Supplementary Material

Synthesis of tetramethoxy-(tetra-hydrazinecarboxamide) cyclophanes with unexpected conformation and investigation of their solution-phase recognition of chiral carboxylic guests using time-of-flight and tandem mass spectrometry

Hany F. Nour,*^a Agnieszka Golon,^b Tamer El Malah,^a and Nikolai Kuhnert*^b

^a National Research Centre, Department of Photochemistry, El Behoose Street, PO Box 12622, Cairo, Dokki, Egypt

^b Jacobs University Bremen, School of Engineering and Science, Laboratory of Organic and Analytical Chemistry, D-28759, Bremen, Germany

E-mail: <u>hany.nour@daad-alumni.de</u>, <u>n.kuhnert@jacobs-university.de</u>

Table of Contents

1.	Figure 1. ¹ H NMR spectrum of macrocycle (9) (400 MHz, DMSO- d_6)	S 5
2.	Figure 2. ¹³ C NMR spectrum of macrocycle (9) (100 MHz, DMSO- d_6)	S 5
3.	Figure 3. 2D HMQC spectrum of macrocycle (9) (DMSO-d ₆)	S 6
4.	Figure 4. 2D HMBC spectrum of macrocycle (9) (DMSO- d_6)	S 6
5.	Figure 5. 2D ROESY NMR spectrum of macrocycle (9) (DMSO- d_6)	S 7
6.	Figure 6. ¹ H NMR spectrum of macrocycle (10) (400 MHz, DMSO- d_6)	S 7
7.	Figure 7. ¹³ C NMR spectrum of macrocycle (10) (100 MHz, DMSO- d_6)	S 8
8.	Figure 8. DEPT 135 spectrum of macrocycle (10) (DMSO- d_6)	S 8
9.	Figure 9. 2D HMQC spectrum of macrocycle (10) (DMSO- <i>d</i> ₆)	S9
10.	Figure 10. 2D HMBC spectrum of macrocycle (10) (DMSO- d_6)	S 9
11.	Figure 11. 2D ROESY NMR spectrum of macrocycle (10) (DMSO- d_6)	S10
12.	Figure 12. ¹ H NMR spectrum of macrocycle (11) (400 MHz, DMSO- d_6)	S10
13.	Figure 13. ¹³ C NMR spectrum of macrocycle (11) (100 MHz, DMSO- d_6)	S11
14.	Figure 14. 2D HMBC spectrum of macrocycle (11) (DMSO- d_6)	S11
15.	Figure 15. 2D ROESY NMR spectrum of macrocycle (11) (DMSO- d_6)	S12
16.	Figure 16. ¹ H NMR spectrum of macrocycle (12) (400 MHz, DMSO- d_6)	S12
17.	Figure 17. ¹³ C NMR spectrum of macrocycle (12) (100 MHz, DMSO- d_6)	S13
18.	Figure 18. ¹ H NMR spectrum of macrocycle (13) (400 MHz, DMSO- d_6)	S13
19.	Figure 19. ¹³ C NMR spectrum of macrocycle (13) (100 MHz, DMSO- d_6)	S14
20.	Figure 20. ¹ H NMR spectrum of compound (14) (400 MHz, DMSO- d_6)	S14
21.	Figure 21. ¹³ C NMR spectrum of compound (14) (100 MHz, DMSO- d_6)	S15
22.	Figure 22. 2D ROESY NMR spectrum of compound (14) (DMSO- d_6)	S15
23.	Figure 23. ¹ H NMR spectrum of compound (15) (400 MHz, DMSO- d_6)	S16
24.	Figure 24. ¹³ C NMR spectrum of compound (15) (100 MHz, DMSO- d_6)	S16

