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Abstract 

Ovothiol A is a naturally occurring 4-mercaptohistidine derivative, and one of the most potent 

thiol-containing antioxidants. The synthesis of ovothiol A was elaborated by introducing the 

thiol group onto protected 3-methyl-L-histidine via halogenation and Ullmann reaction. This 

enantiopure synthesis of ovothiol A, which uses L-histidine as starting material, requires only 

five steps, and compared to prior synthesis, is both cost and time effiecent. 
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Introduction 

 

Ovothiol A [(2S)-2-amino-3-(1-methyl-4-sulfanyl-1H-imidazol-5-yl)propanoic acid] is a 

naturally occurring 4-mercaptohistidine derivative1-3 first observed in sea urchin 

(Strongylocentrotus purpuratus) eggs by Turner et al.4 Concerning its molecular properties, 

ovothiol A is a chemical entity in a class of its own with an extremely high number and variety 

of functional groups for its molecular weight, and its thiolate basicity being by far the lowest one 

among all molecules reported.5,6 Ovothiols are considered to be the most potent natural 

antioxidants,7,8 presumably due to their low thiolate basicity and the concomitant ready 

oxidizability. They act as protective antioxidants9,10 in many parasitic protozoa.11-15 These 

peculiarities have attracted pharmaceutical interest to create prospective antitrypanosomal 

chemotherapeutic agents.16,17 Despite this, the commercial availability of ovothiol A is limited, 

and its isolation from marine algae10 and sea urchin eggs4 is a troublesome task. Total 

syntheses18-21 have been elaborated (Scheme 1) and are the favored method to obtain ovothiol A. 
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Scheme 1. The total syntheses routes proposed by Holler et al.18,19 (left) and Ohba et al.20,21 

(right). a (R)-2,5-Dihydro-3,6-diethoxy-2-isopropylpyrazine, n-butyllithium. 
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 Holler et al.,19 found that N-α-benzoyl-4-bromo-1-methylhistidine did not undergo halogen-

sulfur substitution with t-butanethiolate. Therefore, they assembled the thioimidazole moiety 

through the reaction of N-(cyanomethyl)-N-methylformamide and hydrogen sulfide to form the 

C-S bond. Subsequently, the amino acid side chain could easily be built enantioselectively using 

formaldehyde and thionyl chloride to introduce a chloromethyl group on the imidazole ring, 

followed by the n-butyllithium mediated reaction with (3R)-2,5-diethoxy-3,6-dihydro-3-

isopropylpiperazine. Ohba et al.,21 overcame the direct bromine-sulfur displacement on 4-bromo-

1-methyl-1H-imidazole-5-carbaldehyde, prior to assembling the histidine side-chain (using the 

same procedure as Holler et al.). Ohba et al. formed 4-bromo-1-methyl-1H-imidazole-5-

carbaldehyde by brominating imidazole, followed by methylation with methyl iodide. The Br-S 

substitution was carried out with thiophenol, (4-tolyl)methanethiol, and 1-naphthalenethiol. 

 Herein we report a new, simple synthesis that combines the assets of the earlier total 

syntheses. By using L-histidine as starting material, containing the desired stereogenic center, 

ovothiol A has been produced in an enantiopure, convenient and cost-effective way. 

 

 

Results and Discussion 

 

For the synthesis of ovothiol A, the natural precursor was the obvious starting molecule of 

choice. To introduce a thiol functional group onto L-histidine at C5 we applied a new approach 

alongside those already investigated by Holler et al.19 The halogenation of a protected 3-methyl-

L-histidine, followed by substitution with sulfur using a modified Ullmann reaction was 

attempted (Scheme 2). For this purpose first the nitrogen atoms were protected: L-histidine was 

converted to 2 (92%), using similar reaction conditions as those described by Abdo et al.22 

During the reaction of L-histidine with di-tert-butyl dicarbonate the α-amino and τ-nitrogen 

groups of L-histidine are protected (this is the major product as opposed to π-nitrogen protected 

