Efficient synthesis of novel A-ring-substituted 1,2,3triazolylcholestane derivatives via catalytic azide-alkyne cycloaddition

Zalán Kádár, ${ }^{\text {a }}$ Éva Frank, ${ }^{\text {a }}$ Gyula Schneider, ${ }^{\text {a }}$ Judit Molnár, ${ }^{\text {b }}$ István Zupkó, ${ }^{\text {b }}$ János Kóti, ${ }^{\text {c }}$ Bruno Schönecker, ${ }^{\text {d }}$ and János Wölflinga,*
${ }^{a}$ Department of Organic Chemistry, University of Szeged, Dóm tér 8, H-6720 Szeged, Hungary ${ }^{b}$ Department of Pharmacodynamics and Biopharmacy, University of Szeged, Eötvös u. 6, H-6720 Szeged, Hungary
${ }^{\text {c}}$ Spectroscopic Research Division, Gedeon Richter Ltd., Gyömrői út 19-21, H-1103 Budapest, Hungary
${ }^{d}$ Institute of Organic Chemistry and Macromolecular Chemistry, Friedrich Schiller University Jena, Humboldtstr. 10, D-07743 Jena, Germany
E-mail: wolfling@chem.u-szeged.hu

Dedicated to Professor Rainer Beckert on the occasion of his $60^{\text {th }}$ birthday

DOI: http://dx.doi.org/10.3998/ark.5550190.0013.320

Abstract

A simple and convenient synthetic route is reported for the formation of novel $2 \alpha-$ triazolylcholestane derivatives. The scheme involves transformation of the starting cholestanone to the corresponding azido compound and efficient conversions of 2α-azido- 5α-cholestan- 3 -one (3) with various terminal alkynes through use of the 'click' chemistry approach. Finally, the oxo group of these heterocyclic steroidal derivatives was reduced, and the resultant mixtures of epimeric triazolyl alcohols were separated. The antiproliferative activities of the synthesized 2-triazolyl-3-ketones against three human cancer cell lines were screened. Nevertheless, only a few of the tested compounds exerted moderate cell-growth inhibition.

Keywords: Click chemistry, steroid azides, triazoles, cholestanone, cycloaddition

Introduction

In the past few years, 'click' chemistry has become an increasingly attractive area in organic chemistry, as evidenced by a huge number of related publications. Click chemistry refers to a group of reactions that are fast, simple to use, versatile, regiospecific, and give high product
yields. While there are a number of reactions that fulfil the Sharpless criteria, the Cu-catalysed azide-alkyne 1,3-dipolar cycloaddition (CuAAC) is perhaps the best-known example of this group. The 1,2,3-triazole unit that results from the reaction has certain advantageous properties, such as high chemical stability, good hydrogen-bond-accepting ability, a strong dipole moment and an aromatic character. ${ }^{1}$ Moreover, a number of compounds containing 1,2,3-triazoles have been reported to exert biological activity, including antibacterial, ${ }^{2}$ antiallergic ${ }^{3}$ and anti-HIV ${ }^{4}$ effects.

Since the first reports, ${ }^{5}$ several hundreds of articles exploring the synthetic possibilities of CuAAC have been published. Nevertheless, relatively few examples are to be found in the literature in which this reliable method is applied to steroid azides. ${ }^{6}$ The syntheses of some 21triazolyl derivatives of pregnenolone as potential anticancer agents were recently reported by Banday et al. ${ }^{7}$

In a continuation of our programme for the synthesis of steroidal heterocycles, ${ }^{8}$ we have attempted to develop an effective route for the production of various 2-triazolyl derivatives of cholestanone, $\mathbf{4 a - m}$, and their reduced forms $\mathbf{5 a - j}$ and $\mathbf{6 a - j}$. Since some steroid triazoles are known to exert antiproliferative activity, ${ }^{7,9}$ it was decided to screen these compounds in vitro for their activities against a panel of three human cancer cell lines (HeLa, MCF7 and A431). Herein, we wish to describe the details of the synthesis of 2α-azido- 5α-cholestan- 3 -one ($\mathbf{3}$), followed by Huisgen 1,3-dipolar cycloaddition with different terminal alkynes and subsequent reduction of the resultant triazolyl ketones.

Results and Discussion

For the preparation of novel steroid derivatives via copper(I)-catalysed azide-alkyne cycloaddition (CuAAC), 2α-azido- 5α-cholestan- 3 -one (3) was chosen as starting compound. The synthetic strategy for the preparation of the starting azide is illustrated in Scheme 1.

Scheme 1. Synthesis of 2α-azido- 5α-cholestan-3-one. Reagents and conditions: (a) $\mathrm{Br}_{2}, \mathrm{HBr}$, AcOH; (b) NaN_{3}, DMF, 8 h.
2α-Bromo- 5α-cholestan-3-one (2) was obtained via bromination from readily available cholestanone (1). ${ }^{10}$ After purification of the α-bromo ketone, the compound was stirred for 8 h in
the presence of sodium azide to provide the desired 2α-azido ketone (3) in good yield. Substitutions α to carbonyl groups are known to follow an $\mathrm{S}_{\mathrm{N}} 2$ mechanism, however in this particular case only 2α-azido ketone could be isolated. A base $\left(\mathrm{NaN}_{3}\right)$-catalysed epimerization of the unisolated 2β-azido ketone can be assumed. ${ }^{11}$

Several A-ring-substituted 1,2,3-triazolylcholestan-3-ones ($\mathbf{4 a - m}$) were synthesized in very good yields by the reactions of $\mathbf{3}$ with various terminal alkynes (Table 1).

Table 1. 1,3-Dipolar cycloaddition with terminal alkynes

Entry

[^0]Although there are a number of methods for generation of the active catalyst, ${ }^{12}$ one of the most common techniques was chosen. The copper(I) species was generated in situ by the reduction of copper(II) sulfate with sodium ascorbate. Furthermore, an unusual solvent system $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$ as a co-solvent with water) was used to eliminate the need for ligands and to simplify the reaction protocol. ${ }^{13}$

In all cases, total consumption of the starting compound was observed within $1.5-8 \mathrm{~h}$ at ambient temperature. The reactions were very selective, and the triazolyl ketones could generally be isolated in $84-92 \%$ yields; exceptions were $\mathbf{4 k}$ and $\mathbf{4 m}$ (75% and 73%, respectively). The trace quantities of copper and reagents remaining in the reaction mixtures were removed by flash chromatography.

Treatment of $\mathbf{4 a - j}$ with KBH_{4} in $\mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$ (4:1) resulted in two diastereomeric 3-hydroxy-2-triazolylcholestanes in an overall yield of $\sim 95 \%$. The mixture of epimers could be separated by flash chromatography to yield $\mathbf{5 a - j}(3 \alpha-\mathrm{OH})$ and $\mathbf{6 a - j}(3 \beta-\mathrm{OH})$ in a ratio of $\sim 1: 2$ (Table 2). A similar diastereomeric ratio was reported by Schönecker et al in the reduction of $2 \alpha-$ azidocholestan-3-one (3) with $\mathrm{LiBH}_{4} .{ }^{14}$

The structures of all synthesized compounds were confirmed by ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR measurements. The ${ }^{1} \mathrm{H}$ NMR spectra of $\mathbf{4 a}-\mathbf{h}$ and $\mathbf{4 1}-\mathbf{m}$ revealed the appearance of the new signals of the incorporated aryl groups at around $7-8 \mathrm{ppm}$ as compared with the spectra of the starting material (3), while the $5^{\prime}-\mathrm{H}$ singlet was identified at around $7.7-8.1 \mathrm{ppm}$. Furthermore, in the spectra of $\mathbf{4 i}-\mathbf{k}$, containing a cycloalkyl group, the aliphatic region was enriched by the signals of the appropriate CH_{2} and CH protons, and the singlet of $5^{\prime}-\mathrm{H}$ appeared at around 7.2 ppm.