25.	Figure 25. 2D ROESY NMR spectrum of compound (15) (DMSO- d_6)	S17
26.	Figure 26. ¹ H NMR spectrum of compound (16) (400 MHz, DMSO- d_6)	S17
27.	Figure 27. ¹³ C NMR spectrum of compound (16) (100 MHz, DMSO- d_6)	S18
28.	Figure 28. ¹ H NMR spectrum of compound (17) (400 MHz, DMSO- d_6)	S18
29.	Figure 29. 2D ROESY NMR spectrum of compound (17) (DMSO- d_6)	S19
30.	Figure 30. ¹ H NMR spectrum of compound (18) (400 MHz, DMSO- d_6)	S19
31.	Figure 31. ¹³ C NMR spectrum of compound (18) (100 MHz, DMSO- d_6)	S20
32.	Figure 32. 2D ROESY NMR spectrum of compound (18) (DMSO- d_6)	S20
33.	Figure 33. ¹ H NMR spectrum of compound (19) (400 MHz, DMSO- d_6)	S21
34.	Figure 34. ¹³ C NMR spectrum of compound (19) (100 MHz, DMSO- d_6)	S21
35.	Figure 35. ¹ H NMR spectrum of compound (20) (400 MHz, DMSO- d_6)	S22
36.	Figure 36. ¹³ C NMR spectrum of compound (20) (100 MHz, DMSO- d_6)	S22
37.	Figure 37. ¹ H NMR spectrum of compound (21) (400 MHz, DMSO- d_6)	S23
38.	Figure 38. ¹³ C NMR spectrum of compound (21) (100 MHz, DMSO- d_6)	S23
39.	Figure 39. ESI-TOF MS of macrocycle (9) (DMF/CH ₃ CN,	
	positive ion mode, [M+H] ⁺)	S24
40.	Figure 40. ESI-TOF MS of macrocycle (10) (DMF/CH ₃ CN,	
	positive ion mode, [M+H] ⁺)	S24
41.	Figure 41. ESI-TOF MS of macrocycle (12) (DMF/CH ₃ CN,	
	positive ion mode, [M+Na] ⁺)	S25
42.	Figure 42. ESI-TOF MS of macrocycle (13) (DMF/CH ₃ CN,	
	negative ion mode, [M-H] ⁻)	S25
43.	Figure 43. Stacked VT-NMR spectra of compound (14)	
	(400 MHz, DMSO- <i>d</i> ₆)	S25
44.	Figure 44. ESI-MS/MS of macrocycles (9-11) (DMF/CH ₃ CN,	
	positive ion mode, [M+Na] ⁺)	S26
45.	Figure 45. Proposed fragmentation mechanism of macrocycles (9-13)	S26
46.	Figure 46. ESI-TOF MS of compounds (14-18) (DMF/CH ₃ CN,	
	negative ion mode, [M-H] ⁻)	S27
47.	Figure 47. ESI-TOF MS of compounds (19-21) (DMF/CH ₃ CN,	
	negative ion mode, [M-H] ⁻)	S28
48.	Figure 48. ESI-MS/MS of compounds (14 and 15) (DMF/CH ₃ CN,	
	negative ion mode, [M-H] ⁻)	S28
49.	Figure 49. ESI-MS/MS of compounds (16-20) (DMF/CH ₃ CN,	
	negative ion mode, [M-H] ⁻)	S29
50.	Figure 50. ESI-MS/MS of compounds (21) (DMF/CH ₃ CN,	
	negative ion mode, [M-H] ⁻)	S29
51.	Figure 51. Proposed fragmentation mechanism of compounds (14-21)	S 30
52.	Figure 52. ESI-TOF MS for self-assembled associations of compound (18)	
	(CH ₃ CN/DMF)	S 30
53.	Figure 53. ESI-MS/MS of <i>m</i> / <i>z</i> 1231.5 and 1835.9 (DMF/CH ₃ CN,	
	positive ion mode, [M+Na] ⁺)	S 31
54.	Figure 54. ESI-TOF MS and ESI-MS/MS of Ht/Gt complex 11/22	
	(DMF/CH ₃ CN/H ₂ O)	S31

