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Abstract  

Copper-catalyzed cross-coupling reactions offer a powerful tool for the formation of carbon-

heteroatom bonds. Copper catalysis has an indisputable advantage over the other catalytic 

systems due to its low cost and the use of readily accessible and stable ligands. Among the 

various copper-catalyzed coupling reactions, C-S bond forming reactions have gained much 

attention due to its applications in the synthesis of molecules having biological and 

pharmaceutical impact. This review illustrates the current strategies and applications of Cu-

catalyzed C-S cross coupling reactions. 
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1. Introduction 

 

Thioethers are important class of compounds that are in great demand as intermediates in the 

synthesis of numerous compounds having biological and therapeutic applications and molecular 

precursors of material interest.1-4 The transition metal catalyzed cross-coupling reactions offer a 

powerful strategy for the construction of aryl-sulfur bonds. This approach involves the coupling 

of organic halides with thiols. Despite the importance of this reaction protocol in organic 

synthesis, transition metal catalyzed thioetherification received lesser attention, compared to 

other carbon-heteroatom bond forming reactions. The strong chelating property of sulfur causes 

catalyst poisoning, rendering the catalytic reaction ineffective. However, recently there has been 

considerable progress in the area of transition metal catalyzed organosulfur chemistry.  

Migita et al. used Pd(PPh3)4 as a catalyst for the coupling reaction between aryl iodides and 

bromides with thiols under mild conditions.5 Many other Pd based catalytic systems have also 

been developed, which are based on bidentate phosphines or diverse organophosphane 

derivatives.6-9 But these systems have limitations since they require the preparation and use of 

PR3 ligands which are not eco-friendly. Catalytic systems based on other transition metals such 

as nickel10-13, cobalt14 and iron15 have also been studied. These catalytic systems also suffer from 

certain disadvantages like metal toxicity, low turnover numbers etc. But there is much interest in 

the development of copper based catalytic systems because of the low cost of Cu and use of 

readily accessible and stable ligands. Many attractive Cu-catalyzed coupling processes have been 

reported by various research groups. However, the Cu-catalyzed C-S coupling alone has not been 

reviewed yet, although it has been sparsely discussed with other carbon-heteroatom coupling 

reactions.16-20 This review highlights the existing strategies for copper-catalyzed C-S bond 

forming reactions and covers the literature from 2004-2014. 

The classical Cu-catalyzed reaction between thiols and aryl halides required stoichiometric 

amounts of copper salts, polar solvents and high temperature.21 In recent years there is an 

upsurge of reports on C-S bond formation using various ligands such as phosphazene P2-Et base, 

neocuproine etc., primarily due to the high stability and low cost of copper.  

 

 

2. Different Catalytic Systems 

 

In this review we classify the catalyst systems according to the nature of the ligand present in the 

complex  

 

2.1. Cu-Nitrogen complexes  

Venkataraman et al. have used CuI-neocuproine (2,9-dimethyl-1,10-phenanthroline) complex for 

the coupling of aryl iodides with aryl and alkyl thiols in presence of NaOtBu in toluene at 110 
oC, affording the products in excellent yields (Scheme 1).22 
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Scheme 1. Cu-catalyzed synthesis of sulfides using neocuproine as ligand. 

 

Electron-rich aryl iodides gave better yields in this reaction. The substituents on the o-

position of the aryl iodide or thiol did not affect the rate of the reaction. 

Chiosis et al. used the CuI-neocuproine system for S-arylation of 8-mercaptoadenine with 

aryl iodides in DMF at 110 oC (Scheme 2).23  

 

 

 

Scheme 2. Cu-catalyzed S-arylation of 8-mercaptoadenine using neocuproine as ligand. 

 

Electron-withdrawing and electron donating groups as well as ortho substituents on the aryl 

iodide are tolerated in the reaction affording moderate yields of the thioether. 

