Supplementary Material

New V-shaped push-pull systems on the basis of 4,5-di(hetero)aryl substituted pyrimidines: synthesis and application for detection of nitroaromatic explosives

Egor V. Verbitskiy^{a,b,*}, Anna A. Baranova^b, Kseniya I. Lugovik^b, Konstantin O. Khokhlov^b, Ekaterina M. Cheprakova^a, Gennady L. Rusinov^{a,b}, Oleg N. Chupakhin^{a,b}, and Valery N. Charushin^{a,b}

 ^a Postovsky Institute of Organic Synthesis, Ural Branch of the Russian Academy of Sciences, S. Kovalevskoy Str., 22, Ekaterinburg, 620137, Russia
^bUral Federal University, Mira St. 19, Ekaterinburg, 620002, Russia
E-mail: <u>Verbitsky@ios.uran.ru</u>

Dedicated to Professor Oleg G. Sinyashin on the occasion of his 60th anniversary

Table of Contents

1.	Figure S1. Fluorescence quenching studies of 6b	S2
2.	Figure S2. Fluorescence quenching studies of 6c	S3
3.	Figure S3. Solution photographs of compound 6b and 6a	S4
4.	Figure S4. Solution photographs of compound 6c	S5
5.	Figure S5. Time-resolved fluorescence emission of 6a and	
	adduct with DNAN at different mole ratios of the analyte	S6
6.	Figure S6. Time-resolved fluorescence emission of 6b and	
	adduct with DNAN at different mole ratios of the analyte	S6
7.	Figure S7. Time-resolved fluorescence emission of 6c and	
	adduct with DNAN at different mole ratios of the analyte	S7
8.	Figure S8. The Stern–Volmer plots as function of DNAN concentration	
	in CH ₃ CN, with an excitation wavelength of 403 nm for 6a solution	S7
9.	Figure S9. The Stern–Volmer plots as function of DNAN concentration	
	in CH ₃ CN, with an excitation wavelength of 397 nm for 6b solution	S 8
10	. Figure S10. The Stern–Volmer plots as function of DNAN concentration	
	in CH ₃ CN, with an excitation wavelength of 340 nm for 6c solution	S9
11	. Table S1. Fluorescence life time data of pure 6a-c fluorophores	
	at different mole ratios of DNAN	S9
12	. ¹ H NMR and ¹³ C NMR of compounds 6a-c	S10

Figure S1. Fluorescence quenching studies of **6b** $(1.0 \times 10^{-5} \text{ mol/L})$ recorded in the presence of various amounts of DNAN (a), PA (b), SA (c), TETNB (d), DNT (e), TNT (f), NB (g) and Tol (h), of which 385 nm was taken as the excitation wavelength.

Figure S2. Fluorescence quenching studies of **6c** $(1.0 \times 10^{-5} \text{ mol/L})$ recorded in the presence of various amounts of DNAN (a), PA (b), SA (c), TETNB (d), DNT (e), TNT (f), NB (g) and Tol (h), of which 385 nm was taken as the excitation wavelength.

General Papers

Figure S3. Solution photographs of compound **6b** ($c = 1.0 \times 10^{-5}$ M) in acetonitrile (1), solution **6a** with the presence of solution TETNB ($c = 1.0 \times 10^{-5}$ M) in acetonitrile (2), solution **6b** with the presence of solution DNAN ($c = 1.0 \times 10^{-5}$ M) in acetonitrile (3), solution **6b** with the presence of solution SA ($c = 1.0 \times 10^{-5}$ M) in acetonitrile (4), solution **6b** with the presence of solution SA ($c = 1.0 \times 10^{-5}$ M) in acetonitrile (5): before radiation (a – no emission) and during radiation (b – emission, $\lambda_{ex} = 375$ nm) at room temperature.

Figure S4. Solution photographs of compound **6c** ($c = 1.0 \times 10^{-5}$ M) in acetonitrile (1), solution **6a** with the presence of solution TETNB ($c = 1.0 \times 10^{-5}$ M) in acetonitrile (2), solution **6c** with the presence of solution DNAN ($c = 1.0 \times 10^{-5}$ M) in acetonitrile (3), solution **6c** with the presence of solution PA ($c = 1.0 \times 10^{-5}$ M) in acetonitrile (4), solution **6c** with the presence of solution SA ($c = 1.0 \times 10^{-5}$ M) in acetonitrile (5): before radiation (a – no emission) and during radiation (b – emission, $\lambda_{ex} = 375$ nm) at room temperature.

Figure S5. Time-resolved fluorescence emission of **6a** and adduct with DNAN at different mole ratios of the analyte.

Figure S7. Time-resolved fluorescence emission of **6c** and adduct with DNAN at different mole ratios of the analyte.

Figure S8. The Stern–Volmer plots as function of DNAN concentration in CH_3CN , with an excitation wavelength of 403 nm for **6a** solution.

Figure S9. The Stern–Volmer plots as function of DNAN concentration in CH_3CN , with an excitation wavelength of 397 nm for **6b** solution.

Figure S10. The Stern–Volmer plots as function of DNAN concentration in CH_3CN , with an excitation wavelength of 340 nm for **6c** solution.

Table S1. Fluorescence life time data of pure 6a-c fluorophores at different mole ratios of	f
DNAN	

Mole ratio vs DNAN	Fluorophore 6a (µs)	Fluorophore 6b (µs)	Fluorophore 6c (µs)
0	0.011	0.011	0.010
1:1	0.011	0.011	0.010

¹H NMR (500 MHz, DMSO- d_6) spectrum of **6a**.

Page S10

 13 C NMR (126 MHz, DMSO- d_6) spectrum of **6a**.

¹H NMR (500 MHz, DMSO- d_6) spectrum of **6b**.

Page S12

¹³C NMR (126 MHz, DMSO- d_6) spectrum of **6b**.

¹H NMR (500 MHz, CDCl₃) spectrum of **6c**.

¹³C NMR (126 MHz, CDCl₃) spectrum of **6c**.

Page S15