As far as the reduced epimers are concerned, significant differences were observed. For $\mathbf{5 a - j}$ the broad $3-\mathrm{H}$ singlet was identified at around 4.4 ppm , while the signal of $2-\mathrm{H}$ appeared as a multiplet at around 4.7 ppm . Nevertheless, in the ${ }^{1} \mathrm{H}$ NMR spectra of $\mathbf{6 a}-\mathbf{j}$, both peaks proved to be multiplets, with chemical shifts of $\sim 4.1 \mathrm{ppm}(3-\mathrm{H})$ and $\sim 4.4 \mathrm{ppm}(2-\mathrm{H})$.

The exo-heterocyclic steroidal ketones $\mathbf{4 a - m}$ were tested in vitro on three malignant cell lines. None of the newly prepared compounds elicited greater than 50% inhibition of cancer cell proliferation, even at the higher applied concentration. Although there is no generally accepted threshold for efficacy, when the inhibition of cell growth is less than 25% at $30 \mu \mathrm{M}$, such a substance may be considered ineffective. ${ }^{15}$ Compound $4 \mathbf{a}$ exhibited a modest activity, which was eliminated by most of the substituents on the phenyl ring ($\mathbf{4 b} \mathbf{- 4 f}, \mathbf{4 h}$ and $\mathbf{4 l}$); only exception was the p-methoxy group ($\mathbf{4 g}$). Molecules containing a cycloalkyl group ($\mathbf{4} \mathbf{j}$ and $\mathbf{4 k}$) or a heteroaromatic substituent ($\mathbf{4 m}$) exerted limited activity, and these structural elements might therefore be advantageous for the design of further analogues with more pronounced antiproliferative properties (Table 3). Treatment with all of the other tested compounds ($\mathbf{4 b}-\mathbf{4 f}$, $\mathbf{4 h}-\mathbf{i}$ and 41) resulted in an inhibition of cancer cell proliferation lower than 25% on every utilized cell line.

Table 2. Reduction of 2α-triazolyl- 5α-cholestan-3-ones

${ }^{a}$ Yields of purified isolated products.

Table 3. Antiproliferative effects of some selected triazolyl ketones

Growth inhibition \% (\pm SEM)							
Product	$\mu \mathrm{M}$	HeLa		A431		MCF7	
4 a	10	16.5	(± 2.7)	13.1	(± 1.3)	9.0	(± 2.4)
	30	32.1	(± 1.6)	25.1	(± 1.4)	28.6	(± 2.2)
4 g	10	25.0	(± 2.6)	9.7	(± 1.1)	14.2	(± 2.2)
	30	40.9	(± 1.4)	21.4	($\pm 1.7)$	33.2	(± 1.2)
4j	10	10.9	(± 2.4)	4.1	($\pm 2.7)$	14.6	(± 2.1)
	30	32.3	(± 1.5)	23.3	(± 2.5)	26.0	(± 2.4)
4k	10	3.7	(± 2.6)	6.7	(± 2.8)	3.6	(± 2.2)
	30	29.7	(± 2.3)	19.1	(± 2.3)	25.7	(± 2.4)
4m	10	16.8	(± 2.6)	2.3	(± 0.8)	1.2	(± 1.6)
	30	43.5	(± 2.3)	36.3	(± 0.4)	29.5	(± 1.6)
Cisplatin	10	42.6	(± 2.3)	88.6	(± 0.5)	53.0	($\pm 2.3)$
	30	99.9	(± 0.3)	90.2	(± 1.8)	86.9	(± 1.3)

Conclusions

In conclusion, the efficient syntheses of several A-ring-substituted 1,2,3-triazolylcholestane derivatives were achieved by means of Huisgen 1,3-dipolar cycloaddition. The fast and reliable reactions were carried out under mild conditions that furnished the desired compounds in very good yields. An unusual, two-phase solvent system was applied to increase the solubility of the steroid and to eliminate the need for ligands. The cycloadducts were tested in vitro as concerns their antiproliferative activities, however just a few derivatives displayed limited cell growth inhibition. According to our observations different structural elements on the heteroring might have an impact on the cytostatic effects. Cycloalkyl group or a heteroaromatic substituent on the triazole moiety is generally favoured over substitution with aryl rings. The application of 'click chemistry' to further sterane skeletons is in progress and the promising results will be reported in due course.

Experimental Section

General. Melting points (mp) were determined on a Kofler block and are uncorrected. Specific rotations were measured in $\mathrm{CHCl}_{3}(c 1)$ at $20{ }^{\circ} \mathrm{C}$ with a POLAMAT-A (Zeiss-Jena) polarimeter and are given in units of $10^{-1} \mathrm{deg} \mathrm{cm}^{2} \mathrm{~g}^{-1}$. The reactions were monitored by TLC on Kieselgel-G (Merck Si 254 F) layers (0.25 mm thick); solvent systems (ss): (A) $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{EtOAc}$ ($95: 5 \mathrm{v} / \mathrm{v}$), (B) $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{EtOAc}(85: 15 \mathrm{v} / \mathrm{v})$.

The spots were detected by spraying with 5% phosphomolybdic acid in 50% aqueous phosphoric acid. The R_{f} values were determined for the spots observed by illumination at 254 and 365 nm . Flash chromatography: Merck silica gel $60,40-63 \mu \mathrm{~m}$. All solvents were distilled prior to use. Elementary analysis data were determined with a PerkinElmer CHN analyzer model 2400. IR spectra were recorded on a PerkinElmer FT-IR Spectrum 100. NMR spectra were recorded on a Bruker DRX 500 instrument at 500 MHz (${ }^{1} \mathrm{H}$ NMR) or $125 \mathrm{MHz}\left({ }^{13} \mathrm{C}\right.$ NMR). Chemical shifts are reported in ppm (δ scale), and coupling constants (J) in Hz. For the determination of multiplicities, the J-MOD pulse sequence was used.

Synthesis of $\mathbf{2 \alpha}$-azido- $\mathbf{5} \alpha$-cholestan-3-one (3). To a solution of 2α-bromo- 5α-cholestan-3-one 2 ($931 \mathrm{mg}, 2 \mathrm{mmol}$) in 20 mL DMF was added sodium azide ($195 \mathrm{mg}, 3 \mathrm{mmol}$). The reaction mixture was stirred at $40^{\circ} \mathrm{C}$ for 8 h and then poured into water. The precipitate that formed was filtered off and washed with water. Purification by column chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} /\right.$ hexane $\left.1: 1\right)$ afforded 3 as a white solid ($720 \mathrm{mg}, 84 \%$), mp $146-148{ }^{\circ} \mathrm{C}$ (lit. ${ }^{16} \mathrm{mp} 147-150{ }^{\circ} \mathrm{C}$). The spectroscopic data were consistent with those reported in the literature.