A copper-catalyzed cross-coupling of heterocyclic thiols with aryl iodides was reported by 

Niu et al.24 The reaction was carried out in the presence of CuI, 1,10-phenanthroline and K2CO3 

in DMF at 120 ºC, affording the heterocyclic sulfides in high selectivities and yields. (Scheme 3)  
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Scheme 3. CuI-catalyzed carbon-sulfur bond formation of heterocyclic thiols with aryl iodides. 

 

Vinyl sulfides were synthesized in good to excellent yields from vinyl iodides and thiols 

under CuI-catalysis using 5 mol% [Cu(phen)(PPh3)2]NO3 and K3PO4 in toluene at 110 ºC 

(Scheme 4).25 

 

 

 

Scheme 4. Cu-catalyzed synthesis of vinyl sulfides using [Cu(phen)(PPh3)2]NO3 catalyst. 

 

Electronic and steric effects of the substituents on the thiol did not affect the rate of the 

reaction. Heterocyclic thiols also gave excellent yields. 

Cu-catalyzed S-arylation of dipyrazolyl disulfides with organoboronic acids in presence of 

CuI and 1,10-(phen) in DMSO-H2O afforded good to excellent amount of the products (Scheme 

5).26 
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Scheme 5. Cu-catalyzed S-arylation of dipyrazolyl disulfides with organoboronic acids. 

 

Electron rich and electron poor aryl boronic acids afforded good yields of the products. 

However alkylboronic acids are found to be unsuitable for this transformation. A number of 

functional groups such as Me, OMe, F, Cl, CF3, NO2, CO2H, on the arylboronic acid are 

tolerated in the reaction. 

Sekar et al. synthesized diarylthioethers from thiols and aryliodides in presence of BINAM-

Cu(OTf)2 complex and Cs2CO3 in DMF at 110 oC (Scheme 6).27 The reaction was unaffected by 

the position of substituents on the aryl iodide. 
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Scheme 6. Cu-catalyzed synthesis of sulfides using BINAM ligand. 

 

Electron donating and weakly electron withdrawing groups on aryl chloride failed to give the 

thioether and aryl halides containing strong electron withdrawing groups afforded the thioether 

product by nucleophilic substitution reaction in the absence of BINAM-Cu catalyst. 

Benzotriazole was also found to be an efficient ligand for C-S coupling reactions.28 Aryl 

iodides and aryl bromides coupled with aryl thiols and alkyl thiols in presence of 0.5 mol% CuI 

and 1 mol% benzotriazole in DMSO at 100 ºC affording the sulfides in >90% yield (Scheme 7). 

Aryl bromides required only 80 ºC for the reaction to get good yields. 

 

 

 

Scheme 7. Cu-catalyzed synthesis of sulfides using benzotriazole as ligand. 

 

A variety of functional groups were found to be compatible with the reaction. 
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An environmentally benign diaryl thioether coupling in water has been reported recently.29 

Under the optimized reaction conditions, aryl thiol and aryl iodide or aryl bromide were heated 

in water at 120 ºC in the presence of CuCl and trans-1,2-diaminocyclohexane (Scheme 8). A 

large variety of functional groups, both electron donating and electron withdrawing as well as 

free NH2 and –OH on the aryl iodide partner and aryl thiol partner were found to be compatible 

with the reaction. 

 

 

 

Scheme 8. Cu-catalyzed synthesis of sulfides using trans-1,2-diaminocyclohexane ligand in 

water. 

 

Steric effects arising from o-substitution has not shown much influence on the product yield. 

Aryl bromides are also good substrates for this reaction but restricted to those containing electron 

withdrawing groups like NO2, Ac, CF3 and F. To accommodate electron rich aryl bromides, an in 

situ halogen exchange (Br-I) was carried out on 4-bromoaniline in presence of CuCl, diamine 

and NaI in water followed by treatment with thiol and diamine, which led to the product (phenyl 

4-aminophenyl sulfide) in good yield (84%). The green coloured aqueous solution obtained after 

removing the product could be further used for three consecutive reaction cycles without 

isolation and reactivation of the catalyst and without any loss of activity. 

