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Abstract 

An environmentally friendly, efficient method for transforming alkynes into substituted benzenes 

catalyzed by p-toluenesulfonic acid monohydrate (p-TsOH·H2O) under solvent-free conditions 

has been developed, which conforms to the principles of “green” chemistry and overcomes the 

shortcomings of previous methods for the synthesis of substituted benzenes. The reaction is quite 

general and provides good to excellent yields. 
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Introduction 

 

The development of new transformations that are not only efficient, selective, and high-yielding 

but that are also environmentally benign is one of the challenge chemists are facing.1,2 During the 

last decades, the topic of “green” chemistry has received increasing attention.1-4 “Green” 

chemistry aims at the total elimination or at least the minimization of generated waste and the 

implementation of sustainable processes through the adoption of 12 fundamental principles. An 

alternative strategy to reduce the E-factor of reactions and their impact on the environment is to 

conduct them under solvent-free conditions. Solvent-free reactions have attracted considerable 

attention due to environmental safety, the economic viewpoint, easy work-up, high yields of the 

products and (usually) their short reaction times.5-10 
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The formation of benzene rings from alkynes, named the Reppe cyclotrimerization,11 has 

been well known as a useful method and intensively studied in the last fifty years because of the 

difficulty in obtaining functionalized aromatic compounds.12-20 However, most of these protocols 

suffer from the need of using precious metal catalysts, lower yields or harsh operating conditions, 

and mixtures of 1,3,5- and 1,2,4-trisubstituted benzenes are obtained in general. Recently, we 

reported that a novel indium(III)-catalyzed cyclotrimerization of alkynes in the presence of 2-

iodophenol gave 1,3,5-substituted benzenes with complete regioselectivity. However, the 

indium(III)-catalyzed cyclotrimerization was less successful with alkynylsilanes (only 15% yield 

of 2a) and needed to be carried out in sealed tubes.21 Meanwhile, considering their expensive 

nature, inadequate accessibility, toxicity of the additives often used, the generation of toxic waste 

and the use of organic solvent as well as harsh conditions, there is an urgent need to develop a 

powerful method with a high regioselectivity to meet the requirement of green chemistry. Here 

we describe a green approach towards the regioselective synthesis of 1,3,5-trisubstituted 

benzenes via the p-TsOH·H2O-catalyzed22-28 trimerization of alkynes under solvent-free 

conditions. 

 

 

Results and Discussion 

 

In order to identify the optimal reaction conditions, 1-phenyl-2-trimethylsilylacetylene 1a was 

chosen as a model substrate. Firstly, the cyclotrimerization was carried out in the presence of 10 

mol% TfOH under solvent-free conditions and the desired product 2a was isolated in 53% yield 

(Table 1, entry 1). The reaction using TFA, CAN, H2SO4, HNO3 and H3PO4 as catalysts 

produced 2a only in low yields (Table 1, entries 2, 3 and 10-12). Changing the catalyst to p-

TsOH·H2O furnished the product 2a in 68% yield (Table 1, entry 6). Furthermore, a higher yield 

was obtained when the amount of p-TsOH·H2O was increased from 0.1 equiv to 0.5 equiv or 1.0 

equiv (Table 1, entries 7 and 8). Other catalysts such as oxalic acid, AcOH, HCl, or Lewis acids 

did not promote the cyclotrimerization reaction (Table 1, entries 4, 5, 9 and 13-16). 

Encouraged by the efficiency of the reaction protocol described above, the scope of the 

substrate was investigated. Typical results are shown in Table 2. The aromatic alkynylsilane 1c 

possessing an electron-donating group at the benzene ring (R1
 = 4-MeOC6H4) reacted smoothly 

and afforded the desired product 2b in 95% yield (Table 2, entry 3). Substrates 1i and 1j 

possessing electron-withdrawing groups (R1
 = 4-FC6H4, 4-BrC6H4) at the benzene ring were also 

successfully employed in the cyclotrimerization and gave the benzene derivatives 2f and 2g in 

78% and 82% yields, respectively (Table 2, entries 9 and 10). Significantly, the desired products 

could be obtained in higher yields from electron rich than from electron poor alkynylsilanes. 