55.	Figure 55. ESI-TOF MS and ESI-MS/MS of Ht/Gt complex 11/23 (DMF/CH ₃ CN/H ₂ O)	S 32
56.	Figure 56. ESI-TOF MS and ESI-MS/MS of Ht/Gt complex 11/24	
	(DMF/CH ₃ CN/H ₂ O)	S32
57.	Figure 57. ESI-TOF MS and ESI-MS/MS of Ht/Gt complex 11/25	
	(DMF/CH ₃ CN/H ₂ O)	S33
58.	Figure 58. ESI-TOF MS and ESI-MS/MS of Ht/Gt complex 11/26	~~~
	(DMF/CH ₃ CN/H ₂ O)	S33
59.	Figure 59. ESI-TOF MS and ESI-MS/MS of Ht/Gt complex 11/27	
	(DMF/CH ₃ CN/H ₂ O)	S34
60.	Figure 60. ESI-TOF MS and ESI-MS/MS of Ht/Gt complex 14/22	
	$(DMF/CH_3CN/H_2O, negative ion mode, m/z 1245.3)$	S34
61.	Figure 61. ESI-MS/MS of Ht/Gt complex $14/22$ (DMF/CH ₃ CN/H ₂ O,	
	negative ion mode, m/z 1095.3 and 697.1)	S35
62.	Figure 62. ESI-TOF MS and ESI-MS/MS of Ht/Gt complex 14/23	
	$(DMF/CH_3CN/H_2O, negative ion mode, m/z 1245.3)$	S35
63.	Figure 63. ESI-MS/MS of Ht/Gt complex $14/23$ (DMF/CH ₃ CN/H ₂ O,	
	negative ion mode, m/z 1095.3 and 697.1)	S36
64.	Figure 64. ESI-TOF MS and ESI-MS/MS of Ht/Gt complex 14/24	
	$(DMF/CH_3CN/H_2O, negative ion mode, m/z 1095.3)$	S36
65.	Figure 65. ESI-MS/MS of Ht/Gt complex $14/24$ (DMF/CH ₃ CN/H ₂ O,	
	negative ion mode, m/z 739.2)	S37
66.	Figure 66. ESI-TOF MS and ESI-MS/MS of Ht/Gt complex 14/25	
	(DMF/CH ₃ CN/H ₂ O, negative ion mode, m/z 1229.3 and 1095.3)	S37
67.	Figure 67. ESI-MS/MS of Ht/Gt complex $14/25$ (DMF/CH ₃ CN/H ₂ O,	
	negative ion mode, m/z 681.1)	S38
68.	Figure 68. ESI-TOF MS and ESI-MS/MS of Ht/Gt complex 14/26	
	$(DMF/CH_3CN/H_2O, negative mode, m/z 1289.3 and 1095.3)$	S38
69.	Figure 69. ESI-MS/MS of Ht/Gt complex 14/26 (DMF/CH ₃ CN/H ₂ O,	
	negative ion mode, m/z 741.2)	S39
70.	Figure 70. ESI-TOF MS and ESI-MS/MS of Ht/Gt complex 14/27	
	(DMF/CH ₃ CN/H ₂ O, negative ion mode)	S39
71.	Figure 71. ESI-MS/MS of Ht/Gt complex 14/27 (DMF/CH ₃ CN/H ₂ O,	
	negative ion mode, m/z 1289.3 and 1095.3)	S39
72.	Figure 72. ESI-MS/MS of Ht/Gt complex 14/27 (DMF/CH ₃ CN/H ₂ O,	
	negative ion mode, m/z 741.2)	S40
73.	Figure 73. CD spectra of macrocycles (9, blue) and (12, green), DMSO	S40
74.	Figure 74. CD spectrum of macrocycles (10), DMSO	S41
75.	Figure 75. CD spectra of macrocycles (11, blue) and (13, green), DMSO	S41
76.	Figure 76. CD spectra of compounds (14, blue) and (19, green), DMSO	S42
77.	Figure 77. CD spectra of compounds (15, blue) and (20, green), DMSO	S42
78.	Figure 78. CD spectra of compounds (16, blue) and (21, green), DMSO	S43
79.	Figure 79. CD spectrum of compound (17), DMSO	S43
80.	Figure 80. CD spectrum of compound (18), DMSO	S44

81.	Figure 81. 2D ROESY NMR spectrum of macrocycle (A) showing <i>syn/anti</i>	
	orientation of the NH moieties, (DMSO- d_6)	S44
82.	Figure 82. 2D ROESY NMR spectrum of macrocycle (B) showing syn/anti	
	orientation of the NH moieties, (DMSO- d_6)	S45
83.	Figure 83. 2D ROESY NMR spectrum of macrocycle (C) showing <i>syn/anti</i>	
	orientation of the NH moieties, (DMSO- d_6)	S45
84.	Figure 84. 2D ROESY NMR spectrum of macrocycle (D) showing syn/anti	
	orientation of the NH moieties, (DMSO- d_6)	S46

Figure 1. ¹H NMR spectrum of macrocycle (9) (400 MHz, DMSO- d_6).

Figure 2. ¹³C NMR spectrum of macrocycle (9) (100 MHz, DMSO- d_6).

Figure 4. 2D HMBC spectrum of macrocycle (9) (DMSO-*d*₆).

General Papers

Figure 6. ¹H NMR spectrum of macrocycle (10) (400 MHz, DMSO- d_6).