General procedure for the preparation of ($\mathbf{4 a - m}$)

Compound 3 ($428 \mathrm{mg}, 1 \mathrm{mmol}$) was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$, and a solution of $\mathrm{CuSO}_{4} \cdot 5 \mathrm{H}_{2} \mathrm{O}(12.5 \mathrm{mg}, 5 \mathrm{~mol} \%)$ and sodium ascorbate ($30 \mathrm{mg}, 15 \mathrm{~mol} \%$) in water (10 mL) was poured into the organic phase. The appropriate terminal alkyne (1 mmol) was added to the reaction mixture, which was then stirred for 2-6 h at ambient temperature. After the consumption of the starting material (TLC monitoring), the two-phase solution was diluted with water (30 mL) and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 30 \mathrm{~mL})$. The combined organic layers were washed with water, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporated in vacuo. The resulting crude product was purified by flash chromatography with $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{EtOAc}(98: 2)$ as eluent.
$\mathbf{2 \alpha - (4 - P h e n y l - 1 H - 1 , 2 , 3 - t r i a z o l - 1 - y l) - 5 \alpha - c h o l e s t a n - 3 - o n e ~ (4 a) . ~ A l k y n e : ~ p h e n y l a c e t y l e n e ~ (0 . 1 1 ~}$ mL). After purification, $\mathbf{4 a}$ was obtained as a white solid ($482 \mathrm{mg}, 91 \%$), $\mathrm{mp} 171-173{ }^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{f}}=$ 0.58 (ss A); $[\alpha]_{\mathrm{D}}{ }^{20}+65$ (c 1 in CHCl_{3}), IR (KBr): 2928, 1731, 1612, 1466, 1441, 1381, 1233, 1047, 765, $695 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$); $\delta[\mathrm{ppm}]=0.67\left(\mathrm{~s}, 3 \mathrm{H}, 18-\mathrm{H}_{3}\right), 0.85-0.9$ (overlapping multiplets, $9 \mathrm{H}, 21-$, 26- and $27-\mathrm{H}_{3}$), $1.21\left(\mathrm{~s}, 3 \mathrm{H}, 19-\mathrm{H}_{3}\right), 2.34(\mathrm{dd}, 1 \mathrm{H}, J=14 \mathrm{~Hz}$ and $J=3.5 \mathrm{~Hz}$), $5.53(\mathrm{dd}, 1 \mathrm{H}, J=13.5 \mathrm{~Hz}$ and $J=5.5 \mathrm{~Hz}, 2-\mathrm{H}), 7.32(\mathrm{t}, 1 \mathrm{H}, J=7.5 \mathrm{~Hz}, 4 "-\mathrm{H})$, $7.41\left(\mathrm{t}, 2 \mathrm{H}, J=7.5 \mathrm{~Hz}, 3 "\right.$ - and $5 "-\mathrm{H}$), 7.84-7.86 (overlapping multiplets, $3 \mathrm{H}, 5$ ' $-\mathrm{H}, 2$ " ${ }^{\prime}$ - and 6 "$\mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$); $\delta[\mathrm{ppm}]=12.0(\mathrm{C}-18), 12.4(\mathrm{C}-19), 18.6(\mathrm{C}-21), 21.6,22.5$ and 22.8 (C-26 and C-27), 23.8, 24.2, 28.0, 28.2, 28.5, 31.5, 34.9, 35.7, 36.1, 37.4, 39.5, 39.7, 42.6, 43.9, 47.0, 47.9, 53.7, 56.1, 56.2, 65.1 (C-2), 119.8 (C-5'), 125.7 (2C, C-2" and C-6") 128.0 (C-4"), 128.7 (2C, C-3" and C-5"), 130.7 (C-1"), 147.6 (C-4'), 202.6 (C-3); Anal. Calcd for $\mathrm{C}_{35} \mathrm{H}_{51} \mathrm{~N}_{3} \mathrm{O}: \mathrm{C}, 79.35$; H, 9.70; N, 7.93. Found: C, 79.54; H, 9.63; N, 8.05.
$\mathbf{2 \alpha - [4 - (4 - T o l y l) - 1 H - 1 , 2 , 3 - t r i a z o l - 1 - y l] - 5 \alpha - c h o l e s t a n - 3 - o n e ~ (4 b) . ~ A l k y n e : ~ 4 - t o l y l a c e t y l e n e ~ (~} 0.13$ mL). After purification, $\mathbf{4 b}$ was obtained as a white solid ($500 \mathrm{mg}, 92 \%$), mp 177-179 ${ }^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{f}}=$ 0.60 (ss A); $[\alpha]_{\mathrm{D}}{ }^{20}+46$ ($c 1$ in CHCl_{3}), IR (KBr): 2930, 1728, 1497, 1467, 1446, 1385, 1239,

1187, 1052, 835, $801 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$); $\delta[\mathrm{ppm}]=0.67\left(\mathrm{~s}, 3 \mathrm{H}, 18-\mathrm{H}_{3}\right), 0.85-0.9$ (overlapping multiplets, $9 \mathrm{H}, 21-$, 26- and $27-\mathrm{H}_{3}$), $1.21\left(\mathrm{~s}, 3 \mathrm{H}, 19-\mathrm{H}_{3}\right), 2.33(\mathrm{dd}, 1 \mathrm{H}, J=14 \mathrm{~Hz}$ and $J=3.5 \mathrm{~Hz}$), $2.37\left(\mathrm{~s}, 3 \mathrm{H}, 4 "-\mathrm{H}_{3}\right), 5.53(\mathrm{dd}, 1 \mathrm{H}, J=13.5 \mathrm{~Hz}$ and $J=5.5 \mathrm{~Hz}, 2-\mathrm{H}), 7.22(\mathrm{~d}, 2 \mathrm{H}$, $J=8 \mathrm{~Hz}, 3 "$ - and $5 "-\mathrm{H}), 7.73\left(\mathrm{~d}, 2 \mathrm{H}, J=8 \mathrm{~Hz}, 2^{\prime \prime}\right.$ - and $\left.6 "-\mathrm{H}\right), 7.78\left(\mathrm{~s}, 1 \mathrm{H}, 5^{\prime}-\mathrm{H}\right) ;{ }^{13} \mathrm{C}$ NMR (125 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) ; \delta[\mathrm{ppm}]=12.0(\mathrm{C}-18), 12.4(\mathrm{C}-19), 18.6(\mathrm{C}-21), 21.3\left(4 "-\mathrm{CH}_{3}\right), 21.5,22.5$ and 22.8 (C-26 and C-27), 23.8, 24.1, 28.0, 28.2, 28.4, 31.5, 34.9, 35.7, 36.1, 37.3, 39.5, 39.6, 42.5, 43.9, 47.0, 47.9, 53.6, 56.0, 56.1, 65.1 (C-2), 119.4 (C-5'), 125.7 (2C, C-2" and C-6"), 127.9 (C$1 "), 129.4$ (2C, C-3" and C-5"), 137.8 (C-4"), 147.7 (C-4'), 202.8 (C-3); Anal. Calcd for $\mathrm{C}_{36} \mathrm{H}_{53} \mathrm{~N}_{3} \mathrm{O}: \mathrm{C}, 79.51$; H, 9.82; N, 7.73. Found: C, 79.60; H, 9.61; N, 7.85.
$\mathbf{2 \alpha}$-[4-(3-Tolyl)-1H-1,2,3-triazol-1-yl]-5 $\boldsymbol{\alpha}$-cholestan-3-one (4c). Alkyne: 3-tolylacetylene (0.13 mL). After purification, $\mathbf{4 c}$ was obtained as a white solid ($495 \mathrm{mg}, 91 \%$), $\mathrm{mp} 172-174{ }^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{f}}=$ 0.62 (ss A); $[\alpha]_{\mathrm{D}}{ }^{20}+54\left(c 1\right.$ in CHCl_{3}), IR (KBr): 2946, 1732, 1612, 1591, 1469, 1445, 1383, $1228,1054,793 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$); $\delta[\mathrm{ppm}]=0.67\left(\mathrm{~s}, 3 \mathrm{H}, 18-\mathrm{H}_{3}\right), 0.85-0.9$ (overlapping multiplets, $9 \mathrm{H}, 21-$, 26- and $27-\mathrm{H}_{3}$), $1.21\left(\mathrm{~s}, 3 \mathrm{H}, 19-\mathrm{H}_{3}\right), 2.34(\mathrm{dd}, 1 \mathrm{H}, J=14 \mathrm{~Hz}$ and $J=3.5 \mathrm{~Hz}), 2.39\left(\mathrm{~s}, 3 \mathrm{H}, 3 "-\mathrm{H}_{3}\right), 5.53(\mathrm{dd}, 1 \mathrm{H}, J=13.5 \mathrm{~Hz}$ and $J=6 \mathrm{~Hz}, 2-\mathrm{H}), 7.13(\mathrm{~d}, 1 \mathrm{H}, J$ $=7.5 \mathrm{~Hz}, 4 "-\mathrm{H}), 7.30(\mathrm{t}, 1 \mathrm{H}, J=7.5 \mathrm{~Hz}, 5 "-\mathrm{H}), 7.61(\mathrm{~d}, 1 \mathrm{H}, J=7.5 \mathrm{~Hz}, 6 "-\mathrm{H}), 7.70(\mathrm{~s}, 1 \mathrm{H}, 2 "-$ H), $7.81\left(\mathrm{~s}, 1 \mathrm{H}, 5^{\prime}-\mathrm{H}\right) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$); $\delta[\mathrm{ppm}]=12.0(\mathrm{C}-18), 12.4(\mathrm{C}-19), 18.6$ (C-21), 21.4 (3"-CH3), 21.5, 22.5 and 22.8 (C-26 and C-27), 23.8, 24.1, 28.0, 28.2, 28.4, 31.5, $34.9,35.7,36.1,37.3,39.5,39.6,42.5,43.9,47.0,47.9,53.6,56.0,56.1,65.1$ (C-2), 119.7 (C5^{\prime}), ($122.8,126.4,128.6,128.8$): (4C, C-2", C-4", C-5", C-6"), 130.5 (C-1"), 138.4 (C-3"), 147.7 (C-4'), 202.7 (C-3); Anal. Calcd for $\mathrm{C}_{36} \mathrm{H}_{53} \mathrm{~N}_{3} \mathrm{O}: \mathrm{C}, 79.51 ; \mathrm{H}, 9.82$; N, 7.73. Found: C, 79.62; H, 9.95; N, 7.65.

