, H. S.; Yun, Ch. H. Drug Metab. Dispos. 2014, 42, 1493-1497.
http://dx.doi.org/10.1124/dmd.114.058636
7. Butler, C. F.; Peet, C.; Mason, A. E.; Voice, M. W.; Leys, D.; Munro, A. W. J. Biol. Chem. 2013, 288(35), 25387-25399. http://dx.doi.org/10.1074/jbc.M113.479717
8. Rádl, S.; Klecán, O.; Havlícek, J. J. Het. Chem. 2006, 43, 1447-1453.
http://dx.doi.org/10.1074/jbc.M113.479717
9. Kuhler, T. C.; Fryklund, J.; Bergman, N.; Weilitz, J.; Lee, A.; Larsson, H. J. Med. Chem. 1995, 38, 4906-4916.
http://dx.doi.org/10.1021/jm00025a008
10. Dai, L.; Fan, D.; Wang, X.; Chen, Y. Syn. Comm. 2008, 38, 576-582. http://dx.doi.org/10.1080/00397910701797913
11. J.P. Wibaut, E.C. Kooyman, Recl. Trav. Chim. Pays-Bas. 1944, 63, 231-236. http://dx.doi.org/10.1002/recl. 19440631202
12. Seeman, J. I.; Secor, H. V.; Chavdarian, C. G.; Sanders, E. B.; Bassfield, R. L.; Whidby, J. F. J. Org. Chem. 1981, 46, 3040-3048. http://dx.doi.org/10.1021/jo00328a010
13. Paine, J. B. J. Het. Chem. 1987, 24, 351-355.
http://dx.doi.org/10.1002/jhet.5570240211
14. Leroy, F.; Despreas, P.; Bigan, M.; Blondeau, D. Syn. Comm. 1996, 26, 2257-2272. http://dx.doi.org/10.1080/00397919608004536
15. Weidmann, K.; Herling, A. W.; Lang, H. J.; Scheunemann, K. H.; Rippel, R.; Nimmesgern, H.; Scholl, T.; Bickel, M.; Metzger, H. J. Med. Chem. 1992, 35, 438-450. http://dx.doi.org/10.1021/jm00081a004
16. Godart, A.; Lamour, P.; Ribereau, P.; Queguiner, G. Tetrahedron 1995, 51, 3247-3264. http://dx.doi.org/10.1016/0040-4020(95)00062-D