Moreover, the desilylative cyclotrimerizations of the aromatic alkynylsilanes 1e, 1g, 1h and 1l 

(R1
 = 4-MeC6H4, 4-EtC6H4, 4-n-PrC6H4 and 3-MeC6H4) also proceeded smoothly to afford 

benzene derivatives 2c, 2d, 2e and 2h in high yields with complete regioselectivity (Table 2, 

entries 5, 7, 8 and 12). However, the comparable treatment of 1m did not form the desired 
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benzene derivative 2i (Table 2, entry 13), presumably due to the steric effect of the substituent in 

the ortho-position of 1m. Cicero has also reported that 1-ethynyl-2,6-dimethoxybenzene failed to 

afford 1,3,5-tri(2,6-dimethoxyphenyl)benzene and/or 1,2,4-tri(2,6-dimethoxyphenyl)benzene in 

the presence of vanadium phthalocyanine.29 In addition, the aliphatic alkynylsilanes 1n, 1p and 

internal alkyl alkyne 1o in the presence of 1.0 equiv p-TsOH·H2O also underwent a 

cyclotrimerization smoothly to give the products 2j, 2l and 2k in 83%, 86%, and 85% yields, 

respectively (Table 2, entries 14-16). Furthermore, the terminal alkynes 1b, 1d, 1f and 1k also 

gave the desired results, providing the benzene derivatives in high yields (Table 2, entries 2, 4, 6 

and 11). 

 

Table 1. Screening of catalysts for the cyclotrimerization of 1-phenyl-2-trimethylsilylacetylenea 

 

 
 

Entry Catalyst Yield (%)b 

1 TfOH 53 

2 TFA 20 

3 CAN 15 

4 Oxalic acid 0 

5 AcOH 0 

6 p-TsOH·H2O 68 

7 p-TsOH·H2O (0.5 equiv) 79 

8 p-TsOH·H2O (1.0 equiv) 90 

9 HCl 0 

10 H2SO4
 20 

11 HNO3
 28 

12 H3PO4
 30 

13 ZnCl2
 0 

14 InCl3
 0 

15 FeCl3
 0 

16 Cu(OTf)2
 0 

aReaction conditions: the reactions were carried out using 1a (0.6 mmol) and catalyst (10 mol%) 

at 60 oC for 3 h and then at 140 oC for 10 h. bIsolated yield of pure product based on 1a. 
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Table 2. Solvent-free synthesis of substituted benzenes 2 catalyzed by p-TsOH·H2O
 a 

 

 
 

Entry Alkyne Product Time/hb Yield (%)c 

1 1a: R1 = Ph; R2 = TMS 2a R3 = H 13 90 

2 1b: R1 = Ph; R2 = H 2a R3 = H 14 87 

3 
1c: R1 = 4-MeOC6H4; 

R2 = TMS 
2b R3 = H 11 95 

4 
1d: R1 = 4-MeOC6H4; 

R2 = H 
2b R3 = H 13 94 

5 
1e: R1 = 4-MeC6H4; R

2 

= TMS 
2c R3 = H 14 91 

6 
1f: R1 = 4-MeC6H4; R

2 

= H 
2c R3 = H 15 89 

7 
1g: R1 = 4-EtC6H4; R

2 = 

TMS 
2d R3 = H 15 88 

8 
1h: R1 = 4-n-PrC6H4; R

2 

= TMS 
2e R3 = H 19 90 

9 
1i: R1 = 4-FC6H4; R

2 = 

TMS 
2f R3 = H 24 78 

10 
1j: R1 = 4-BrC6H4; R

2 = 

TMS 
2g R3 = H 22 82 

11 
1k: R1 = 4-BrC6H4; R

2 = 

H 
2g R3 = H 24 80 

12 
1l: R1 = 3-MeC6H4; R

2 = 

TMS 
2h R3 = H 20 83 

13 
1m: R1 = 2-MeOC6H4; 

R2 = TMS 
2i R3 = H 24 0 

14 1n: R1 = Et; R2 = TMS 2j R3 = H 23 83 

15d 1o: R1 = Me; R2 = Me 2k R3 = Me 21 85 
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Table 2. Continued 

Entry Alkyne Product Time/hb Yield (%)c 

16 1p: R1 = i-Pr; R2 = TMS 2l R3 = H 20 86 

aReaction conditions: 0.6 mmol of 1, 0.6 mmol of p-TsOH·H2O, 60 oC for 3 h, then 140 oC for 

the rest of the time. bReaction time used in all. cIsolated yield of pure product based on 1. dThe 

reaction was carried out in a sealed tube. 

 

 
 

 

Scheme 1. Proposed rationale for the cyclotrimerisation of phenylacetylene. 
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A possible rationale for the p-TsOH catalyzed cyclotrimerization of arylalkynes (here 

exemplified for phenylacetylene 1b) is proposed in Scheme 1. Initially, p-TsOH attacks 1b to 

form 1-phenylethenyl tosylate, which is subsequently hydrolyzed to form the enol 4 of 

acetophenone (5a).30-31 The latter undergoes an acid-catalyzed aldol reaction/condensation 

sequence to form intermediate 6, which finally, via 6π-electrocyclization followed by water 

elimination, yields 1,3,5-triphenylbenzene (2a).32 

In order to verify our rationale, some intermediate ketones were isolated and tested under the 

same conditions. A satisfactory result was obtained as we had expected (Scheme 2).33 

 

 

 

Scheme 2. Synthesis of substituted benzenes 2 from intermediate ketones 5. 