2 α-[4-(4-Ethylphenyl)-1H-1,2,3-triazol-1-yl]-5 α-cholestan-3-one (4d). Alkyne: 4ethylphenylacetylene (0.14 mL). After purification, $4 \mathbf{d}$ was obtained as a white solid $(491 \mathrm{mg}$, 88%), mp 183-185 ${ }^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{f}}=0.64$ (ss A); $[\alpha]_{\mathrm{D}}{ }^{20}+48$ (c 1 in CHCl_{3}), IR (KBr): 2931, 1737, 1466, $1443,1383,1221,1191,1063,835,822 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) ; \delta[\mathrm{ppm}]=0.67(\mathrm{~s}$, $3 \mathrm{H}, 18-\mathrm{H}_{3}$), 0.85-0.9 (overlapping multiplets, $9 \mathrm{H}, 21-$, $26-$ and $27-\mathrm{H}_{3}$), $1.21\left(\mathrm{~s}, 3 \mathrm{H}, 19-\mathrm{H}_{3}\right), 1.26$
 $\left.\mathrm{CH}_{2}\right), 5.53(\mathrm{dd}, 1 \mathrm{H}, J=13.5 \mathrm{~Hz}$ and $J=5.5 \mathrm{~Hz}, 2-\mathrm{H}), 7.25(\mathrm{~d}, 2 \mathrm{H}, J=8 \mathrm{~Hz}, 3 "-$ and $5 "-\mathrm{H}), 7.76$ $(\mathrm{d}, 2 \mathrm{H}, J=8 \mathrm{~Hz}, 2 "-$ and $6 "-\mathrm{H}), 7.79\left(\mathrm{~s}, 1 \mathrm{H}, 5^{\prime}-\mathrm{H}\right) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$); $\delta[\mathrm{ppm}]=$ $12.0(\mathrm{C}-18), 12.4(\mathrm{C}-19), 15.5\left(\mathrm{Et-CH}_{3}\right), 18.6(\mathrm{C}-21), 21.5,22.5$ and 22.8 (C-26 and C-27), 23.8, 24.1, 28.0, 28.2, 28.4, $28.6\left(\mathrm{Et-CH}_{2}\right)$, 31.5, 34.9, 35.7, 36.1, 37.3, 39.4, 39.6, 42.5, 43.9, 47.0, 47.9, 53.6, 56.0, 56.1, 65.1 (C-2), 119.4 (C-5'), 125.7 (2C, C-2" and C-6"), 128.1 (C-1"), 128.2 (2C, C-3" and C-5"), 144.2 (C-4"), 147.7 (C-4'), 202.7 (C-3); Anal. Calcd for $\mathrm{C}_{37} \mathrm{H}_{55} \mathrm{~N}_{3} \mathrm{O}$: C, 79.66; H, 9.94; N, 7.53. Found: C, 79.54; H, 10.02; N, 7.68.