 

 

 

Scheme 9. Cu-catalyzed coupling of thiol with aryl halide using tris-(2-aminoethyl)amine ligand. 
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Shingare and co-workers developed an efficient methodology for the copper-catalyzed C-S 

cross-coupling reactions of aryl halides with thiols using a tripodal ligand, tris-(2-

aminoethyl)amine.30 (Scheme 9) 

 

2.2. Cu-oxygen complexes 

Liebeskind and coworkers reported a mild synthesis of thioethers via Cu(I) catalyzed coupling of 

boronic acids with N-thioimides in good yields (Scheme 10).31 In a typical reaction, two 

equivalents of boronic acid reacted with N-(alkyl, aryl or heteroaryl thio)imides in presence of 

20-30 mol% Cu1-3-methylsalicylate (CuMeSal) in THF at 45-50 ºC, yielding the corresponding 

thioethers in good yields. 

 

 

Scheme 10. Cu-catalyzed synthesis of diaryl sulfides using CuMeSal catalyst. 

 

A variety of functional groups in the phenylboronic acid such as methoxy, nitro, CF3, fluoro 

etc. were tolerated in the reaction. Notably, functional groups sensitive to reducing conditions 

(eg. NO2) were unaffected in this reaction. 

At the same time, Buchwald and Kwong reported a simple thioether formation protocol from 

aryl iodides and aryl/alkyl thiols using CuI, ethyleneglycol and K2CO3 in isopropanol at 80 oC 

(Scheme 11).32 Functional groups such as cyano, nitro, keto, amino, hydroxyl, carboxylic acid, 

aldehyde, on the aryl iodide are compatible with the reaction. The reaction is also tolerant of 

steric hindrance as many o-substituted aryl iodides yielded the thioethers in excellent yields. 

Aliphatic thiols are also found to be efficient nucleophiles in this reaction. Buchwald then used 

the protocol in the coupling of 6-iodoimidazo[1,2-a]pyridine with thiophenols and obtained the 

products in moderate yields.33 
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Scheme 11. Cu-catalyzed synthesis of sulfides using ethyleneglycol as ligand. 

 

The β-ketoester used in C-N and C-O coupling reaction was also found to be an efficient 

ligand for C-S bond formation.34 Aryl iodides containing electron donating and electron neutral 

groups reacted with electron rich and electron neutral thiols in the presence of CuBr, β-ketoester 

ligand and Cs2CO3 in DMSO at 60-75 oC affording very high yields of the corresponding 

diarylthioethers (Scheme 12). 

 

 
Scheme 12. Cu-catalyzed synthesis of sulfides using ethyl 2-oxocyclohexanecarboxylate. 

 

The S-arylation reactions of thiols with aryl halides catalyzed by N,N′-dioxide/ CuI catalytic 

system was reported by Chen et al.35 The reaction was carried out in presence of Cs2CO3 in 

DME at 80 oC.(Scheme 13) 
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Scheme 13. Cu-catalyzed S-arylation of thiols with aryl halides using N,N′-dioxide as ligand. 

 

The tripodal ligand 1,1,1-tris(hydroxymethyl)ethane used in C-N and C-O coupling reaction 

was found to be efficient in the C-S coupling as well.36 Aryl iodides reacted with aryl and alkyl 

thiols in presence of CuI, tripodal ligand and Cs2CO3 in DMF:dioxane (1:9) at 110 ºC affording 

the thioethers in excellent yields (Scheme 14). 

 

 

 

Scheme 14. Cu-catalyzed synthesis of sulfides using the tripodal ligand 1,1,1-tris-

(hydroxymethyl)ethane. 

 

In the limited examples studied, methoxy and keto groups on the aryl iodide and methoxy 

and chloro on the aryl thiol were found to be compatible with the reaction. 

Biologically active thioethers were synthesized by CuI catalyzed coupling of aryl or 

heteroaryl chlorides with aryl mercaptan using racemic trans-cyclohexane-1,2-diol.37 

Basu et al. have used catechol violet as a ligand for the CuI catalyzed thioether formation in 

DMF at 70-90 ºC in which electron rich and electron deficient aryl iodides afforded good yields 

of the products.38 
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2.3. Cu–N and O bidentate ligand complexes. 

