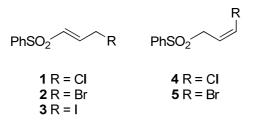
Reactions of aldehydes with organozinc reagents derived from (*E*)-3-bromo- and (*E*)-3-iodo-1-phenylsulfonylprop-1-ene

Eva T. Gallagher and David H. Grayson*

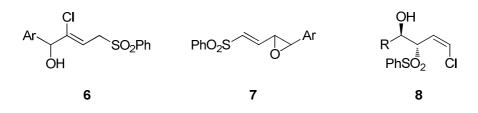
School of Chemistry, Trinity Biomedical Sciences Institute, Trinity College Dublin 152-160 Pearse Street, Dublin 2, Ireland E-mail: <u>dgrayson@tcd.ie</u>

DOI: http://dx.doi.org/10.3998/ark.5550190.p008.741

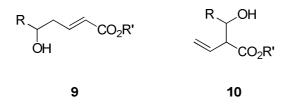

Abstract

(*E*)-3-Bromo-1-phenylsulfonylprop-1-ene and (*E*)-3-iodo-1-phenylsulfonylprop-1-ene both form allylic organozinc reagents that react with aromatic aldehydes to give mainly 4-aryl-4-hydroxy-1-phenylsulfonylbut-1-enes. In contrast, reactions of the same organozinc species with 2-methyl-propanal or 3-methylbutanal gave mixtures of diastereoisomeric 4-hydroxy-1-phenylsulfonylalk-1-enes and 4-hydroxy-3-phenylsulfonylalk-1-enes.

Keywords: Halo-sulfone, organozinc, aldehyde, alkylation


Introduction

We have previously reported¹ that the (*E*)-3-halo-1-phenylsulfonylpropenes **1-3** and the (*Z*)-1-halo-3-phenylsulfonylpropenes **4** and **5** can be lithiated to give hetero-substituted carbanions. These react with aldehydes to afford products arising from alkylation processes that occur either α - or γ with respect to the phenylsulfonyl group.

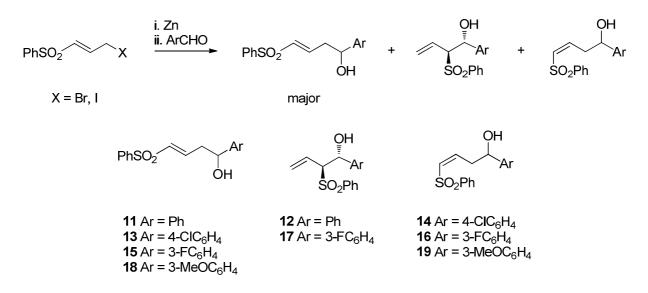

The structures of these products are dependent on the natures of both the halosulfone and the aldehyde. Thus, each of the chloro-compounds 1 and 4 form a common delocalised carbanion that reacts γ -selectively with aromatic aldehydes to give the hydroxysulfones 6. On the other

hand, carbanions derived from the bromo- and iodosulfones 2, 5, and 3 react with aromatic aldehydes to yield epoxides 7. By contrast, when aliphatic aldehydes are used as electrophiles α -alkylation of the chlorosulfone 4 takes place leading to formation of the *anti*-diastereoisomers of β -hydroxysulfones 8.

The rich chemistry of the carbanions derivable from the halo-sulfone **1-3** suggested to us that other organometallic derivatives of these compounds might repay investigation. We now demonstrate that useful organozinc reagents can be prepared from the halosulfones **2** and **3**, and that these react with aldehydes to yield Reformatsky-like products.

By analogy, 3-bromoprop-2-enoates have been reported^{2,3} to undergo Reformatsky reactions with aldehydes and with ketones to yield, depending upon the circumstances, either or both of the "normal" γ -alkylated products **9** and "abnormal" α -alkylated products **10**.