2 α-[4-(4-Propylphenyl)-1H-1,2,3-triazol-1-yl]-5 α-cholestan-3-one (4e). Alkyne: 4propylphenylacetylene (0.16 mL). After purification, $\mathbf{4 e}$ was obtained as a white solid $(486 \mathrm{mg}$, 85%), mp $180-182{ }^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{f}}=0.72(\mathrm{ss} \mathrm{A}) ;[\alpha]_{\mathrm{D}}{ }^{20}+49$ (c 1 in CHCl_{3}), IR (KBr): 2949, 1734, 1466, $1444,1382,1232,1188,1054,798 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$); $\delta[\mathrm{ppm}]=0.67(\mathrm{~s}, 3 \mathrm{H}$, $18-\mathrm{H}_{3}$), 0.85-0.9 (overlapping multiplets, $9 \mathrm{H}, 21-$, $26-$ and $27-\mathrm{H}_{3}$), 0.95 (t, $3 \mathrm{H}, J=7.5 \mathrm{~Hz}, \mathrm{Pr}-$
$\left.\mathrm{CH}_{3}\right), 1.21\left(\mathrm{~s}, 3 \mathrm{H}, 19-\mathrm{H}_{3}\right), 2.34(\mathrm{dd}, 1 \mathrm{H}, J=14 \mathrm{~Hz}$ and $J=3.5 \mathrm{~Hz}), 2.61\left(\mathrm{t}, 2 \mathrm{H}, J=7.5 \mathrm{~Hz}, \mathrm{CH}_{3}{ }^{-}\right.$ $\left.\mathrm{CH}_{2}-\mathrm{CH}_{2}\right), 5.53(\mathrm{dd}, 1 \mathrm{H}, J=13.5 \mathrm{~Hz}$ and $J=5.5 \mathrm{~Hz}, 2-\mathrm{H}), 7.23(\mathrm{~d}, 2 \mathrm{H}, J=8 \mathrm{~Hz}, 3 "-$ and $5 "-\mathrm{H})$, $7.75\left(\mathrm{~d}, 2 \mathrm{H}, J=8 \mathrm{~Hz}, 2\right.$ "- and $\left.6^{\prime \prime}-\mathrm{H}\right), 7.78\left(\mathrm{~s}, 1 \mathrm{H}, 5^{\prime}-\mathrm{H}\right) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$); δ [ppm] $=12.0(\mathrm{C}-18), 12.4(\mathrm{C}-19), 13.8\left(\mathrm{Pr}^{2} \mathrm{CH}_{3}\right), 18.6(\mathrm{C}-21), 21.5,22.5$ and $22.8(\mathrm{C}-26$ and $\mathrm{C}-27)$, 23.8, 24.1, $24.4\left(\mathrm{CH}_{3}-\mathrm{CH}_{2}-\mathrm{CH}_{2}\right)$, 28.0, 28.2, 28.4, 31.5, 34.9, 35.7, 36.1, 37.3, $37.8\left(\mathrm{CH}_{3}-\mathrm{CH}_{2}-\right.$ CH_{2}), 39.4, 39.6, 42.5, 43.9, 47.0, 47.9, 53.6, 56.0, 56.1, 65.1 (C-2), 119.4 (C-5'), 125.6 (2C, C2" and C-6") 128.1 (C-1"), 128.8 (2C, C-3" and C-5"), 142.6 (C-4"), 147.7 (C-4'), 202.7 (C-3); Anal. Calcd for $\mathrm{C}_{38} \mathrm{H}_{57} \mathrm{~N}_{3} \mathrm{O}: \mathrm{C}, 79.81$; H, 10.05; N, 7.35. Found: C, 79.95; H, 9.92; N, 7.58.
$\mathbf{2 \alpha - [4 - (4 - T e r t - b u t y l p h e n y l) - 1 H - 1 , 2 , 3 - t r i a z o l - 1 - y l] - 5 \alpha - c h o l e s t a n - 3 - o n e ~ (4 f) . ~ A l k y n e : ~ 4 - t e r t - ~}$ butylphenylacetylene (0.18 mL). After purification, $\mathbf{4 f}$ was obtained as a white solid (539 mg , 92%), mp 188-190 ${ }^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{f}}=0.67$ (ss A); $[\alpha]_{\mathrm{D}}{ }^{20}+66\left(c 1 \mathrm{in}_{\mathrm{CHCl}}^{3}\right.$), IR (KBr): 2954, 1740, 1466, $1444,1381,1224,1190,1054,824 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) ; $\delta[\mathrm{ppm}]=0.67(\mathrm{~s}, 3 \mathrm{H}$, $18-\mathrm{H}_{3}$), 0.85-0.9 (overlapping multiplets, $9 \mathrm{H}, 21-$, $26-\mathrm{and} 27-\mathrm{H}_{3}$), $1.21\left(\mathrm{~s}, 3 \mathrm{H}, 19-\mathrm{H}_{3}\right), 1.34(\mathrm{~s}$, $9 \mathrm{H}, 3 \times t{\left.\mathrm{Bu}-\mathrm{CH}_{3}\right), 2.34(\mathrm{dd}, 1 \mathrm{H}, J=14 \mathrm{~Hz} \text { and } J=3.5 \mathrm{~Hz}), 5.53(\mathrm{dd}, 1 \mathrm{H}, J=13.5 \mathrm{~Hz} \text { and } J=6}^{2}$ $\mathrm{Hz}, 2-\mathrm{H}), 7.44(\mathrm{~d}, 2 \mathrm{H}, J=8.5 \mathrm{~Hz}, 3 "-$ and $5 "-\mathrm{H}), 7.77(\mathrm{~d}, 2 \mathrm{H}, J=8.5 \mathrm{~Hz}, 2 "-$ and $6 "-\mathrm{H}), 7.79(\mathrm{~s}$, $1 \mathrm{H}, 5$ '-H); ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$); $\delta[\mathrm{ppm}]=12.0(\mathrm{C}-18), 12.4(\mathrm{C}-19), 18.6(\mathrm{C}-21), 21.5$, 22.5 and 22.8 (C-26 and C-27), 23.8, 24.2, 28.0, 28.2, 28.4, 31.3 (3C, $3 \times t \mathrm{Bu}^{2}-\mathrm{CH}_{3}$), 31.5, 34.6, $34.9,35.7,36.1,37.3,39.5,39.6,42.5,43.9,47.0,47.9,53.6,56.0,56.1,65.1$ (C-2), 119.5 (C$\left.5^{\prime}\right), 125.4$ and 125.6 (4C, C-2",C-3",C-5",C-6"), 127.8 (C-1"), 147.6 (C-4'), 151.0 (C-4"), 202.7 (C-3); Anal. Calcd for $\mathrm{C}_{39} \mathrm{H}_{59} \mathrm{~N}_{3} \mathrm{O}: \mathrm{C}, 79.95$; H, 10.15; N, 7.17. Found: C, 80.12; H, 10.32; N, 7.35 .

2 α-[4-(4-Methoxyphenyl)-1H-1,2,3-triazol-1-yl]-5 α-cholestan-3-one (4g). Alkyne: 4methoxyphenylacetylene (132 mg). After purification, $\mathbf{4 g}$ was obtained as a white solid (498 mg , 89%), mp 179-181 ${ }^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{f}}=0.41$ (ss A); $[\alpha]_{\mathrm{D}}{ }^{20}+52$ (c 1 in CHCl_{3}), IR (KBr): 2934, 1737, 1618, $1563,1499,1466,1444,1249,1027,834,804 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) ; \delta[\mathrm{ppm}]=$ $0.67\left(\mathrm{~s}, 3 \mathrm{H}, 18-\mathrm{H}_{3}\right), 0.85-0.9$ (overlapping multiplets, $9 \mathrm{H}, 21-$, $26-$ and $27-\mathrm{H}_{3}$), $1.21(\mathrm{~s}, 3 \mathrm{H}, 19-$ $\left.\mathrm{H}_{3}\right), 2.34(\mathrm{dd}, 1 \mathrm{H}, J=14 \mathrm{~Hz}$ and $J=3.5 \mathrm{~Hz}), 3.83\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right) 5.52(\mathrm{dd}, 1 \mathrm{H}, J=13.5 \mathrm{~Hz}$ and J $=5.5 \mathrm{~Hz}, 2-\mathrm{H}), 6.95\left(\mathrm{~d}, 2 \mathrm{H}, J=8.5 \mathrm{~Hz}, 3^{\prime \prime}-\right.$ and $\left.5^{\prime \prime}-\mathrm{H}\right), 7.73\left(\mathrm{~s}, 1 \mathrm{H}, 5^{\prime}-\mathrm{H}\right), 7.76(\mathrm{~d}, 2 \mathrm{H}, J=8.5$ $\mathrm{Hz}, 2 "-$ and $6 "-\mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$); $\delta[\mathrm{ppm}]=12.0(\mathrm{C}-18), 12.4$ (C-19), 18.6 (C21), 21.6, 22.5 and 22.8 (C-26 and C-27), 23.8, 24.2, 28.0, 28.2, 28.5, 31.5, 34.9, 35.7, 36.1, $37.4,39.5,39.7,42.6,43.9,47.0,47.9,53.7,55.3\left(\mathrm{O}_{-} \mathrm{CH}_{3}\right), 56.1,56.2,65.1(\mathrm{C}-2), 114.2(2 \mathrm{C}, \mathrm{C}-$ $3 "$ and C-5"), 118.9 (C-5'), 123.5 (C-1"), 127.0 (2C, C-2" and C-6"), 147.5 (C-4'), 159.5 (C-4"), 202.7 (C-3); Anal. Calcd for $\mathrm{C}_{36} \mathrm{H}_{53} \mathrm{~N}_{3} \mathrm{O}_{2}$: C, 77.24; H, 9.54; N, 7.51. Found: C, 77.36; H, 9.68; N, 7.88 .
2 α-[4-(2-Methoxyphenyl)-1H-1,2,3-triazol-1-yl]-5 α-cholestan-3-one (4h). Alkyne: 2methoxyphenylacetylene (0.13 mL). After purification, $\mathbf{4 h}$ was obtained as a white solid (503 $\mathrm{mg}, 90 \%), \mathrm{mp} 129-132{ }^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{f}}=0.57$ (ss A); $[\alpha]_{\mathrm{D}}{ }^{20}+51$ (c 1 in CHCl_{3}), $\mathrm{IR}(\mathrm{KBr}): 2943,1735$, 1606, 1584, 1551, 1491, 1466, 1445, 1244, 1070, 1049, 1019, $751 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (500 MHz , $\left.\mathrm{CDCl}_{3}\right) ; \delta[\mathrm{ppm}]=0.67\left(\mathrm{~s}, 3 \mathrm{H}, 18-\mathrm{H}_{3}\right), 0.85-0.9$ (overlapping multiplets, $9 \mathrm{H}, 21-$, 26- and 27$\left.\mathrm{H}_{3}\right), 1.21\left(\mathrm{~s}, 3 \mathrm{H}, 19-\mathrm{H}_{3}\right), 2.36$ and $2.56\left(\mathrm{~m}, 2 \mathrm{H}, 4-\mathrm{H}_{2}\right), 3.93\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right) 5.53(\mathrm{dd}, 1 \mathrm{H}, J=13.5$