L-histidine, due to the sterically hindered π position for the bulky Boc group). Next, the carboxyl 

group was protected by esterification (due to incompatibility of the carboxyl with bromination23), 

while simultaneous methylation of the nitrogen 3 atom was achieved with methyl iodide. Parallel 

to the methylation of the π-nitrogen the Boc protecting group on the imidazole ring was removed 

resulting in 3 (83%) contaminated by the dimethylated quaternary salt, which was separated by 

column chromatography. The reaction sequence suggested by Van Den Berge and Robiette24 for 

N-methylation of imidazole compounds was also attempted: however, better reaction yields were 

not achieved for this particular case. The resulting protected 3-methyl-L-histidine derivative was 

subsequently reacted with elemental bromine (in aqueous conditions, 0 °C)23 (66%), and 

alternatively with N-bromosuccinimide25,26 (75%). The latter method was favored, as it seemed 

to produce less dibrominated side product. Worthy of note was that, even though compounds 2 

and 3 are commercially available, the synthetic route described here is more cost-effective, not 

only compared to previously described ovothiol total syntheses, but even if compound 3 were 

used as starting material from commercial sources. The bromo-derivative 4 was then reacted 
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with (4-tolyl)methanethiol, to substitute the bromine atom with sulfur, thus introducing a 

thioether group (S-protected ovothiol). This reaction step was optimized in terms of solvent 

(acetonitrile/DMF), base (sodium hydride/potassium tert-butoxide), temperature (80-120 °C only 

for DMF), and reaction time (3, 6, 12 and 24 h). Since, the solubility of the reactant 4 was very 

poor in acetonitrile, no reaction took place and therefore DMF was used. Sodium hydride 

produced higher yields than potassium tert-butoxide, and the reaction was practically complete 

in 3 hours. The reaction only proceeded at 120 °C. The configurational stability of 4 during the 

reaction with NaH at 120 °C was confimed with the 1H NMR spectrum of 5, which did not show 

split peaks for the alpha proton. Upon addition of copper(I) iodide catalyst the reaction yield 

dropped to almost 0% (determined by HPLC-MS) and a deep purple colored cloudy solution was 

formed. Since histidine, through its imidazole ring, is known for being a good chelator of 

transition metals, L-histidine in DMF was reacted with CuI which resulted in a similar dark 

purple/brown color, indicating that some sort of stable complex was being produced; therefore 

CuI could not be used as a catalyst. Thus, 4 was reacted with excess (4-tolyl)methanethiol using 

sodium hydride in DMF to yield the N-α and S-protected derivative of ovothiol 5 (74%). The 

resulting product 5, was deprotected to afford L-ovothiol A 6, using mercury(II) trifluoroacetate 

in trifluoroacetic acid (the latter simultaneously cleaves the Boc group) (78%), as described 

previously by Holler et al.19 

 

 
 

Scheme 2. The synthesis route of L-ovothiol A 
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 Since, L-ovothiol A is an extremely unstable thiol, readily oxidized by air, the only literature 

procedure for assigning the correct configuration is to measure the specific rotation of the more 

stable disulfide derived from biological extractions. To characterize the configuration of the end-

product, an aqueous solution of L-ovothiol A was allowed to be oxidized by atmospheric oxygen 

(Scheme 3). The stable disulfide 7 was identical with the disulfide of naturally derived L-

ovothiol A with regard to the 1H NMR, UV spectrum and specific rotation.2,19 Furthermore, 

mercury contamination levels were examined in our end-product as suggested by the European 

Pharmacopoeia;27 the heavy metal impurity level being less than 10 ppm in L-ovothiol A 

disulfide tetra(trifluoroacetate) 7. 

 

 
 

Scheme 3. The oxidation of L-ovothiol A 

 

 

Conclusions 

 

A short synthesis of enantiopure ovothiol A is described, which is cost efficient and produces the 

highly potent antioxidant in adequate quantities for biological assays. 