Steric effects are influential,³ and the γ -products are often produced under thermodynamic, and the α -products under kinetic control.⁴⁻⁶

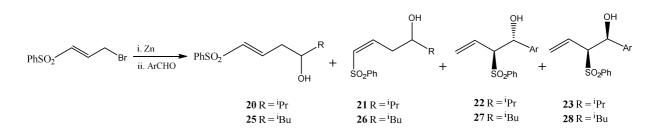

Results and Discussion

The allylic bromide **2** was treated in THF with zinc dust that had been activated either by treatment with hydrochloric acid followed by successive washings with organic solvents⁷ or by treatment with 1,2-dibromoethane followed by chlorotrimethylsilane.⁸ Subsequent reaction of the derived organozinc reagent with benzaldehyde yielded a mixture of the (*E*)- γ -alkylated compound **11** together with a little of the *anti*-configured α -alkylated product **12**. The δ -hydroxy vinylic sulfone **11**, mp 77 °C, had all of the spectroscopic features expected of it, and its (*E*)-configuration could be confidently assigned on the basis of the *J*_{trans} 15.2 Hz coupling constant for its olefinic protons. The β -hydroxy sulfone **12** could not be isolated in pure form, but was readily identified from ¹H NMR data. In particular, as previously noted by us,¹ the absence of

General Papers

any vicinal coupling between its two methine protons supports the *anti*-stereochemistry that is assigned to it.

The organozinc reagent derived from the bromosulfone 2 also reacted (Scheme 1) with 4-chlorobenzaldehyde to give a mixture of the (E)- and (Z)- γ -alkylated products 13 and 14 in 93:7 ratio, with 3-fluorobenzaldehyde to give (by NMR) a mixture of (E)-15, (Z)-16 (minor) and *anti*-17, and with 3-methoxybenzaldehyde to give (E)-18 and (Z)-19. No reaction took place when either of 2-methoxybenzaldehyde or cyclohexanone was the electrophile, suggesting that the bromo-sulfone 2 does not form a particularly reactive organozinc species.


Scheme 1. Reactions of aryl aldehydes with the organozinc reagent derived from the halosulfones 2 and 3.

We also carried out similar reactions using the iodosulfone 3, with benzaldehyde and 4-chlorobenzaldehyde as the electrophiles, but yields were much poorer than when the bromosulfone 2 was employed.

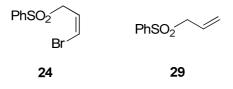
By contrast (Scheme 2), the dominant "normal" regioselectivities observed for each of the above reactions were not seen when aliphatic aldehydes were the electrophiles. In addition, both diastereoisomers of each product bearing two asymmetric centres were produced, in contrast to the outcome when an aryl aldehyde was the electrophile. Thus, isobutyraldehyde yielded the four products **20-23** together with a little of the (*Z*)-bromide **24** when it was reacted with (*E*)-3-bromo-1-phenylsulfonylprop-1-ene **2** in the presence of activated zinc. Each of the hydroxy-sulfones **20-23** was purified by column chromatography. The (*E*)- and (*Z*)- γ -alkylated compounds **20** and **21** were easily identified from their NMR spectra, as were the diastereoisomeric *anti* and *syn* α -alkylated compounds **22** and **23** which have been previously reported by us.¹ Similar results were obtained using isovaleraldehyde as the electrophile when the homologous γ -alkylated **25** and **26** and α -alkylated **27** and **28** products were formed.

General Papers

ARKIVOC 2014 (v) 420-429

Scheme 2. Reactions of aliphatic aldehydes with the organozinc reagent derived from bromosulfone 2.

For each of the α -alkylated compounds 22, 23, 27 and 28 the proton adjacent to the hydroxyl group resonates at lower field than expected (the range spans δ 4.1 – 4.6 ppm). We have previously observed¹ that this may reflect strong conformational preferences in solution (*cf.* our X-ray crystallographic analysis¹ of a related compound, which showed no evidence for intramolecular hydrogen-bonding between the hydroxyl and sulfonyl groups in the solid state). We now note that for each of the *anti*-compounds 22 and 27 there is no vicinal coupling between H-3 and H-4, whereas for the *syn*-products 23 and 28 large vicinal coupling constants $J_{3,4}$ can be measured.


The results that we have obtained are summarised in Table 1, below, in which the data clearly illustrates the regioselectivity of reaction when aryl aldehydes are used as electrophiles.

Halosulfone	Aldehyde	Products
2	benzaldehyde	11, 12 (83:17)
3	benzaldehyde	11 ^{<i>a</i>}
2	4-chlorobenzaldehyde	13 , 14 (93:7)
3	4-chlorobenzaldehyde	13 ^{<i>a</i>}
2	3-fluorobenzaldehyde	15 , 17 (90:10)
2	3-methoxybenzaldehyde	18, 19 (91:9)
2	isobutyraldehyde	20 , 21 , 22 , 23 (46:14:35:5)
2	isovaleraldehyde	25 , 26 , 27 , 28 (29:15:33:23)

Table 1. Reactions of aldehydes with the organozinc reagents derived from halosulfones 2 and 3

^{*a*} The product was obtained in poor yield.