Guo et al. reported a thioether synthesis using CuI–N-methylglycine system in presence of KOH 

in dioxane at 100 oC (Scheme 15).39 

 

 

 

Scheme 15.  Cu-catalyzed synthesis of sulfides using methylglycine as ligand. 

 

Aryl iodides having electron donating or electron withdrawing groups gave very good yields 

with alkyl and aryl thiols. Aryl bromides also afforded the sulfide but the rate of reaction was 

low. The reaction could also be carried out in DMF solvent and with K3PO4 as base. 

This procedure was then modified by Ma et al. using L-proline at lower temperature.40 Thus 

aryl iodides reacted with aryl and alkyl thiols in presence of 10 mol% CuI, 20 mol% L-proline 

and K2CO3 (or K3PO4 for aliphatic thiols) in DME at 80 ºC affording excellent yields of the 

products.(Scheme 16) 
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Scheme 16. Cu-catalyzed synthesis of sulfides using L-proline as ligand. 

 

Both electron withdrawing and electron donating groups on the aryl iodide as well as o-

substituted aryl iodides afforded very high yields of the thioether products with both aryl and 

alkyl thiols. 

2.4. Cu nanoparticles 

Cu nanoparticles have excellent catalytic activity because of their high surface to volume ratios. 

A ligand-free diaryl or aryl alkyl thioether formation was achieved between aryl iodides and 

aryl/alkyl thiols using Cu nanoparticles under microwave irradiation (120 ºC) in less than 10 

min. in presence of K2CO3 in DMF.41 Many functional groups including free NH2 and OH were 

tolerated in the reaction. Substituents at the ortho position of the aryl iodide did not affect the 

reaction. 

CuO nanoparticles are also found to be efficient catalyst for C-S bond formation.42 Aryl and 

alkyl thiols underwent coupling reaction with aryl iodides in presence of 1.26 mol% CuO 

nanoparticles and KOH in DMSO at 80 ºC affording in most cases quantitative yields of the 

products in less than 10h (Table 1). 

 

Table 1. CuO nanoparticle-catalyzed synthesis of aryl sulfides 

 
I S

R2

R1R1

HS R2
+

CuO nanoparticles (1.26%)

KOH/DMSO
80 oC  

 

Entry Iodide: R1 Thiol: R2 Reaction  

time (h) 

Yield 

(%) 

1 H C6H4OMe-p 9.5 99 

2 H C6H4NO2-p 15 88 

3 H C6H4Br-o 9 90 

4 H (CH2)5CH3 7 91 

5 H Ph 5 71 

6 p-MeO Ph 5 14 

7 p-O2N Ph 5 83 

 

Electron donating groups on thiols were found to be more reactive than electron withdrawing 

groups. Electron withdrawing groups on the aryl iodides enhanced the yield of the sulfide 

product. The catalyst was found to be suitable for reuse up to three cycles without appreciable 

loss of activity. 
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Babu and Karvembu reported a nano CuO-catalyzed C-S cross coupling of aryl halides with 

thiophenol in presence of KOH as a base in dimethylacetamide (DMAc) at room temperature 

under ligand-free conditions (Scheme 17).43 
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Scheme 17. CuO nanoparticle-catalyzed S-arylation of thiophenols. 

 

Another nano copper oxide catalyzed cross coupling reaction of thiols with aryl iodides in 

[bmmim]BF4 was reported by Braga et al (Scheme 18).44 Compared to the usual organic 

solvents, [bmmim]BF4 exhibited more efficiency as it can be reused up to four successive runs. 

 

 

 

Scheme 18. CuO nanoparticle-catalyzed S-arylation of thiols with aryl iodides. 

 

This reaction offers a strategy to obtain diaryl or alkyl aryl sulfides from aryl iodides and thiols 

using CuO nanopowder in ionic liquid as a reusable medium. 