 

  

Experimental Section 

 

General. L-Histidine was purchased from Bachem. All other chemicals were purchased from 

Sigma and were used without further purification. Column chromatography was carried out by 

using Merck silica gel 60, 0.063-0.200 mm (70-230 mesh ASTM). Melting points were 

determined with OptiMelt MPA100, SRS. NMR measurements were recorded on a Varian 600 

MHz spectrometer at 25 °C. The chemical shift values reported are downfield from an internal 

reference, DSS in D2O, and TMS in all other solvents. The exact mass of the synthesized and 

isolated compounds was determined with an Agilent 6230 time-of-flight mass spectrometer 

equipped with a JetStream electrospray ion source in positive ion mode. JetStream parameters: 

drying gas (N2) flow and temperature: 10.0 L/min and 325 °C; nebulizer gas (N2) pressure: 10 
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psi; capillary voltage: 4000 V; sheath gas flow and temperature: 325 °C and 7.5 L/min. TOF MS 

parameters: fragmentor voltage: 170 V; skimmer potential: 170 V; OCT 1 RF Vpp: 750 V. 

Samples were introduced (0.1-0.3 µL) by the Agilent 1260 Infinity HPLC system (flow rate 0.5 

mL/min, 70% methanol/water mixture 0.1% formic acid). Reference masses of m/z 121.050873 

and 922.009798 were used to calibrate the mass axis during analysis. Mass spectra were acquired 

over the m/z range 100-1000 at an acquisition rate of 250 ms/spectrum and processed using 

Agilent MassHunter B.02.00 software. Specific rotations were measured on a Jasco Model P-

2000 polarimeter at the D line of sodium. 

 

(2S)-2-[(tert-Butoxycarbonyl)amino]-3-[1-(tert-butoxycarbonyl)-1H-imidazol-4-yl]-

propanoic acid (2). To a suspension of L-histidine 1 (1.43 g, 9.2 mmol) in MeOH (30 mL), di-

tert-butyl dicarbonate (3.24 g, 21.2 mmol) and Et3N (1.8 mL, 18.4 mmol) were added. The 

reaction mixture was stirred at room temperature overnight. The reaction mixture was then 

concentrated under vacuum and the crude product was purified on silica gel with column 

chromatography (CHCl3/MeOH, 9:1) to give the title compound 2 (3.01 g, 92%) as a colorless 

solid: mp 73-75 °C22 (from CHCl3); 
1H NMR (600 MHz, DMSO-d6): δH 1.40 (9H, s, 

NαCO2C(CH3)3), 1.61 (9H, s, NImCO2C(CH3)3), 2.87 (1H, dd, J 8, 15 Hz, βH), 3.08 (1H, dd, J 4, 

15 Hz, βH), 4.25 (1H, dd, J 4, 8 Hz, αH), 7.29 (1H, s, Im5H), 8.06 (1H, s, Im2H); 13C NMR (600 

MHz, CD3OD): δC 28.1 (NαBoc-CH3), 28.8 (NImBoc-CH3), 31.1 (βC), 56.6 (αC), 80.1 (NαBoc-t-

C), 86.9 (NImBoc-t-C), 116.1 (Im4C), 137.6 (Im5C), 141.1 (Im2C), 148.3 (NαBoc-C=O), 157.5 

(NImBoc-C=O), 178.1 (CO2H); HRMS m/z [M+H]+ Calcd: 356.1822, Found: 356.1824. 

Methyl (2S)-2-[(tert-butoxycarbonyl)amino]-3-(1-methyl-1H-imidazol-5-yl)propanoate (3). 