3-Phenylsulfonylprop-1-ene **29** was an occasional side product in some reactions of the organozinc reagent derived from the bromide **2**. In a control experiment, this was quenched with water to give the α -protonated compound 1-phenylsulfonylprop-2-ene **29** as the only product.

Taken together with the results described above, we conclude that steric factors are dominant in controlling the regioselectivity of the reaction of this reagent with electrophiles.

Conclusions

Organozinc reagents prepared from (E)-3-bromo-1-phenylsulfonylprop-1-ene **2** and from (E)-3-iodo-1-phenylsulfonylprop-1-ene **3** react with anyl aldehydes with good specificity to yield useful phenylsulfonyl-substituted homoallylic alcohols. However, similar reactions with representative aliphatic aldehydes lead to mixtures of regio- and diastereoisomeric products. The bromosulfone **2** gives superior results to the iodosulfone **3** in all of these reactions.

Experimental Section

General. Unless otherwise stated, ¹H NMR spectra were recorded for solutions in CDCl₃ using JEOL PMX-60, Bruker WP-80, Bruker MSL 300 MHz or Bruker Avance DPX 400 MHz spectrometers. Coupling constants are recorded in Hz. Assignments were verified where appropriate by ¹H-¹H COSY, ¹H-¹³C COSY and DEPT experiments. IR spectra were recorded for Nujol mulls (N) or liquid films (L) between sodium chloride plates using Perkin Elmer 883 or Paragon 1000 spectrometers. Mass spectra were obtained Kratos or Micromass instruments. Melting points (uncorrected) were measured in unsealed capillary tubes using a Stuart Scientific SMP2 digital apparatus or an Electrothermal IA9100 apparatus. Thin layer chromatography was carried out using Merck Kieselgel 60 F₂₅₄ 0.2 mm silica gel plates. Column chromatography was carried out using Merck Kieselgel 60 (70-230 mesh) silica gel. All solvents were dried and distilled before use. Ethereal extracts of reaction products were dried over anhydrous magnesium sulfate. Combustion analyses were obtained from the Microanalytical Laboratory, University College, Dublin.

(*E*)-3-Bromo-1-phenylsulfonylprop-1-ene (2). This was prepared as previously described^{1,10} and had mp 50-51 $^{\circ}$ C (lit., 9 mp 34-35 $^{\circ}$ C).

(*E*)-3-Iodo-1-phenylsulfonylprop-1-ene (3). This was prepared as previously described^{1,10} and had mp 62-63 $^{\circ}$ C (lit., 9 mp 67-68 $^{\circ}$ C).

General procedures for generation of organozinc reagents and their reaction with aldehydes

Procedure A. Zinc dust was treated⁷ with dilute hydrochloric acid and then washed sequentially with water, ethanol, acetone and ether before being dried in a vacuum desiccator. Some of a solution of either of the halosulfones **2** or **3** (2 mmol) and an aldehyde (2 mmol) in benzene (10 mL) was added dropwise, under dry nitrogen, to the purified zinc (10 mmol, 5 equiv.), and the mixture was warmed until reaction was apparent. The remainder of the solution of reactants was then introduced at such a rate that gentle reflux was maintained. After 0.5 h at reflux, the mixture was poured into ice-cold sulfuric acid (10%). The organic phase was separated, and the aqueous phase was extracted with ether. The combined organic phases were then dried and evaporated.

Procedure B. Zinc dust (0.6 g, 5 equiv.) was stirred⁸ under nitrogen with dibromoethane (70 mg) in dry THF (2 mL) and the suspension was put through a heating-stirring (1 min)-cooling cycle in triplicate. Chlorotrimethylsilane (70 μ L) was then added followed, after a few minutes by a solution of one of the halosulfones **2** or **3** (2 mmol) and an aldehyde (2 mmol) in dry THF (5 mL). After 2 h at reflux, the mixture was cooled, diluted with ether and poured into ice-cold sulfuric acid (10%). The organic phase was separated, and the aqueous phase was extracted with ether. The combined organic phases were then dried and evaporated.

(*E*)-4-Hydroxy-4-phenyl-1-phenylsulfonylbut-1-ene (11) and 3,4-*anti*-4-hydroxy-4-phenyl-3-phenylsulfonylbut-1-ene (12). Using procedure B, the bromosulfone 2 (0.52 g) and benzaldehyde (0.21 g) reacted to give product (0.48 g) that (¹H NMR) contained the hydroxysulfones 11 (83%) and 12 (17%).