Kamal and coworkers developed a method for C-S bond forming reactions, catalyzed by 

copper oxide nanoparticles supported on graphene oxide, employing weak bases like triethyl 

amine.45 A variety of aryl sulfides were synthesized using this strategy. The authors extended the 
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scope of this method for the synthesis of symmetrical diaryl sulfides from thiourea and aryl 

iodides.  

2.5. Ligand free catalytic systems 

The general approach for Cu-catalyzed C-S cross coupling reactions is the use of a catalytic 

amount of copper salt, always in presence of a ligand and a base under relatively mild conditions. 

But in some cases the coupling can even be carried out under ligand-free conditions. The ligand-

free catalytic procedures are interesting since it avoids the use of expensive and time consuming 

preparation of ligands. 

van Koten and coworkers reported an efficient C-S bond forming reaction of aryl iodides and 

thiophenol under ligand free conditions.46 The reaction was catalyzed by CuI in presence of 

K2CO3 base in N-methylpyrrolidinone at 100 ºC (Scheme 19). A variety of diaryl thioethers were 

synthesized with good functional group tolerance. 
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Scheme 19. Cu-catalyzed S-arylation of thiophenol with aryl iodides under ligand-free conditions. 

 

Another ligand-free protocol for C-S coupling of thiols with aryl iodides was reported by 

Wang et al.47 The reaction was catalyzed by CuI-PEG or CuI-PEG-H2O system (Scheme 20). A 

variety of functionalized aryl sulfides were synthesized in excellent yields by this method. Both 

aryl thiols and aliphatic thiols reacted well with the aryl iodides. 

 

 
Scheme 20. CuI-PEG-catalyzed S-arylation of thiols with aryl iodides. 
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Thioether formation on 2-iodo and 2-bromo chalcogenophenes occurred smoothly on 

treatment of the chalcogenophenes with thiols in presence of catalytic CuI and KOH or K3PO4 in 

refluxing dioxane (Scheme 21).48 

 

 

 

Scheme 21. Cu-catalyzed synthesis of sulfides from 2-halochalcogenophenes. 

 

For iodochalcogenophenes, 5 mol% CuI and KOH base and for bromo derivatives, 10 mol% 

CuI and K3PO4 were found to be the best reagents. The reaction was found to be insensitive to 

the electronic nature of thiol and also the nature of the substitution at the ortho position. Notably, 

no ligand was used in this reaction. 

Feng et al. explained a ligand-free copper-catalyzed C-S cross coupling of thiols with aryl 

iodide using KF/Al2O3 as base.49 The reaction was carried out in DMF at 110 ºC (Scheme 22). 
 

 

 

Scheme 22. Cu-catalyzed C-S cross coupling of thiols with aryl iodide using KF/Al2O3 as base. 

 

Feng et al. also reported a ligand-free copper-catalyzed C-S cross coupling of benzothiazole 

with aryl iodides in aqueous solution to form 2-aminophenyl sulfide derivatives (Scheme 23).50 

The reactions were catalyzed by CuCl with tetrabutylammonium hydroxide as base and water as 

the solvent at 50 ºC. 
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Scheme 23. Cu-catalyzed C-S cross coupling of benzothiazole with aryl iodides.  

 

Recently, Peters et al. reported the first photo-induced copper-catalyzed cross coupling 

reaction between aryl thiols and aryl halides via single electron transfer under mild conditions (0o 

C) (Scheme 24).51 The inexpensive CuI was used as the precatalyst without the need of any 

ligand. This new strategy can be applied for the efficient cross coupling of a broad range of aryl 

thiols with a wide array of functionalized aryl halides. 

 

 
Scheme 24. Photo-induced Cu-catalyzed C-S cross coupling reaction of aryl thiols with aryl 

halides. 