Figure 7. ¹³C NMR spectrum of macrocycle (10) (100 MHz, DMSO- d_6).

Figure 8. DEPT 135 spectrum of macrocycle (10) (DMSO- d_6).

Figure 10. 2D HMBC spectrum of macrocycle (10) (DMSO-*d*₆).

General Papers

Figure 12. ¹H NMR spectrum of macrocycle (11) (400 MHz, DMSO-*d*₆).

Figure 13. ¹³C NMR spectrum of macrocycle (11) (100 MHz, DMSO- d_6).

Figure 14. 2D HMBC spectrum of macrocycle (11) (DMSO-*d*₆).

Figure 15. 2D ROESY NMR spectrum of macrocycle (11) (DMSO-d₆).

Figure 16. ¹H NMR spectrum of macrocycle (12) (400 MHz, DMSO- d_6).

Figure 17. ¹³C NMR spectrum of macrocycle (12) (100 MHz, DMSO-*d*₆).

Figure 18. ¹H NMR spectrum of macrocycle (**13**) (400 MHz, DMSO-*d*₆).

Figure 19. ¹³C NMR spectrum of macrocycle (13) (100 MHz, DMSO- d_6).

Figure 20. ¹H NMR spectrum of compound (14) (400 MHz, DMSO- d_6).

Figure 21. ¹³C NMR spectrum of compound (14) (100 MHz, DMSO-*d*₆).

Figure 22. 2D ROESY NMR spectrum of compound (14) (DMSO-*d*₆).

Figure 23. ¹H NMR spectrum of compound (15) (400 MHz, DMSO- d_6).

Figure 24. ¹³C NMR spectrum of compound (15) (100 MHz, DMSO- d_6).

Figure 25. 2D ROESY NMR spectrum of compound (15) (DMSO-*d*₆).

Figure 26. ¹H NMR spectrum of compound (16) (400 MHz, DMSO-*d*₆).

Figure 27. ¹³C NMR spectrum of compound (16) (100 MHz, DMSO- d_6).

Figure 28. ¹H NMR spectrum of compound (17) (400 MHz, DMSO- d_6).

Figure 29. 2D ROESY NMR spectrum of compound (17) (DMSO-*d*₆).

Figure 30. ¹H NMR spectrum of compound (18) (400 MHz, DMSO- d_6).

Figure 31. ¹³C NMR spectrum of compound (18) (100 MHz, DMSO-*d*₆).

Figure 32. 2D ROESY NMR spectrum of compound (18) (DMSO-*d*₆).

Figure 33. ¹H NMR spectrum of compound (**19**) (400 MHz, DMSO- d_6).

Figure 34. ¹³C NMR spectrum of compound (19) (100 MHz, DMSO-*d*₆).

Figure 35. ¹H NMR spectrum of compound (20) (400 MHz, DMSO-*d*₆).

Figure 36. ¹³C NMR spectrum of compound (**20**) (100 MHz, DMSO- d_6).

Figure 37. ¹H NMR spectrum of compound (21) (400 MHz, DMSO- d_6).

Figure 38. ¹³C NMR spectrum of compound (21) (100 MHz, DMSO- d_6).

Figure 39. ESI-TOF MS of macrocycle (9) (DMF/CH₃CN, positive ion mode, [M+H]⁺).

Figure 40. ESI-TOF MS of macrocycle (10) (DMF/CH₃CN, positive ion mode, [M+H]⁺).

Figure 41. ESI-TOF MS of macrocycle (12) (DMF/CH₃CN, positive ion mode, [M+Na]⁺).

Figure 42. ESI-TOF MS of macrocycle (13) (DMF/CH₃CN, negative ion mode, [M-H]⁻).

Figure 43. Stacked VT-NMR spectra of compound (14) (400 MHz, DMSO-d₆).

Figure 44. ESI-MS/MS of macrocycles (9-11) (DMF/CH₃CN, positive ion mode, [M+Na]⁺).

Figure 45. Proposed fragmentation mechanism of macrocycles (9-13).

Figure 46. ESI-TOF MS of compounds (14-18) (DMF/CH₃CN, negative ion mode, [M-H]⁻).

Figure 47. ESI-TOF MS of compounds (19-21) (DMF/CH₃CN, negative ion mode, [M-H]⁻).

Figure 49. ESI-MS/MS of compounds (16-20) (DMF/CH₃CN, negative ion mode, [M-H]⁻).