(*E*)-4-Hydroxy-4-phenyl-1-phenylsulfonylbut-1-ene (11). This was obtained by fractional crystallisation of the crude product mixture and had mp 77 °C (Et₂O), v_{max} (N) 3512, 1306 and 1144 cm⁻¹; $\delta_{\rm H}$ (300 MHz) 2.62 (1H, s, exch. D₂O, -OH), 2.63 (2H, m, -CH₂CH=CH), 4.82 (1H, t, *J* 6.3, -CHOH), 6.32 (1H, d, *J* 15.1, -SO₂CH=CH), 6.99 (1H, dt, *J* 15.1, 7.3 and 7.3, -SO₂CH=CHCH₂), 7.27 (5H, m, ArH), 7.61 (1H, t, *J* 7.5, *p*-(SO₂)ArH) and 7.79 (2H, d, *J* 8.0, *o*-(SO₂)ArH) ppm; $\delta_{\rm C}$ (75 MHz) 40.7 (CH₂), 72.5 (CHOH), 125.6 (CH), 127.5 (CH), 127.8 (CH), 128.9 (CH), 129.2 (CH), 132.6 (CH), 133.2 (CH=C), 134.0 ($C_{\rm q}$), 140.3 ($C_{\rm q}$) and 142.9 (-SO₂CH=CH) ppm. Anal. Calc. for C₁₆H₁₆O₃S: C 66.64, H 5.59%. Found: C 66.43, H 5.57%.

The minor product, 3,4-*anti*-4-hydroxy-4-phenyl-3-phenylsulfonylbut-1-ene (**12**), has been previously described by us¹ and was identified from its ¹H NMR spectrum and by tlc comparison with authentic material.

Poorer results were obtained by using procedure A, when the hydroxysulfone 11 was isolated in 19% yield from the bromosulfone 2 or in 20% yield from the iodosulfone 3.

(*E*)-4-(4'-Chlorophenyl)-4-hydroxy-1-phenylsulfonylbut-1-ene (13). Using procedure B, the bromosulfone 2 (0.52 g) and 4-chlorobenzaldehyde (0.29 g) reacted to give a crude product (0.51 g) that was chromatographed using ether-hexane as eluant to give an oil (0.38 g, 59%) that (¹H NMR) contained (*E*)-4-(4'-chlorophenyl)-4-hydroxy-1-phenylsulfonylbut-1-ene (13) (93%) and its (*Z*)-isomer 14 (7%) from which 13 could not be further separated.

(*E*)-4-(4'-Chlorophenyl)-4-hydroxy-1-phenylsulfonylbut-1-ene (13) had ν_{max} (N) 3510, 1307 and 1143 cm⁻¹; $\delta_{\rm H}$ (300 MHz) 2.60 (2H, m, -CH₂CH=CH), 2.90 (1H, s, exch. D₂O, -OH), 4.81 (1H, dd, *J* 7.1 and 5.5, -CHOH), 6.36 (1H, d, *J* 15.0, -SO₂CH=CH), 6.93 (1H, dt, *J* 15.0, 7.3 and 7.3, -SO₂CH=CHCH₂), 7.20 (4H, m, Cl-ArH), 7.50 (2H, m, *m*-(SO₂)ArH), 7.60 (1H, t, *J* 7.5, *p*-(SO₂)ArH) and 7.74 (2H, d, *J* 8.0, *o*-(SO₂)ArH) ppm; $\delta_{\rm C}$ (75 MHz) 40.7 (CH₂), 71.6 (CHOH), 127.0 (CH), 127.1 (CH), 128.6 (CH), 129.2 (CH), 132.7 (CH), 133.2 (CH=C), 133.5 (C_q), 141.4 (C_q) and 142.6 (-SO₂CH=CH) ppm. Anal. Calc. for C₁₆H₁₅ClO₃S: C 59.53, H 4.65%. Found (for the 93 : 7 mixture of diastereoisomers): C 59.52, H 4.73%.

Using procedure A, the iodosulfone **3** and 4-chlorobenzaldehyde gave the hydroxysulfone **13** in 22% yield.