To a solution of 2 (3.01 g, 8.5 mmol) in MeOH (20 mL) at 0 °C, was added MeI (1.32 mL, 21.3 

mmol). The reaction mixture was allowed to stir overnight at 0 °C and then extracted (EtOAc) (7 

< pH < 8) and washed with water. The resulting organic layer was dried (Na2SO4), filtered and 

concentrated under vacuum. The crude product was purified on silica gel with column 

chromatography (EtOAc/acetone, 9:1) to give the title compound 3 (1.97 g, 83%) as a colorless 

solid (the position of the methyl group on the imidazole ring was confirmed using NOESY28 and 
1H-15N HMBC29): mp 109-110 °C (from EtOAc); 1H NMR (600 MHz, CD3OD): δH 1.40 (9H, s, 

CO2C(CH3)3), 2.98 (1H, dd, J 9, 15 Hz, βH), 3.14 (1H, dd, J 5, 15 Hz, βH), 3.66 (3H, s, NCH3), 

3.74 (3H, s, OCH3), 4.42 (1H, dd, J 5, 9 Hz, αH), 6.78 (1H, s, Im5H), 7.59 (1H, s, Im2H); 13C 

NMR (600 MHz, CD3OD): δC 27.1 (βC), 28.7 (Boc-CH3), 31.8 (NCH3), 52.9 (OCH3), 54.2 (αC), 

80.8 (Boc-t-C), 127.5 (Im5C), 129.4 (Im4C), 139.2 (Im2C), 157.7 (Boc-C=O), 173.4 (CO2); 

HRMS m/z [M+H]+ Calcd: 284.1610, Found: 284.1602. 

Methyl (2S)-3-(4-bromo-1-methyl-1H-imidazol-5-yl)-2-[(tert-butoxycarbonyl)amino]-

propanoate (4). To a solution of 3 (1.02 g, 3.6 mmol) in MeOH (10 mL) at 0 °C, was added in 

small portions N-bromosuccinimide (0.71 g, 4.0 mmol). The reaction mixture was stirred at 0 °C 

for 2 hours, and then the reaction mixture was concentrated under vacuum. The crude product 

was purified on silica gel with column chromatography (EtOAc/CHCl3, 9:1) to give the title 

compound 4 (0.98 g, 75%) as a colorless glassy solid: 1H NMR (600 MHz, CD3OD): δH 1.38 
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(9H, s, CO2C(CH3)3), 2.99 (1H, dd, J 9, 15 Hz, βH), 3.15 (1H, dd, J 6, 15 Hz, βH), 3.69 (3H, s, 

NCH3), 3.73 (3H, s, OCH3), 4.40 (1H, t, J 7 Hz, αH), 7.55 (1H, s, Im2H); 13C NMR (600 MHz, 

CD3OD): δC 27.1 (Boc-CH3), 28.6 (βC), 33.0 (NCH3), 49.8 (OCH3), 53.7 (αC), 79.4 (Boc-t-C), 

115.5 (Im5C), 126.8 (Im4C), 138.9 (Im2C), 157.4 (Boc-C=O), 181.5 (CO2); HRMS m/z [M+H]+ 

Calcd: 362.0715, Found: 362.0720. 

(2S)-2-[(tert-Butoxycarbonyl)amino]-3-{1-methyl-4-[(4-methylbenzyl)sulfanyl]-1H-

imidazol-5-yl}propanoic acid (5). To a stirred solution of NaH (98 mg, 4.1 mmol) in dry DMF 

(10 mL) under an N2 atmosphere at room temperature was added dropwise a solution of 4 (0.98 

g, 2.7 mmol) and (4-tolyl)methanethiol (1 mL, 8.1 mmol) in dry DMF (10 mL). The reaction 

mixture was then heated at 120 °C under an atmosphere of N2 for 3 h. After cooling, the reaction 

mixture was concentrated under vacuum to leave a brown oil. The crude product was purified on 

silica gel with column chromatography (CH2Cl2/n-hexane, 2:1) to give the title compound 5 

(0.81 g, 74%) as a brown oil: 1H NMR (600 MHz, CD3OD): δH 1.31 (9H, s, CO2C(CH3)3), 2.27 