 

2.6. Supported Cu catalysts 

Islam et al. reported the synthesis of a furfural functionalized polymer-amine grafted with copper 

which was used as an excellent catalyst for S-arylation reactions of various aryl halides with aryl 

thiols in water medium (Scheme 25).52 The catalyst could be reused for several consecutive 

cycles with consistent catalytic activity. 
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Scheme 25. C–S coupling reaction catalyzed by polymer supported Cu-catalyst. 

 

Bhaumik et al. synthesized a Cu(II)-grafted furfural functionalized mesoporous organosilica 

catalyst for the aryl-sulfur coupling reaction between different aryl iodides and thiophenol 

(Scheme 26).53 

 

 

 

Scheme 26. C–S coupling reactions catalyzed by Cu-grafted functionalized mesoporous 

material. 

 

A copper modified amine-functionalized zirconia which could be used as an efficient catalyst 

for C-S coupling reactions was developed by Parida and co-workers.54
 The amine 
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functionalization provides a better loading and uniform distribution of the Cu particle in the 

zirconia surface. The catalyst shows good catalytic activity and recycling efficiency. 

 

3. Mechanism 

Although the mechanism of Cu-catalyzed C-N coupling has been extensively studied, the 

corresponding C-S bond formation has not received much attention.  

The copper(I)-catalyzed Ullmann-type C-S coupling reaction generally consists of a ligand, a 

base and a copper salt. Better yields are obtained when a ligand was used in combination with a 

copper(I) catalyst indicating that the proposed intermediate of the reaction could be a Cu(I) 

complex chelated with the additive ligand.55  

In the proposed mechanism of copper(I)-catalyzed C-S coupling reaction, the base 

deprotonates the thiol generating a thiolate, which may then replace the counter anion of the 

copper source and produce a copper complex Cu(I)L(SR) with the thiolate and the ligands.56 An 

oxidative addition of the aryl halide (ArI) to the complex takes place to produce the intermediate 

Cu(III)LArI(SR). This intermediate regenerates the Cu(I)LI and the desired product ArSR by 

reductive elimination. Another proposed mechanism involves the oxidative addition of the aryl 

halide to form Cu(III)LArI followed by the substitution of the I- with the RS- to form 

Cu(III)LAr(SR).57-60 However, the intermediates from the catalytic reaction has not been directly 

observed or isolated, and the mechanism of the catalytic reaction has not been well established so 

far.  

An in situ electrospray ionization mass spectrometry (ESI-MS) study of the copper(I)-

catalyzed Ullmann-type C-S coupling reaction under catalytic reaction condition was carried out 

by Shyu and coworkers.61 Thus coupling reaction between iodobenzene and thiophenol was 

studied using catalytic CuI in presence of potassiun tert-butoxide as base and 1,10 

phenanthroline as ligand in toluene at 120 oC for 6h. Complexes [Cu(SPh)2]
-, [Cu(SPh)I]- and 

K[Cu(SPh)2(Ph)]+ were observed under the catalytic reaction conditions indicating that they are 

intermediates in the reaction. A reaction mechanism was proposed based on these observations 

(Scheme 27). 

The reaction of thiophenol with potassium tert-butoxide and CuI generates the complex 

[Cu(SPh)2]
- which on reaction with iodobenzene produces the intermediate [Cu(SPh)2(Ph)I]- 

through an oxidative addition reaction. Reductive elimination of diphenyl thioester generates 

[Cu(SPh)I]- which subsequently reacts with PhS- to form [CuSPh)2]
- and completes the catalytic 

cycle. 
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Scheme 27. The proposed mechanism for Cu-catalyzed C-S coupling by Shyu et al. 

 

 

4. Applications 

 

Carbon-heteroatom bond forming reactions have emerged as one of the most versatile and 

powerful tool in organic synthesis. The products of such transformations are often used as fine 

chemicals, pharmaceuticals, dyes and polymers. Many synthetic methodologies involving 

carbon-heteroatom coupling reactions have been developed. Among them, C-S bond forming 

reaction gained much attention since thioethers are of great significance due to their broad 

spectrum of therapeutic activities. The C-S bond forming reactions are widely used in 

pharmaceutical research, material synthesis and process development in industry and academia. 