(*E*)-4-(3'-Fluorophenyl)-4-hydroxy-1-phenylsulfonylbut-1-ene (15). Using procedure B, the bromosulfone 2 (0.52 g) and 3-fluorobenzaldehyde (0.26 g) reacted to give product (0.56 g) that (NMR) contained the hydroxysulfone 15 together with ca. 10% of 3,4-anti-4-(3'-fluorophenyl)-4-hydroxy-3-phenylsulfonylbut-1-ene (17). The gross structure of 17 was clear from its spectrum, and its stereochemistry could be inferred from¹ the near-zero value of $J_{3,4}$. The crude product was recrystallised from ether-hexane to give pure (*E*)-4-(3'-fluorophenyl)-4-hydroxy-1-phenylsulfonylbut-1-ene (15), (0.37 g, 60%), mp 197 °C, v_{max} (N) 3500, 1305 and 1149 cm⁻¹; $\delta_{\rm H}$ (300 MHz) 2.61 (2H, m, -CH₂CH=CH), 2.97 (1H, s, exch. D₂O, -OH), 4.83 (1H, br t, *J* 7.0, -CHOH), 6.33 (1H, dd, *J* 15.0 and 1.3, -SO₂CH=CH), 6.9-7.03 (4H, overlapping ms, -SO₂CH=CHCH₂, *o*-(F)ArH and *p*-(F)ArH), 7.24 (1H, m, m-(F)ArH), 7.50 (2H, m, m-(SO₂)ArH), 7.59 (1H, t, *J* 7.5, p-(SO₂)ArH) and 7.77 (2H, d, *J* 8.0, o-(SO₂)ArH) ppm; $\delta_{\rm C}$ (75 MHz) 40.7 (CH₂), 71.7 (CHOH), 112.4 (d, *J* 22.0, *o*-(F)ArCH), 114.6 (d, *J* 21.0, *o*-(F)ArCH), 121.2 (*p*-(F)ArCH), 127.4 (CH), 129.2 (CH), 130.1 (d, *J* 8.0, m-(F)ArCH), 132.6 (CH), 133.4 (CH=C), 139.9 (*C*_q), 142.5 (-SO₂CH=CH), 145.6 (*C*_q, d, *J* 7.0) and 162.0 (*C*_q, d, *J* 245) ppm. Anal. Calc. for C₁₆H₁₅FO₃S: C 62.75, H 4.90%. Found: C 63.01, H 4.69%.

(*E*)-4-(3'-Methoxyphenyl)-4-hydroxy-1-phenylsulfonylbut-1-ene (18). Using procedure B, the bromosulfone **2** (0.52 g) and 3-methoxybenzaldehyde (0.26 g) reacted to give an oily product (0.57 g) that (NMR) contained the hydroxysulfone **18** together with *ca.* 9% of its (*Z*)-isomer **19**. This mixture was chromatographed using ether-hexane as eluant to give **18** as an *oil* (0.36 g; 57%) from which some remaining **19** could not be further separated. (*E*)-4-(3'-Methoxyphenyl)-4-hydroxy-1-phenylsulfonylbut-1-ene (**18**) had v_{max} (N) 3494, 1306 and 1147 cm⁻¹; $\delta_{\rm H}$ (300 MHz) 2.61 (2H, m, -CH₂CH=CH), 2.75 (1H, s, exch. D₂O, -OH), 3.77 (3H, s, -OCH₃), 4.79 (1H, t, *J* 7.1, -CHOH), 6.32 (1H, dd, *J* 15.1 and 1.0, -SO₂CH=CH), 6.89 (2H, m, (MeO)ArH), 6.94 (1H, m, (MeO)ArH), 6.99 (1H, dt, *J* 15.1, 7.3 and 7.3, -SO₂CH=CHCH₂), 7.25 (1H, m, *m*-(MeO)ArH), 7.52 (2H, m, *m*-(SO₂)ArH), 7.59 (1H, t, *J* 7.5, *p*-(SO₂)ArH) and 7.82 (2H, d, *J* 8.0, *o*-(SO₂)ArH) ppm; $\delta_{\rm C}$ (75 MHz) 40.7 (CH₂), 55.14 (CH₃), 72.3 (CHOH), 111.0 (CH), 113.2 (CH), 117.9 (CH), 127.4 (CH), 127.4 (CH), 129.2 (CH), 130.1 (d, *J* 8.0, *m*-(F)ArCH), 129.2 (CH), 129.6 (CH), 133.2 (CH=C), 140.3 (*C*_q), 143.0 (SO₂CH=CH), 144.7 (*C*_q) and 159.7 (*C*_q) ppm. HRMS *m/z* 318.0925. Calc. for C₁₇H₁₈O₄S: 318.0926.