 

 

 

Conclusions 

 

In conclusion, we have developed an environmentally friendly, economical and efficient method 

for cyclotrimerization of alkynes under solvent-free conditions in the presence of p-TsOH·H2O. 

The major advantages of the method lie in the cheap catalyst, easy work-up and avoidance of the 
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use of toxic solvents such as DMF, DMSO, CH3CN and toluene. Air-tolerant and atom-

economical characteristics of the method accord with the concept of modern green chemistry and 

will be appealing for industries. 

 

 

Experimental Section 

 

General. All compounds are commercially available and were used without further purification. 

NMR spectra were recorded on a Bruker AVANCE DPX-400 or Bruker AVANCE DRX-500 

instrument with TMS as an internal reference. MS measurements were performed on Bruker 

Reflex III mass spectrometer (ESI). Elemental analyses were carried out with an Elementar 

Vario Micro Cube in the School of Chemistry & Chemical Engineering of Guangxi Normal 

University, China. Flash chromatography was performed with QingDao silica gel (300–400 

mesh). 

 

General procedure for the cyclotrimerization of alkynes 1. To a 10 mL flask, alkynes (0.6 

mmol) and p-TsOH·H2O (1.0 equiv) were successively added. The mixture was stirred at 60 oC 

for 3 h and at 140 oC for the rest of the time, which was monitored periodically by TLC. After 

completion of the reaction, the reaction mixture was neutralized by saturated NaHCO3, and then 

extracted with CH2Cl2 (3 × 20 mL). The combined organic layers were dried by anhydrous 

MgSO4, filtered, and concentrated in vacuo. The residue was purified by flash column 

chromatography (PE/EA) and gave the corresponding products. 

 

General procedure from alkynes 1 to ketones 5. To a 10 mL flask, alkynes (0.6 mmol) and p-

TsOH·H2O (1.0 equiv) were successively added. The mixture was stirred at 60 oC for 3 h, which 

was monitored periodically by TLC. After completion of the reaction, the reaction mixture was 

neutralized by saturated NaHCO3, and then extracted with CH2Cl2 (3 × 20 mL). The combined 

organic layers were dried by anhydrous MgSO4, filtered, and concentrated in vacuo. The residue 

was purified by flash column chromatography (PE/EA) and gave the corresponding ketones 5. 

1,3,5-Triphenylbenzene (2a). White solid, mp 172-174 oC (lit.21, 32 170-172 oC). 1H NMR (500 

MHz, CDCl3): δ = 7.41 (t, J = 7.2 Hz, 3H), 7.50 (t, J = 7.3 Hz, 6H), 7.72 (d, J 7.3 Hz, 6H), 7.81 

(s, 3H). 13C NMR (125 MHz, CDCl3): δ 125.2, 127.4, 127.5, 128.8, 141.2, 142.4. MS: [M+H+] 

307. 

1,3,5-Tris(4-methoxyphenyl)benzene (2b). White solid, mp 142-143 oC (lit.34 140-142 oC). 1H 

NMR (500 MHz, CDCl3): δ 3.88 (s, 9H), 7.02 (d, J 8.6 Hz, 6H), 7.63 (d, J 8.6 Hz, 6H), 7.67 (s, 

3H). 13C NMR (CDCl3, 125 MHz): δ 55.4, 114.3, 123.8, 128.3, 133.9, 141.8, 159.3. MS: [M+H+] 

397. 

1,3,5-Tris(4-methylphenyl)benzene (2c). Pale yellow solid, mp 175-176 oC (lit.35 177-178 oC). 
1H NMR (500 MHz, CDCl3): δ 2.42 (s, 9H), 7.29 (d, J 7.8 Hz, 6H), 7.60 (d, J 8.0 Hz, 6H), 7.73 

http://www.ceas.org.cn/yjsbsh/ShowArticle.asp?ArticleID=6120
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(s, 3H). 13C NMR (125 MHz, CDCl3): δ 21.1, 124.6, 127.2, 129.5, 137.3, 138.4, 142.2. MS: 

[M+H+] 349. 

1,3,5-Tris(4-ethylphenyl)benzene (2d). Pale yellow solid, mp 111-113 oC (lit.36 114 oC). 1H 

NMR (500 MHz, CDCl3): δ 1.31 (t, J 7.6 Hz, 9H), 2.74 (q, J 7.6 Hz, 6H), 7.33 (d, J 7.8 Hz, 6H), 

7.63 (d, J 7.9 Hz, 6H), 7.76 (s, 3H). 13C NMR (CDCl3, 125 MHz): δ 15.6, 28.6, 124.6, 127.3, 

128.3, 138.7, 142.2, 143.6. MS: [M+H+] 391. 