Hz and $J=6 \mathrm{~Hz}, 2-\mathrm{H}), 6.97(\mathrm{~d}, 1 \mathrm{H}, J=7.5 \mathrm{~Hz}, 3 "-\mathrm{H}), 7.07(\mathrm{t}, 1 \mathrm{H}, J=7.5 \mathrm{~Hz}, 5 "-\mathrm{H}), 7.30(\mathrm{td}$, $1 \mathrm{H}, J=7.5 \mathrm{~Hz}$ and $J=1.5 \mathrm{~Hz}, 4 "-\mathrm{H}), 8.07\left(\mathrm{~s}, 1 \mathrm{H}, 5^{\prime}-\mathrm{H}\right), 8.36(\mathrm{dd}, 1 \mathrm{H}, J=7.5 \mathrm{~Hz}$ and $J=1.5$ $\mathrm{Hz}, 6 "-\mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$); $\delta[\mathrm{ppm}]=12.0(\mathrm{C}-18), 12.4(\mathrm{C}-19), 18.6(\mathrm{C}-21), 21.5$ (C-11), 22.5 and 22.8 (C-26 and C-27), 23.8, 24.1, 28.0, 28.2, 28.4, 31.5, 34.9, 35.7, 36.1, 37.3, $39.4,39.6,42.5,43.9,46.7,47.7,53.6,55.3\left(\mathrm{O}_{-} \mathrm{CH}_{3}\right), 56.1,56.2,65.0(\mathrm{C}-2), 110.7,119.5,120.9$, 123.0, 127.6, 128.7, 143.1 (C-4'), 155.6 (C-2"), 202.8 (C-3); Anal. Calcd for $\mathrm{C}_{36} \mathrm{H}_{53} \mathrm{~N}_{3} \mathrm{O}_{2}$: C, $77.24 ;$ H, 9.54; N, 7.51. Found: C, 77.38; H, 9.42; N, 7.68.
2 α-(4-Cyclopentyl-1H-1,2,3-triazol-1-yl)-5 α-cholestan-3-one (4i). Alkyne: cyclopentyl acetylene (0.12 mL). After purification, $\mathbf{4 i}$ was obtained as a white solid ($459 \mathrm{mg}, 88 \%$), mp $162-164{ }^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{f}}=0.27(\mathrm{ss} \mathrm{A}) ;[\alpha]_{\mathrm{D}}{ }^{20}+20\left(c 1\right.$ in $\left.\mathrm{CHCl}_{3}\right)$, $\mathrm{IR}(\mathrm{KBr}): 2949,1733,1556,1466$, 1446, 1382, 1052, $828 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$); $\delta[\mathrm{ppm}]=0.67\left(\mathrm{~s}, 3 \mathrm{H}, 18-\mathrm{H}_{3}\right), 0.84-$ 0.9 (overlapping multiplets, $9 \mathrm{H}, 21-$, $26-$ and $27-\mathrm{H}_{3}$), $1.20\left(\mathrm{~s}, 3 \mathrm{H}, 19-\mathrm{H}_{3}\right), 3.19(\mathrm{~m}, 1 \mathrm{H}, 1 "-\mathrm{H})$, $2.32(\mathrm{dd}, 1 \mathrm{H}, J=14 \mathrm{~Hz}$ and $J=3.5 \mathrm{~Hz}), 3.19(\mathrm{~m}, 1 \mathrm{H}, 1 "-\mathrm{H}), 5.47(\mathrm{dd}, 1 \mathrm{H}, J=13.5 \mathrm{~Hz}$ and $J=$ $5.5 \mathrm{~Hz}, 2-\mathrm{H}), 7.28\left(\mathrm{~s}, 1 \mathrm{H}, 5^{\prime}-\mathrm{H}\right) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$); $\delta[\mathrm{ppm}]=12.0(\mathrm{C}-18), 12.4(\mathrm{C}-$ 19), 18.6 (C-21), 21.6, 22.5 and 22.8 (C-26 and C-27), 23.8, 24.2, 25.2, 28.0, 28.2, 28.5, 31.6, $33.1,33.2,34.9,35.7,36.1,36.9,37.3,39.5,39.7,42.6,43.9,47.0,47.9,53.7,56.1,56.2,64.9$ (C-2), 119.5 (C-5'), 152.5 (C-4'), 202.9 (C-3); Anal. Calcd for $\mathrm{C}_{34} \mathrm{H}_{55} \mathrm{~N}_{3} \mathrm{O}: \mathrm{C}, 78.26$; H, 10.62; N, 8.05. Found: C, 78.42; H, 10.76; N, 7.92.
2 α-(4-Cyclohexyl-1 H -1,2,3-triazol-1-yl)-5 α-cholestan-3-one (4j). Alkyne: cyclohexylacetylene $(0.13 \mathrm{~mL})$. After purification, $\mathbf{4} \mathbf{j}$ was obtained as a white solid ($450 \mathrm{mg}, 84 \%$), $\mathrm{mp} 166-168{ }^{\circ} \mathrm{C}$, $\mathrm{R}_{\mathrm{f}}=0.27$ (ss A); $[\alpha]_{\mathrm{D}}{ }^{20}+20\left(c 1\right.$ in $\left.\mathrm{CHCl}_{3}\right)$, $\mathrm{IR}(\mathrm{KBr}): 2932,1742,1552,1467,1447,1380$, $1219,1056,828 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$); $\delta[\mathrm{ppm}]=0.67\left(\mathrm{~s}, 3 \mathrm{H}, 18-\mathrm{H}_{3}\right), 0.84-0.89$ (overlapping multiplets, $9 \mathrm{H}, 21-, 26-$ and $\left.27-\mathrm{H}_{3}\right), 1.20\left(\mathrm{~s}, 3 \mathrm{H}, 19-\mathrm{H}_{3}\right), 2.32(\mathrm{dd}, 1 \mathrm{H}, J=14 \mathrm{~Hz}$ and $J=3.5 \mathrm{~Hz}), 2.76(\mathrm{~m}, 1 \mathrm{H}, 1 "-\mathrm{H}), 5.46(\mathrm{dd}, 1 \mathrm{H}, J=13.5 \mathrm{~Hz}$ and $J=5.5 \mathrm{~Hz}, 2-\mathrm{H}), 7.26(\mathrm{~s}$, $1 \mathrm{H}, 5$ ' -H) ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) ; $\delta[\mathrm{ppm}]=12.0(\mathrm{C}-18), 12.4(\mathrm{C}-19), 18.6(\mathrm{C}-21), 21.5$, 22.5 and 22.8 (C-26 and C-27), 23.8, 24.1, 26.0, 26.1, 28.0, 28.2, 28.4, 31.5, 32.8, 32.9, 34.9, $35.3,35.7,36.1,37.3,39.5,39.6,42.5,43.9,47.0,47.9,53.7,56.1,56.2,64.9$ (C-2), 119.2 (C5^{\prime}), 153.5 (C-4'), 202.9 (C-3); Anal. Calcd for $\mathrm{C}_{35} \mathrm{H}_{57} \mathrm{~N}_{3} \mathrm{O}: \mathrm{C}, 78.45$; H, 10.72; N, 7.84. Found: C, 78.57; H, 10.88; N, 8.04.
2 α-(4-Cyclopropyl-1H-1,2,3-triazol-1-yl)-5 α-cholestan-3-one (4k). Alkyne: cyclopropylacetylene (0.085 mL). After purification, $\mathbf{4 k}$ was obtained as a white solid ($370 \mathrm{mg}, 75 \%$) , mp $152-155{ }^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{f}}=0.28$ (ss A); $[\alpha]_{\mathrm{D}}{ }^{20}+22\left(c 1\right.$ in $\left.\mathrm{CHCl}_{3}\right)$, IR (KBr): 2944, 1732, 1568, 1468, $1445,1233,1058,1035,828 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$); $\delta[\mathrm{ppm}]=0.67\left(\mathrm{~s}, 3 \mathrm{H}, 18-\mathrm{H}_{3}\right)$, 0.84-0.89 (overlapping multiplets, $9 \mathrm{H}, 21-$, 26- and $27-\mathrm{H}_{3}$), $1.19\left(\mathrm{~s}, 3 \mathrm{H}, 19-\mathrm{H}_{3}\right), 2.32(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=$ 14 Hz and $J=3.5 \mathrm{~Hz}), 5.45(\mathrm{dd}, 1 \mathrm{H}, J=13.5 \mathrm{~Hz}$ and $J=5.5 \mathrm{~Hz}, 2-\mathrm{H}), 7.26(\mathrm{~s}, 1 \mathrm{H}, 5 \prime-\mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$); $\delta[\mathrm{ppm}]=6.8(\mathrm{C}-1 "), 7.6(2 \mathrm{C}, \mathrm{C}-2 "$ and C-3"), $12.0(\mathrm{C}-18), 12.4$ (C19), 18.6 (C-21), 21.5, 22.5 and 22.8 (C-26 and C-27), 23.8, 24.1, 28.0, 28.2, 28.4, 31.5, 34.8, $35.7,36.1,37.3,39.4,39.6,42.5,43.9,47.0,47.9,53.7,56.1,56.2,64.9$ (C-2), 119.7 (C-5'), 150.0 (C-4'), 202.9 (C-3); Anal. Calcd for $\mathrm{C}_{32} \mathrm{H}_{51} \mathrm{~N}_{3} \mathrm{O}: \mathrm{C}, 77.84$; H, 10.41; N, 8.51. Found: C, 77.65; H, 10.56; N, 8.72.