Reaction of isobutyraldehyde with the organozinc reagent derived from (E)-1-phenyl-sulfonyl-3-bromoprop-1-ene 2. Using procedure B, the bromosulfone **2** (0.52 g) and isobutyraldehyde (0.14 g) reacted to give an oily product mixture (0.51 g) that contained (NMR) 3-phenylsulfonylprop-1-ene **29** (13%), the sulfone **24**¹ (6.5%) and all four of the possible Reformatsky products **20** (37%), **21** (11%), **22** (28%) and **23** (4%). This mixture was chromatographed (EtOAc/*n*-hexane) to afford pure samples of each of the latter products.

(*E*)-4-Hydroxy-5-methyl-1-phenylsulfonylhex-1-ene (20). Obtained as an oil, v_{max} (L) 3521, 1306 and 1148 cm⁻¹; $\delta_{\rm H}$ (400 MHz) 0.88 (6H, d, *J* 6.8, -C*H*₃), 1.64 (1H, m, -C*H*(CH₃)₂), 2.37 (2H, m, -C*H*₂CH=CH), 2.50 (1H, s, exch. D₂O, -O*H*), 3.50 (1H, m, -C*H*OH-), 6.43 (1H, dd, *J* 15.1 and 1.2, -SO₂C*H*=CH), 7.06 (1H, dt, *J* 15.1, 7.7 and 7.7, -SO₂CH=C*H*CH₂-), 7.5 (2H, m, Ar*H*), 7.59 (1H, m, Ar*H*) and 7.86 (2H, d, *J* 8.3, *o*-ArH) ppm; $\delta_{\rm C}$ (100 MHz) 16.9 (*C*H₃), 18.1 (*C*H₃), 33.2 (-*C*HMe₂), 35.8 (CH₂), 74.4 (-*C*HOH-), 127.9 (*C*H), 128.8 (*C*H), 131.4 (-SO₂CH=CH), 132.9 (*C*H), 139.9 (*C*_q) and 144.4 (SO₂CH=CH) ppm. Anal. Calc. for C₁₃H₁₈O₃S: C 61.42, H 7.09%. Found: C 61.22, H 7.14%.

(Z)-4-Hydroxy-5-methyl-1-phenylsulfonylhex-1-ene (21). Obtained as an oil, v_{max} (L) 3500, 1305 and 1149 cm⁻¹; $\delta_{\rm H}$ (400 MHz) 0.97 (6H, apparent t, *J* 5.9 and 5.6, -CH₃), 1.72 (1H, m, -CHMe₂), 1.87 (1H, s, exch. D₂O, -OH), 2.85 (2H, m, -CH₂CH=CH), 3.49 (1H, m, -CHOH-), 6.45 (2H, overlapping ms, -SO₂CH=CH), 7.57 (2H, m, ArH), 7.64 (1H, m, ArH) and 7.94 (2H, d, *J* 8.3, *o*-ArH) ppm; $\delta_{\rm C}$ (100 MHz) 17.0 (CH₃), 18.1 (CH₃), 32.0 (-CHMe₂), 33.6 (CH₂), 75.2 (-CHOH-), 126.8 (CH), 128.8 (CH), 131.3 (-SO₂CH=CH), 133.0 (CH), 141.1 (C_q) and 143.8 (SO₂CH=CH) ppm. HRMS *m/z* 254.0977. Calc. for C₁₃H₁₈O₃S: 254.0977.

3,4-*anti*-**4**-Hydroxy-**5**-methyl-**3**-phenylsulfonylhex-**1**-ene (22). mp 88-89 $^{\circ}$ C (Et₂O/*n*-pentane) was spectroscopically identical with authentic material previously characterized.¹

3,4-*syn*-**4**-**Hydroxy**-**5**-methyl-**3**-phenylsulfonylhex-**1**-ene (23). colourless oil that was spectroscopically identical with authentic material previously characterized.¹

Reaction between isovaleral dehyde and the organozinc reagent derived from (E)-1-phenyl sulfonyl-3-bromoprop-1-ene 2

Using procedure B, the bromosulfone 2 (0.52 g) and isovaleraldehyde (0.17 g) reacted to give an oily product mixture (0.51 g) that contained (NMR) 3-phenylsulfonylprop-1-ene **29** (9%), the sulfone 2 (3.5%) and all four of the possible Reformatsky products **25** (25%), **26** (12.5%), **27** (28%) and **28** (20%). This mixture was chromatographed (EtOAc/*n*-hexane) to afford pure samples of each of the latter products.