(3H, s, ArCH3), 2.63 (1H, dd, J 10, 15 Hz, βH), 2.82 (1H, dd, J 4, 15 Hz, βH), 3.67 (3H, s, 

NCH3), 3.81 (1H, d, J 13 Hz, SCH2), 3.86 (1H, d, J 13 Hz, SCH2), 4.09 (1H, dd, J 4, 10 Hz, αH), 

6.97 (2H, d, J 8 Hz, o-ArH), 7,00 (2H, d, J 8 Hz, m-ArH), 7.56 (1H, s, Im2H); 13C NMR (600 

MHz, CD3OD): δC 21.1 (ArCH3), 28.7 (Boc-CH3), 31.1 (βC), 32.7 (NCH3), 41.2 (SCH2), 55.9 

(αC), 79.5 (Boc-t-C), 129.7 (o-Ar), 129.8 (Im5C), 129.9 (m-Ar), 134.5 (p-Ar), 137.5 (i-Ar), 

139.3 (Im4C), 156.9 (Im2C), 161.4 (Boc-C=O), 178.0 (CO2H); HRMS m/z [M+H]+ Calcd: 

406.1800, Found: 406.1794. 

(2S)-2-Amino-3-(1-methyl-4-sulfanyl-1H-imidazol-5-yl)propanoic acid (6). To a stirred 

solution of 5 (82 mg, 0.2 mmol) in anisole (0.5 mL) cooled to 0 °C was added a solution of 

mercury(II) trifluoroacetate (173 mg, 0.4 mmol) in trifluoroacetic acid (5 mL). The mixture was 

stirred at 0 °C for 2 h, concentrated under vacuum, taken up in water (3 mL), and washed with 

diethyl ether (3 × 1 mL). H2S was bubbled into the aqueous solution for 15 min, the suspension 

was filtered through Celite and the filtrate was concentrated under vacuum to give the 

di(trifluoroacetate) salt of the title compound 6 (67 mg, 78%) as a pale green glass: 1H NMR 

(600 MHz, 5% D2O): δH 3.51 (1H, dd, J 8, 16 Hz, βH), 3.67 (1H, dd, J 8, 16 Hz, βH), 4.51 (1H, 

dd, J 8 Hz, αH), 4.65 (3H, s, NCH3), 8.75 (1H, s, Im2H); 13C NMR (600 MHz, 5% D2O): δC 26.4 

(βC), 36.8 (NCH3), 53.7 (αC), 122.0 (Im5C), 133.8 (Im4C), 139.0 (Im2C), 172.7 (CO2H); UV 

(λmax, nm, H2O) 237, 278 (shoulder)19; HRMS m/z [M+H]+ Calcd: 202.0650, Found: 202.0654. 

(2S,2'S)-3,3'-[Disulfanediylbis(1-methyl-1H-imidazol-4,5-diyl)]bis(2-aminopropanoic acid) 

(7). For analytical purposes compound 6 (50 mg, 0.1 mmol) was taken up in water (10 mL), then 

air was bubbled through the solution for 1 h. NMR studies showed that the oxidation of 6 

proceeded quantitatively. Freeze-drying the solution yielded the tetra(trifluoroacetate) salt of 7 

(49.4 mg, 99%): 1H NMR (600 MHz, 5% D2O): δH 2.35 (1H, dd, J 7.5, 16 Hz, βH), 2.53 (1H, dd, 

J 7.5, 16 Hz, βH), 3.38 (1H, dd, J 7.5 Hz, αH), 3.63 (3H, s, NCH3), 7.72 (1H, s, Im2H); [α]D
20 

+74 (c 0.5, 0.1 M HCl(aq));
19 UV (0.1 M HCl(aq)) λmax 257 nm; HRMS m/z [M+H]+ Calcd: 

400.0987, Found: 400.0988. 
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Supplementary Material Available 

 

The NMR spectra of compounds 1-7 can be found in the Supplementary Material section of this 

article. 
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