2α-[4-(4-Fluorophenyl)-1H-1,2,3-triazol-1-yl]-5 α-cholestan-3-one (41). Alkyne: 4-

 fluorophenylacetylene (0.12 mL). After purification, 41 was obtained as a white solid $(471 \mathrm{mg}$, 86%), mp 185-188 ${ }^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{f}}=0.62$ (ss A); $[\alpha]_{\mathrm{D}}{ }^{20}+46\left(c 1\right.$ in CHCl_{3}), IR (KBr): 2937, 1744, 1612, $1563,1497,1466,1445,1379,1222,1056,840,812 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$); $\delta[\mathrm{ppm}]$ $=0.68\left(\mathrm{~s}, 3 \mathrm{H}, 18-\mathrm{H}_{3}\right), 0.85-0.9$ (overlapping multiplets, $9 \mathrm{H}, 21-$, 26- and $\left.27-\mathrm{H}_{3}\right), 1.22(\mathrm{~s}, 3 \mathrm{H}, 19-$ $\left.\mathrm{H}_{3}\right), 2.35(\mathrm{dd}, 1 \mathrm{H}, J=14 \mathrm{~Hz}$ and $J=3.5 \mathrm{~Hz}), 5.53(\mathrm{dd}, 1 \mathrm{H}, J=13.5 \mathrm{~Hz}$ and $J=6 \mathrm{~Hz}, 2-\mathrm{H}), 7.10$ $\left(\mathrm{t}, 2 \mathrm{H}, J=9 \mathrm{~Hz}, 3^{\prime \prime}-\right.$ and $\left.5^{\prime \prime}-\mathrm{H}\right), 7.78\left(\mathrm{~s}, 1 \mathrm{H}, 5^{\prime}-\mathrm{H}\right), 7.81(\mathrm{dd}, 2 \mathrm{H}, J=9 \mathrm{~Hz}$ and $J=5 \mathrm{~Hz}, 2$ "- and $6 "-\mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$); $\delta[\mathrm{ppm}]=12.1$ (C-18), 12.5 (C-19), 18.6 (C-21), 21.6, 22.5 and 22.8 (C-26 and C-27), 23.8, 24.2, 28.0, 28.2, 28.5, 31.5, 34.9, 35.7, 36.1, 37.4, 39.5, 39.7, $42.6,43.9,47.1,48.0,53.7,56.1,56.2,65.2(\mathrm{C}-2), 115.7$ (d, 2C, $J=21.5 \mathrm{~Hz}, \mathrm{C}-3 "$ and C-5"), 119.5 (C-5'), 126.9 (C-1"), 127.5 (d, 2C, $J=8 \mathrm{~Hz}, \mathrm{C}-2 "$ and C-6"), 146.8 (C-4'), 162.6 (d, $J=$ $245 \mathrm{~Hz}, \mathrm{C}-4$ ") 202.6 (C-3); Anal. Calcd for $\mathrm{C}_{35} \mathrm{H}_{50} \mathrm{FN}_{3} \mathrm{O}: \mathrm{C}, 76.74$; H, 9.20; N, 7.67. Found: C, 76.85; H, 9.37; N, 7.85.2 α-[4-(2-Pyridyl)-1H-1,2,3-triazol-1-yl]-5 α-cholestan-3-one (4m). Alkyne: 2-ethynylpyridine $(0.1 \mathrm{~mL})$. After purification, $\mathbf{4 m}$ was obtained as a white solid ($387 \mathrm{mg}, 73 \%$), mp 214-216 ${ }^{\circ} \mathrm{C}$, $\mathrm{R}_{\mathrm{f}}=0.52(\mathrm{ss} \mathrm{B}) ;[\alpha]_{\mathrm{D}}{ }^{20}+57\left(c 1\right.$ in $\left.\mathrm{CHCl}_{3}\right)$, IR (KBr): 2931, 1730, 1605, 1571, 1471, 1444, 1421, 1380, 1232, 1037, $792 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$); $\delta[\mathrm{ppm}]=0.67\left(\mathrm{~s}, 3 \mathrm{H}, 18-\mathrm{H}_{3}\right)$, 0.84-0.9 (overlapping multiplets, $9 \mathrm{H}, 21-$, 26 - and $27-\mathrm{H}_{3}$), 1.22 ($\mathrm{s}, 3 \mathrm{H}, 19-\mathrm{H}_{3}$), 2.34 (dd, $1 \mathrm{H}, J=$ 14 Hz and $J=3.5 \mathrm{~Hz}), 5.55(\mathrm{dd}, 1 \mathrm{H}, J=13.5 \mathrm{~Hz}$ and $J=6 \mathrm{~Hz}, 2-\mathrm{H}), 7.21(\mathrm{dd}, 1 \mathrm{H}, J=6.5 \mathrm{~Hz}$ and $J=5 \mathrm{~Hz}, 5 "-\mathrm{H}), 7.76(\mathrm{t}, 1 \mathrm{H}, J=6.5 \mathrm{~Hz}, 4 "-\mathrm{H}), 8.16(\mathrm{~d}, 1 \mathrm{H}, 3 "-\mathrm{H}), 8.18(\mathrm{~s}, 1 \mathrm{H}, 5$ '-H), 8.57 $(\mathrm{d}, 1 \mathrm{H}, J=5 \mathrm{~Hz}, 6 "-\mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$); $\delta[\mathrm{ppm}]=12.0(\mathrm{C}-18), 12.4$ (C-19), 18.6 (C-21), 21.6, 22.5 and 22.8 (C-26 and C-27), 23.8, 24.1, 28.0, 28.2, 28.4, 31.5, 34.9, 35.7, 36.1, $37.3,39.5,39.6,42.5,43.8,46.9,47.9,53.7,56.0,56.1,65.2$ (C-2), 120.2, 122.0, 122.7, 136.8, 148.3, 149.3, 150.3, 202.4 (C-3); Anal. Calcd for $\mathrm{C}_{34} \mathrm{H}_{50} \mathrm{~N}_{4} \mathrm{O}: \mathrm{C}, 76.94$; H, 9.49; N, 10.56.

Found: C, 77.08; H, 9.36; N, 10.62.