(*E*)-4-Hydroxy-6-methyl-1-phenylsulfonylhept-1-ene (25). Obtained as an oil, ν_{max} (L) 3518, 1306 and 1146 cm⁻¹; $\delta_{\rm H}$ (400 MHz) 0.89 (3H, d, *J* 6.6, -C*H*₃), 0.90 (3H, d, *J* 6.6, -C*H*₃), 1.23 (1H, m, -CHOH-CH*H_a*), 1.42 (1H, m, -CHOH-CH*H_b*), 1.75 (1H, m, -C*H*Me₂), 1.91 (1H, s, exch. D₂O, -O*H*), 2.37 (2H, m, -C*H*₂CH=CH), 3.86 (1H, m, -C*H*OH-), 6.44 (1H, dd, *J* 15.1 and 1.5, -SO₂C*H*=CH), 7.05 (1H, dt, *J* 15.1, 7.0 and 7.0, -SO₂CH=C*H*CH₂-), 7.54 (2H, m, Ar*H*), 7.62 (1H, m, Ar*H*) and 7.90 (2H, d, *J* 8.0, *o*-Ar*H*) ppm; $\delta_{\rm C}$ (100 MHz) 21.5 (*C*H₃), 22.8 (*C*H₃), 24.1 (-CHMe₂), 39.3 (CH₂), 45.9 (CH₂), 67.8 (-CHOH-), 127.1 (*C*H), 128.8 (*C*H), 132.0 (-

SO₂*C*H=CH), 132.8 (*C*H), 140.1 (*C*_q) and 143.2 (SO₂CH=*C*H) ppm. HRMS *m*/*z* 269.1209. Calc. for $[C_{14}H_{20}O_3S + H]^+$: 269.1211.

(Z)-4-Hydroxy-6-methyl-1-phenylsulfonylhept-1-ene (26). Obtained as an oil, v_{max} (L) 3518, 1306 and 1145 cm⁻¹; $\delta_{\rm H}$ (400 MHz) 0.94 (6H, apparent t, *J* 7.1 and 6.9, -CH₃), 1.30 (1H, m, -CHOH-CHH_a), 1.45 (1H, m, -CHOH-CHH_b), 1.77 (2H, m, -CHMe₂ and [exch. D₂O] -OH), 2.87 (2H, m, -CH₂CH=CH), 3.86 (1H, m, -CHOH-), 6.39 (2H, m, contains d, *J* 13.6, -SO₂CH=CH), 7.57 (2H, m, ArH), 7.65 (1H, m, ArH) and 7.95 (2H, d, *J* 8.3, *o*-ArH) ppm; $\delta_{\rm C}$ (100 MHz) 21.6 (CH₃), 22.8 (CH₃), 24.1 (-CHMe₂), 35.2 (CH₂), 46.2 (CH₂), 68.4 (-CHOH-), 126.8 (CH), 128.8 (CH), 131.5 (-SO₂CH=CH), 133.0 (CH), 140.1 (C_q) and 143.0 (SO₂CH=CH) ppm. HRMS *m*/*z* 269.1218. Calc. for [C₁₄H₂₀O₃S + H]⁺: 269.1211.

3,4-*anti*-**4**-**Hydroxy-6**-**methyl-3**-**phenylsulfonylhept-1**-**ene** (**27**).¹ Obtained as an oil, v_{max} (L) 3518, 1305 and 1149 cm⁻¹; $\delta_{\rm H}$ (400 MHz) 0.89 (3H, d, *J* 6.5, -CH₃), 0.91 (3H, d, *J* 7.0, -CH₃), 1.12 (1H, m, -CHOH-CHH_a), 1.54 (1H, m, -CHOH-CHH_b), 1.76 (H, m, -CHMe₂), 2.98 (1H, s, exch. D₂O, -OH), 3.44 (1H, d, *J* 10.0, -SO₂CHCH=CH), 4.62 (1H, m, -CHOH-), 5.01 (1H, d, *J* 17.3, -CH=CHH_{trans}), 5.38 (1H, d, *J* 10.3, -CH=CHH_{cis}), 6.03 (1H, dt, *J* 17.0, 10.0 and 10.0, -CH=CH₂), 7.58 (2H, m, ArH), 7.65 (1H, m, ArH) and 7.84 (2H, d, *J* 8.0, *o*-ArH) ppm; $\delta_{\rm C}$ (100 MHz) 21.5 (CH₃), 22.5 (CH₃), 23.8 (-CHMe₂), 43.0 (CH₂), 65.8 (-CHOH-), 73.3 (-CHSO₂), 125.1 (CH=CH₂), 125.5 (CH=CH₂), 128.7 (overlapping signals; CH), 133.5 (CH) and 137.0 (C_q) ppm.

