Supplementary Material ## Synthesis and characterization of a substituted indolizine and investigation of its photoluminescence quenching via electron deficient nitroaromatics ## Mustafa K. Bayazit* †‡ and Karl S. Coleman † [†] Department of Chemistry, University of Durham, Durham DH1 3LE, UK [‡] Department of Chemistry, Imperial College London, London SW7 2AZ, UK (Present address) E-mail: m.bayazit@imperial.ac.uk ## **Table of Contents** | Figure S1. ¹ H NMR spectrum of 2d (in CDCl ₃) | S2 | |--|------------| | Figure S2. ¹ H NMR spectrum of 1 (in CDCl ₃) | S 3 | | Figure S3. ¹³ C NMR spectrum of 1 (in CDCl ₃) | S 3 | | Figure S4. Mass spectrum of 1 | S4 | | Figure S5. ¹ H NMR spectrum of 5 (in CDCl ₃) | S4 | | Figure S6. ¹³ C NMR spectrum of 5 (in CDCl ₃) | S5 | | Figure S7. Mass spectrum of 5 | S 5 | | Figure S8. ¹ H NMR spectrum of 1:2d complex (in CDCl ₃) Inset:Expanded ¹ H NMR region | | | showing the broad NH protons | S 6 | | Figure S9. ¹³ C NMR spectrum of 1:2d complex (in CDCl ₃) | S 6 | | Figure S10. Mass spectrum of 4 | S 7 | | Figure S11. Emission spectrum of dimethyl 3-(4-aminophenyl)indolizine-1,2- dicarboxylate (1) | | | $(\lambda_{\rm exc} = 330 \text{ nm}) \text{ in CH}_3\text{CN}$ | S 7 | | Figure S12. Emission spectra of guest compounds (2a-f) (λ_{exc} = 330 nm) in CH ₃ CN | S 8 | | Figure S13. Fluorescence spectra (excitation at 330 nm) of (1) (0.209 μ M) in CH ₃ CN | | | in the presence of 0.066, 0.133, 0.199, 0.265, 0.332, 0.497, 0.662, 0.826, | | | 1.639, 2.439, 3.225 and 6.250 μM of (2a) pre-dissolved in CH ₃ CN | S 8 | | Figure S14. Fluorescence spectra (excitation at 330 nm) of (1) (0.209 μ M) in CH ₃ CN | | | in the presence of 0.066, 0.133, 0.199, 0.265, 0.332, 0.497, 0.662, 0.826, | | | 1.639, 2.439, 3.225 and 6.250 μM of (2b) pre-dissolved in CH ₃ CN | S 9 | | Figure S15. Fluorescence spectra (excitation at 330 nm) of (1) (0.209 μ M) in CH ₃ CN | | | in the presence of 0.066, 0.133, 0.199, 0.265, 0.332, 0.497, 0.662, 0.826, | | | 1.639, 2.439, 3.225 and 6.250 μM of (2c) pre-dissolved in CH ₃ CN | S 9 | | Figure S16. Fluorescence spectra (excitation at 330 nm) of (1) (0.209 μ M) in CH ₃ CN | | | in the presence of 0.066, 0.133, 0.199, 0.265, 0.332, 0.497, 0.662, 0.826, | | Figure S1. ¹H NMR spectrum of 2d (in CDCl₃). Figure S2. ¹H NMR spectrum of 1 (in CDCl₃). **Figure S3.** ¹³C NMR spectrum of **1** (in CDCl₃). Figure S4. Mass spectrum of 1. Figure S5. ¹H NMR spectrum of 5 (in CDCl₃). **Figure S6.** ¹³C NMR spectrum of **5** (in CDCl₃). Figure S7. Mass spectrum of 5. **Figure S8.** ¹H NMR spectrum of **1:2d** complex (in CDCl₃) Inset: Expanded ¹H NMR region showing the broad NH protons. Figure S9. ¹³C NMR spectrum of 1:2d complex (in CDCl₃). Figure S10. Mass spectrum of 4. **Figure S11.** Emission spectrum of dimethyl 3-(4-aminophenyl)indolizine-1,2- dicarboxylate (1) $(\lambda_{exc} = 330 \text{ nm})$ in CH₃CN. **Figure S12.** Emission spectra of guest compounds (2a-f) (λ_{exc} = 330 nm) in CH₃CN. **Figure S13.** Fluorescence spectra (excitation at 330 nm) of (1) $(0.209 \ \mu\text{M})$ in CH₃CN in the presence of 0.066, 0.133, 0.199, 0.265, 0.332, 0.497, 0.662, 0.826, 1.639, 2.439, 3.225 and 6.250 μ M of (2a) pre-dissolved in CH₃CN. **Figure S14.** Fluorescence spectra (excitation at 330 nm) of (1) $(0.209 \ \mu\text{M})$ in CH₃CN in the presence of 0.066, 0.133, 0.199, 0.265, 0.332, 0.497, 0.662, 0.826, 1.639, 2.439, 3.225 and 6.250 μ M of (2b) pre-dissolved in CH₃CN. **Figure S15.** Fluorescence spectra (excitation at 330 nm) of (1) $(0.209 \ \mu\text{M})$ in CH₃CN in the presence of 0.066, 0.133, 0.199, 0.265, 0.332, 0.497, 0.662, 0.826, 1.639, 2.439, 3.225 and 6.250 μ M of (2c) pre-dissolved in CH₃CN. **Figure S16.** Fluorescence spectra (excitation at 330 nm) of (1) $(0.209 \ \mu\text{M})$ in CH₃CN in the presence of 0.066, 0.133, 0.199, 0.265, 0.332, 0.497, 0.662, 0.826, 1.639, 2.439, 3.225 and 6.250 μ M of (2e) pre-dissolved in CH₃CN. **Figure S17.** Fluorescence spectra (excitation at 330 nm) of (1) $(0.209 \ \mu\text{M})$ in CH₃CN in the presence of 0.066, 0.133, 0.199, 0.265, 0.332, 0.497, 0.662, 0.826, 1.639, 2.439, 3.225 and 6.250 μM of (2f) pre-dissolved in CH₃CN.