Figure 50. ESI-MS/MS of compounds (21) (DMF/CH₃CN, negative ion mode, [M-H]⁻).

Figure 51. Proposed fragmentation mechanism of compounds (14-21).

Figure 52. ESI-TOF MS for self-assembled associations of compound (18) (CH₃CN/DMF).

Figure 53. ESI-MS/MS of *m*/*z* 1231.5 and 1835.9 (DMF/CH₃CN, positive ion mode, [M+Na]⁺).

Figure 54. ESI-TOF MS and ESI-MS/MS of Ht/Gt complex 11/22 (DMF/CH₃CN/H₂O).

Figure 55. ESI-TOF MS and ESI-MS/MS of Ht/Gt complex 11/23 (DMF/CH₃CN/H₂O).

Figure 56. ESI-TOF MS and ESI-MS/MS of Ht/Gt complex 11/24 (DMF/CH_3CN/H_2O).

Figure 57. ESI-TOF MS and ESI-MS/MS of Ht/Gt complex 11/25 (DMF/CH₃CN/H₂O).

Figure 58. ESI-TOF MS and ESI-MS/MS of Ht/Gt complex 11/26 (DMF/CH₃CN/H₂O).

Figure 59. ESI-TOF MS and ESI-MS/MS of Ht/Gt complex 11/27 (DMF/CH₃CN/H₂O).

Figure 60. ESI-TOF MS and ESI-MS/MS of Ht/Gt complex 14/22, DMF/CH₃CN/H₂O, negative ion mode, m/z 1245.3.

Figure 61. ESI-MS/MS of Ht/Gt complex 14/22 (DMF/CH₃CN/H₂O, negative ion mode, *m*/*z* 1095.3 and 697.1).

Figure 62. ESI-TOF MS and ESI-MS/MS of Ht/Gt complex 14/23, DMF/CH₃CN/H₂O, negative ion mode, m/z 1245.3.

Figure 63. ESI-MS/MS of Ht/Gt complex 14/23 (DMF/CH₃CN/H₂O, negative ion mode, *m/z* 1095.3 and 697.1).

Figure 64. ESI-TOF MS and ESI-MS/MS of Ht/Gt complex 14/24, DMF/CH₃CN/H₂O, negative ion mode, m/z 1095.3.

Figure 65. ESI-MS/MS of Ht/Gt complex 14/24 (DMF/CH₃CN/H₂O, negative ion mode, *m/z* 739.2).

Figure 66. ESI-TOF MS and ESI-MS/MS of Ht/Gt complex 14/25 (DMF/CH₃CN/H₂O, negative ion mode, m/z 1229.3 and 1095.3).

Figure 68. ESI-TOF MS and ESI-MS/MS of Ht/Gt complex **14/26** (DMF/CH₃CN/H₂O, negative mode, *m*/*z* 1289.3 and 1095.3).

Figure 69. ESI-MS/MS of Ht/Gt complex 14/26 (DMF/CH₃CN/H₂O, negative ion mode, *m/z* 741.2).

Figure 72. ESI-MS/MS of Ht/Gt complex 14/27 (DMF/CH₃CN/H₂O, negative ion mode, *m/z* 741.2).

Figure 73. CD spectra of macrocycles (9, blue) and (12, green), DMSO.

Figure 74. CD spectrum of macrocycles (10), DMSO.

Figure 75. CD spectra of macrocycles (11, blue) and (13, green), DMSO.

Figure 76. CD spectra of compounds (14, blue) and (19, green), DMSO.

Figure 77. CD spectra of compounds (15, blue) and (20, green), DMSO.

Figure 78. CD spectra of compounds (16, blue) and (21, green), DMSO.

Figure 79. CD spectrum of compound (17), DMSO.

Figure 80. CD spectrum of compound (18), DMSO.

Figure 81. 2D ROESY NMR spectrum of macrocycle (A) showing *syn/anti* orientation of the NH moieties, (DMSO- d_6).

Figure 82. 2D ROESY NMR spectrum of macrocycle (**B**) showing *syn/anti* orientation of the NH moieties, (DMSO- d_6).

Figure 83. 2D ROESY NMR spectrum of macrocycle (C) showing *syn/anti* orientation of the NH moieties, (DMSO-*d*₆).

Figure 84. 2D ROESY NMR spectrum of macrocycle (**D**) showing *syn/anti* orientation of the N*H* moieties, (DMSO-*d*₆).