3,4-*syn*-**4**-**Hydroxy**-**6**-methyl-**3**-phenylsulfonylhept-**1**-ene (**28**). Obtained as an oil, v_{max} (L) 3512, 1305 and 1148 cm⁻¹; $\delta_{\rm H}$ (400 MHz) 0.94 (6H, d, *J* 6.6, -C*H*₃), 1.23 (1H, m, -CHOH-CH*H*_a), 1.37 (1H, m, -CHOH-CH*H*_b), 1.96 (H, m, -C*H*Me₂), 3.59 (1H, dd, *J* 10.1 and 8.4, - SO₂C*H*CH=CH), 3.85 (1H, s, exch. D₂O, -O*H*), 4.41 (1H, t, *J* 10.0, 8.2 and 8.2, -C*H*OH-), 4.93 (1H, d, *J* 17.0, -CH=CH*H*_{trans}), 5.26 (1H, dd, *J* 10.3 and 1.0, -CH=CH*H*_{cis}), 5.55 (1H, dt, *J* 17.0, 10.1 and 10.1, -C*H*=CH₂), 7.57 (2H, m, Ar*H*), 7.67 (1H, m, Ar*H*) and 7.86 (2H, d, *J* 8.0, *o*-Ar*H*) ppm; $\delta_{\rm C}$ (100 MHz) 20.7 (*C*H₃), 23.3 (*C*H₃), 23.5 (-CHMe₂), 43.3 (*C*H₂), 66.5 (-CHOH-), 75.9 (-CHSO₂), 123.7 (CH=CH₂), 127.4 (*C*H=CH₂), 128.4 (*C*H), 128.7 (*C*H), 133.5 (*C*H) and 137.0 (*C*_q) ppm. HRMS *m*/z 269.1203. Calc. for [C₁₄H₂₀O₃S + H]⁺: 269.1211.

Protonolysis of the organozinc reagent derived from the bromosulfone 2. A solution of the bromosulfone **2** (0.52 g) in dry THF (4 mL) was added to zinc dust (5 equiv.), activated as described under Procedure B above. The mixture was refluxed during 2 h and then quenched with dilute sulfuric acid to yield an oil (0.45 g) that contained (NMR) a 50:50 mixture of the sulfone **2** and 3-phenylsulfonylprop-1-ene **29**.

Acknowledgements

We thank Forbairt, the V. K. Krieble Fund and the Trinity Trust for financial support to ETG, and Dr John O'Brien for the NMR spectra.

References

- 1. Gallagher, E. T.; Grayson, D. H. *Org. Biomol. Chem.* **2003**, *1*, 1374. http://dx.doi.org/10.1039/b300925b
- 2. Colonge, J.; Varagnat, J. Bull. Soc. Chim. Fr. 1961, 234.
- 3. Colonge, J.; Cayrel, S. P. Bull. Soc. Chim. Fr. 1965, 359.
- 4. Bellasoued, M.; Habbachi, F.; Gaudemar, M. *Tetrahedron* **1985**, *41*, 1299. <u>http://dx.doi.org/10.1016/S0040-4020(01)96531-7</u>
- Rice, L. E.; Boston, M. C.; Finklea, H. O.; Suder, B. J.; Frazier, J. O.; Hudlicky, T. J. J. Org. Chem. 1984, 49, 1845. http://dx.doi.org/10.1021/jo00184a042
- 6. Hudlicky, T.; Natchus, M. G.; Kwart, L. D.; Colwell, B. L. *J. Org. Chem.* **1985**, *50*, 4300. http://dx.doi.org/10.1021/jo00222a020
- 7. Newman, M. S. J. Am. Chem. Soc. **1955**, 77, 946. http://dx.doi.org/10.1021/ja01609a043
- Pearson, D. E.; Cowan, D.; Beckler, J. D. J. Org. Chem. 1959, 24, 504. <u>http://dx.doi.org/10.1021/jo01086a015</u>
- 9. Eisch, J. J.; Galle, J. E. *J. Org. Chem.* **1979**, *44*, 3277. http://dx.doi.org/10.1021/jo01332a044
- 10. Culvenor, C. C. J.; Davies, W.; Savige, W. E. J. Chem. Soc. **1949**, 2198. http://dx.doi.org/10.1039/jr9490002198