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Abstract 

Cu(I/II) salts or Rose Bengal, used in a catalytic amounts, allow for the mild and easy oxidation 

of hydroxamic acids to nitrosocarbonyls, using air as final oxidant. These new mild oxidative 

protocols open new vistas in the field of nitroso Diels-Alder (NDA) and ene reactions (ER) of 

these fugitive intermediates. 
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Nitrosocarbonyls are versatile intermediates widely used in organic synthesis. Their typical 

reactivity as dienophiles in nitroso Diels-Alder reactions (NDA) as well as super enophiles in 

ene reactions (ER) has been exploited in the synthesis of relevant biological molecules.1 Most of 

the utility of the NDA reaction in organic syntheses arises from the rich chemistry of the 

resulting cycloadducts. The 3,6-dihydro-1,2-oxazines, obtained through reaction of 

nitrosocarbonyls with different dienes, allow for the rapid construction of a wide variety of 

molecular scaffolds that have been used in the synthesis of natural products, azasugars, amino 

acid derivatives and carbocyclic analogues.2 The acylnitroso ene reaction constitutes a mild and 

valuable synthetic methodology to obtain allylamine through the direct allylic amination of 

olefins. Allylamines are versatile and fundamental building blocks for the construction of α- and 

β-amino acids, alkaloids and carbohydrate derivatives.2,3 

Despite the widespread application of these fleeting intermediates, the chemistry of 

nitrosocarbonyls remains somewhat underdeveloped because of the short lifetime of these 

fugitive transient species.2 Due to the high reactivity of nitrosocarbonyls, they are usually 

generated in situ through the oxidation of hydroxamic acids. Since their discovery by Kirby4,5 

and Keck,6 most of the generation methods rely upon oxidation protocols mediated by 

stoichiometric amounts of oxidant such as sodium periodate, iodosobenzene diacetate or, more 

recently Ru(II), Ir(I), Fe(III), Cu(I) or peroxides.7 
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Scheme 1. Oxidative generation and trapping of nitrosocarbonyls by NDA or ER. 

 

However most of the cited methods have certain limitions.8 The use of stoichiometric 

amounts of oxidant often lead to poor atom economy, and some of these oxidants are 

particularly expensive and environmentally hazardous.9 Further, strong oxidative conditions 

limit the use of functional groups and can reduce the stability of the formed adducts.2 Moreover, 

an excess of olefin is required in ER in order to obtain high yields of ene product.10,11 

In the last two years attention has been paid to developing new generation methods compatible 

with a wider plethora of functional groups, and more environmentally friendly. In 2011, Whiting 

and Read de Alaniz independently demonstrated that the use of copper(II) salts in aerobic 

conditions as catalytic system is able to readily generate nitrosocarbonyl derivatives starting 

from the corresponding N-hydroxycarbamates. Starting from the NDA reaction, Whiting and co-

workers12 pointed out how CuCl2, in the presence of a 2-ethyl-2-oxazoline as a ligand and 

oxygen, is an effective catalyst for the room temperature oxidation of hydroxamic acids to acyl-

nitroso derivatives, which are efficiently trapped in situ via both inter- and intramolecular 

hetero-Diels-Alder reactions with several dienes (Scheme 2).12 
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Scheme 2. NDA between in situ generated nitrosocarbonyls and different dienes. 

 

Read de Alaniz and co-workers13 showed that is possible to avoid the use of pure oxygen 

using copper(I) chloride (20 mol%) and pyridine (5 mol%). Under these conditions the amount 

of oxygen present in the atmosphere is sufficient to promote the clean conversion of different N-
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substituted hydroxylamines into the corresponding oxazines. In the reaction scope the elevated 

range of application is remarkable. Acylnitroso, nitrosoformate, nitrosoformamide, as well as 

iminonitroso, arylnitroso and P-nitrosophosphine oxide derivatives, in situ generated, have been 

made to react with different dienes always yielding the desired products in very good yields 

(Figure 1). 
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Figure 1. Examples of NDA products obtained using CuCl, pyridine and air. 

 

The group from Santa Barbara applied the same procedure used for the NDA reaction to 

the ene reaction of N-hydroxycarbamate bearing a tetrasubstituted olefin. Using this 

intramolecular ER as reference, they found the proper conditions to extend the reaction scope to 

more than 20 different substrates, performing intra- or intermolecular ene reactions in good 

yields.14 

At the beginning of this year, Tan and co-workers,15 in Singapore, encouraged by the 

aforementioned results, became interested in developing an alternative metal-free approach to 

generate the acylnitroso species by means of light. Rose Bengal, an inexpensive and readily 

available organic dye, was demonstrated to be a photoredox catalyst for the formation of 

transient nitrosocarbonyls under visible light irradiation (Scheme 3).15 This photoreaction takes 

place through an electron transfer process between the Rose Bengal and the hydroxamic acids. 

The process somewhat represents an alternative to the ER via singlet oxygen of alkenes under 

photosensitization with Rose Bengal with visible light. Moreover, it is an environmentally 

friendly allylic amination methodology that avoids the use of a metal catalyst and stoichiometric 

amounts of oxidant, is operationally simple, and uses air as the terminal oxidant. 
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In conclusion, in this article we highlight new mild reaction conditions for the in situ 

aerobic generation of acylnitroso species. Air is the ultimate oxidant, whether using an organic 

dye such as Rose Bengal, or by employing copper salts. These methods are operationally simple 

and represent so far the mildest and more environmentally sustainable procedure to generate 

nitrosocarbonyls. A wide range of NDA and ER have been explored, affording the desired 

products from moderate to quantitative yields. New advances can be predicted in organic 

synthesis for these fugitive intermediates exploiting the procedures described in this paper. 
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Scheme 3. Photocatalytic approach for the ER. 
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