Bardajee demonstrated an efficient synthesis of fluorescent naphthalimide dyes via a CuI-

catalyzed C-S cross coupling reaction between benzylthiol and 4-bromo-N-isobutylnaphthal-

imide (Scheme 28).62 1,8-Naphthalimide derivatives are highly fluorescent and photostable and 

they have wide range of applications as fluorescent synthetic polymers, liquid crystal additives, 

fluorescent markers in medicine and biology, as fluorescent solar energy collectors and in laser 

technology. 
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Scheme 28. Cu-catalyzed synthesis of a fluorescent naphthalimide derivative. 

 

Nowadays the significance of vinyl sulfides has increased greatly, since they can be used as 

complementary building blocks to carbonyl compounds and Michael acceptors for the synthesis 

of many polymeric materials, natural products and synthetic reagents. Conventional methods for 

the synthesis of vinyl sulfides require harsh reaction conditions. Liu et al. developed a novel 

method for the synthesis of aryl sulfides via a Cu-catalyzed decarboxylative cross coupling of 

aryl propiolic acids with thiols (Scheme 29).63 The reaction was catalyzed by CuI in presence of 

Cs2CO3. A broad range of thiols reacted with aryl propiolic acids to form the corresponding vinyl 

sulfides in good to excellent yields with high stereoselectivity for Z-isomers. 

 

 

Scheme 29. Cu-catalyzed synthesis of vinyl sulfides. 

 

Compounds containing a cyanamide functional group gained attention in synthetic organic 

chemistry because of their unique structure and reactivity.Punniyamurthy and coworkers 

reported a one- pot synthesis of 2-(arylthio)aryl cyanamides using cheap and air stable 

CuSO4.5H2O as a catalyst by domino intra- and inter-molecular C-S cross coupling reactions of 

2-(iodoaryl)thioureas with aryl iodides under ligand free conditions (Scheme 30).64 

 

 

Scheme 30. Cu-catalyzed synthesis of 2-(arylthio)aryl cyanamides. 
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Another protocol for the synthesis of 2-(arylthio)aryl cyanamide derivatives was 

demonstrated by Shao et al (Scheme 31).65 They synthesized the cyanamides via a copper-

catalyzed domino C-S cross coupling of 2-aminobenzothiazoles with aryliodides. This reaction 

proceeded through an intermolecular C-S bond formation, associated with C-S bond cleavage 

followed by an intermolecular S-arylation under ligand free conditions. 

 

 

 

Scheme 31. Cu-catalyzed synthesis of 2-(arylthio)aryl cyanamides. 

 

Pan et al. synthesized 2-(phenylthio)phenols from simple phenols and aromatic halides by 

using dimethyl sulfoxide as the oxidant, via a tandem CuI catalyzed C-S coupling / C-H 

functionalization in presence of (E)-3-(dimethylamino)-1-(2-hydroxyphenyl)prop-2-en-1-one 

ligand.66 This protocol was also applied to the regioselective copper(I) catalyzed C-H 

hydroxylation/ C-S coupling of aryl thiols with vinyl halides for the synthesis of 2-(styrylthio)-

phenol derivatives.67 (Scheme 32) The 2-(styrylthio)phenols have been employed in synthesis of 

many bioactive compounds. 

 

 
 

Scheme 32. Cu-catalyzed C-H hydroxylation/ C-S coupling of aryl thiols with aryl and styryl halides. 
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5. Conclusions 

 

This review highlights the recent developments in copper-catalyzed carbon-sulfur bond forming 

reactions. The C-S bond forming reactions serve as powerful tools in synthetic organic chemistry 

for the synthesis of various molecules that are of biological, pharmaceutical and material interest. 

Even though various other transition metals are used for catalyzing C-S cross coupling reactions, 

copper is found to be the most suitable one, as it is less toxic and inexpensive. This review also 

demonstrates the use of copper nanoparticles as an efficient catalyst for C-S cross coupling 

reactions. 
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