1,3,5-Tris(4-n-propylphenyl)benzene (2e). Pale yellow solid, mp 141-143 oC (lit.21 142-143 
oC). 1H NMR (500 MHz, CDCl3): δ 1.00 (t, J 7.3 Hz, 9H), 1.75-1.67 (m, 6H), 2.69-2.64 (m, 6H), 

7.30 (d, J 8.0 Hz, 6H), 7.63 (d, J 8.1 Hz, 6H), 7.76 (s, 3H). 13C NMR (CDCl3, 125 MHz): δ 13.9, 

24.6, 37.7, 124.6, 127.1, 128.9, 138.6, 142.0, 142.1. MS: [M+H+] 433. 

1,3,5-Tris(4-fluorophenyl)benzene (2f). Yellow solid, mp 238-239 oC (lit.32 238-240 oC). 1H 

NMR (500 MHz, CDCl3): δ 7.17 (t, J 8.7 Hz, 6H), 7.66-7.62 (m, 6H) 7.67 (s, 3H). 13C NMR 

(125 MHz, CDCl3): δ 115.69 and 115.86, 124.87, 128.87 and 128.93, 137.03 and 137.05, 141.57, 

161.74 and 163.70. MS: [M+H+] 361. 

1,3,5-Tris(4-bromophenyl)benzene (2g). Yellow solid, mp 261-263 oC (lit.32 260-261 oC). 1H 

NMR (500 MHz, CDCl3): δ 7.54 (d, J 8.1 Hz, 6H), 7.61 (d, J 8.2 Hz, 6H), 7.69 (s, 3H). 13C NMR 

(125 MHz, CDCl3): δ 122.1, 125.0, 129.0, 132.1, 139.7, 141.6. MS: [M+H+] 544, 542. 

1,3,5-Tris(3-methylphenyl)benzene (2h). White solid, mp 117-118 oC (lit.37 116.8-118.1 oC). 
1H NMR (500 MHz, CDCl3): δ 2.46 (s, 9H), 7.22 (d, J 7.5 Hz, 3H), 7.38 (t, J 7.6 Hz, 3H), 7.51 

(d, J 7.6 Hz, 6H), 7.76 (s, 3H). 13CNMR (125 MHz, CDCl3): δ 21.5, 124.5, 125.1, 128.2, 128.3, 

128.7, 138.4, 141.3, 142.4. MS: [M+H+] 349. 

1,3,5-Triethylbenzene (2j).21 Yellow oil. 1H NMR (500 MHz, CDCl3): δ 1.34 (t, J 7.6 Hz, 9H), 

2.71 (q, J 7.6 Hz, 6H), 6.96 (s, 3H). 13C NMR (125 MHz, CDCl3): δ 15.6, 28.9, 124.8, 144.2. 

MS: [M+H+] 163. 

Hexamethylbenzene (2k). White solid, mp 162-164 oC (lit.21 162-164 oC). 1H NMR (500 MHz, 

CDCl3): δ 2.24 (s, 18H). 13C NMR (125 MHz, CDCl3): δ 16.8, 132.0. MS: [M+H+] 163. 

1,3,5-Tri(isopropyl)benzene (2l).21 Pale yellow oil. 1H NMR (500 MHz, CDCl3): δ 1.36 (d, J 

7.0 Hz, 18H), 3.02-2.94 (m, 3H), 7.01 (s, 3H). 13C NMR (125 MHz, CDCl3): δ 24.1, 34.3, 122.1, 

148.7. MS: [M+H+] 205. 

Acetophenone (5a).38 Colourless oil. 1H NMR (500 MHz, CDCl3): δ 2.58 (s, 3H), 7.44-7.42 (m, 

2H), 7.54-7.53 (m, 1H), 7.99-7.85 (m, 2H). 13C NMR (125 MHz, CDCl3): δ 26.1, 127.8, 128.1, 

132.6, 136.6, 197.5. MS: [M+H+] 121. 

1-(4-Methoxyphenyl)ethanone (5b).38 Colourless oil. 1H NMR (500 MHz, CDCl3): δ 2.56 (s, 

3H), 3.87 (s, 3H), 6.93 (d, J 8.8 Hz, 2H), 7.94 (d, J 8.8 Hz, 2H). 13C NMR (125 MHz, CDCl3): δ 

26.3, 55.4, 113.7, 130.4, 130.6, 163.5, 196.8. MS: [M+H+] 151. 

1-(4-Fluorophenyl)ethanone (5f).38 Colourless oil. 1H NMR (500 MHz, CDCl3): δ 2.58 (s, 3H), 

7.16-7.09 (m, 2H), 8.02-7.94 (m, 2H). 13C NMR (125 MHz, CDCl3): δ 26.5, 115.52 and 115.69, 

130.86 and 130.94, 133.5, 164.7, 166.7, 196.5. MS: [M+H+] 139. 
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