General procedure for the preparation of ($5 \mathbf{5}-\mathbf{j}$) and ($6 \mathbf{6}-\mathbf{j}$)

Compound $4 \mathbf{4}-\mathbf{j}(1 \mathrm{mmol})$ was dissolved in a mixture of $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ and $\mathrm{MeOH}(40 \mathrm{~mL})$, cooled in an ice-bath to $15{ }^{\circ} \mathrm{C}$, and $\mathrm{KBH}_{4}(430 \mathrm{mg}, 8 \mathrm{mmol})$ was added in small portions. The mixture was allowed to stand for 20 min , then poured into water (100 mL), neutralized with diluted acetic acid and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 20 \mathrm{~mL})$. The combined organic layers were washed with water, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporated in vacuo. The residue obtained was chromatographed on silica gel to afford $\mathbf{5 a - j}$ and $\mathbf{6 a - j}$.
$3 \alpha-$ Hydroxy-2 α-(4-phenyl-1H-1,2,3-triazol-1-yl)-5 α-cholestane (5a) and 3 3 -hydroxy-2 α-(4-phenyl-1H-1,2,3-triazol-1-yl)-5 $\boldsymbol{\alpha}$-cholestane (6a). Eluent: $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{EtOAc}$ (95:5), yielding 5a as a white solid ($165 \mathrm{mg}, 31 \%$), mp 264-266 ${ }^{\circ} \mathrm{C}$, $\mathrm{R}_{\mathrm{f}}=0.63$ (ss B); IR (KBr): 3487, 3126, 2940, 1610, 1466, 1449, 1381, 1221, 1186, 1076, 975, 886, 822, 764, $693 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (500 MHz , $\left.\mathrm{CDCl}_{3}\right) ; \delta[\mathrm{ppm}]=0.66\left(\mathrm{~s}, 3 \mathrm{H}, 18-\mathrm{H}_{3}\right), 0.85-0.9$ (overlapping multiplets, $9 \mathrm{H}, 21-$, 26- and 27H_{3}), $0.94\left(\mathrm{~s}, 3 \mathrm{H}, 19-\mathrm{H}_{3}\right), 4.48(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, 3-\mathrm{H}), 4.73(\mathrm{~m}, 1 \mathrm{H}, 2-\mathrm{H}), 7.25-7.30$ (overlapping multiplets, $3 \mathrm{H}, 3 "-, 4 "-$ and $\left.5^{\prime \prime}-\mathrm{H}\right), 7.52\left(\mathrm{~d}, 2 \mathrm{H}, J=7.5 \mathrm{~Hz}, 2^{\prime \prime}-\right.$ and $\left.6 "-\mathrm{H}\right), 7.73\left(\mathrm{~s}, 1 \mathrm{H}, 5^{\prime}-\mathrm{H}\right) ;{ }^{13} \mathrm{C}$

NMR (125 MHz, $\left.\mathrm{CDCl}_{3}\right) ; \delta[\mathrm{ppm}]=12.1(\mathrm{C}-18), 12.2(\mathrm{C}-19), 18.7(\mathrm{C}-21), 20.9(\mathrm{C}-11), 22.5$ and 22.8 (C-26 and C-27), 23.8, 24.2, 27.8, 28.0, 28.2, 31.8, 35.0, 35.1, 35.8, 36.1, 37.1, 38.1, $38.4,39.5,39.8,42.5,54.0,56.2,56.4,60.7$ (C-2), 67.8 (C-3), 118.9 (C-5'), 125.2 (2C, C-2" and C-6"), 127.8 (C-4"), 128.7 (2C, C-3" and C-5"), 130.1 (C-1"), 146.5 (C-4'); Anal. Calcd for $\mathrm{C}_{35} \mathrm{H}_{53} \mathrm{~N}_{3} \mathrm{O}: \mathrm{C}, 79.05 ; \mathrm{H}, 10.05$; N, 7.90. Found: C, $78.93 ; \mathrm{H}, 10.24 ; \mathrm{N}, 8.07$.
Continued elution with $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{EtOAc}(90: 10)$ resulted in $\mathbf{6 a}$ as a white solid ($335 \mathrm{mg}, 63 \%$), mp $278-279{ }^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{f}}=0.42$ (ss B); IR (KBr): 3520, 3134, 2942, 1609, 1471, 1386, 1379, 1226, 1184, $1075,1045,764,696 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$); $\delta[\mathrm{ppm}]=0.66\left(\mathrm{~s}, 3 \mathrm{H}, 18-\mathrm{H}_{3}\right), 0.85-0.9$ (overlapping multiplets, $9 \mathrm{H}, 21-$, 26- and $27-\mathrm{H}_{3}$), $0.98\left(\mathrm{~s}, 3 \mathrm{H}, 19-\mathrm{H}_{3}\right), 2.17(\mathrm{dd}, 1 \mathrm{H}, J=13 \mathrm{~Hz}$ and $J=4 \mathrm{~Hz}), 4.11(\mathrm{~m}, 1 \mathrm{H}, 3-\mathrm{H}), 4.40(\mathrm{~m}, 1 \mathrm{H}, 2-\mathrm{H}), 7,31(\mathrm{t}, 1 \mathrm{H}, J=7.5 \mathrm{~Hz}, 4$ "-H), $7.37(\mathrm{t}, 2 \mathrm{H}$, $J=7.5 \mathrm{~Hz}, 3 "$ - and $5 "-\mathrm{H}), 7.71(\mathrm{~d}, 2 \mathrm{H}, J=7.5 \mathrm{~Hz}, 2 "-$ and $6 "-\mathrm{H}), 7.77(\mathrm{~s}, 1 \mathrm{H}, 5$ '-H); Anal. Calcd for $\mathrm{C}_{35} \mathrm{H}_{53} \mathrm{~N}_{3} \mathrm{O}$: C, 79.05; H, 10.05; N, 7.90. Found: C, 78.93; H, 10.22; N, 8.10.

3 α-Hydroxy-2 α-[4-(4-tolyl)-1H-1,2,3-triazol-1-yl]-5 α-cholestane (5b) and 3及-hydroxy-2 α-[4-(4-tolyl)-1H-1,2,3-triazol-1-yl]-5 $\boldsymbol{\alpha}$-cholestane (6b). Eluent: $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{EtOAc}$ (95:5), yielding 5b as a white solid ($145 \mathrm{mg}, 27 \%$), mp 263-266 ${ }^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{f}}=0.65$ (ss B); IR (KBr): 3304, 3158, 2930, $1444,1383,1234,1072,815 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$); $\delta[\mathrm{ppm}]=0.66\left(\mathrm{~s}, 3 \mathrm{H}, 18-\mathrm{H}_{3}\right)$, 0.85-0.9 (overlapping multiplets, $9 \mathrm{H}, 21-$, $26-$ and $27-\mathrm{H}_{3}$), $0.94\left(\mathrm{~s}, 3 \mathrm{H}, 19-\mathrm{H}_{3}\right), 2.36$ ($\mathrm{s}, 3 \mathrm{H}, 4$ "CH_{3}), $4.45(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, 3-\mathrm{H}), 4.71(\mathrm{~m}, 1 \mathrm{H}, 2-\mathrm{H}), 7.11(\mathrm{~d}, 2 \mathrm{H}, J=7.5 \mathrm{~Hz}, 3 "-\mathrm{and} 5 "-\mathrm{H}), 7.47(\mathrm{~d}$, $2 \mathrm{H}, J=7.5 \mathrm{~Hz}, 2^{\prime \prime}$ - and $\left.6 "-\mathrm{H}\right), 7.72\left(\mathrm{~s}, 1 \mathrm{H}, 5^{\prime}-\mathrm{H}\right) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$); $\delta[\mathrm{ppm}]=12.1$ (C-18), 12.2 (C-19), 18.7 (C-21), 21.0 (C-11), $21.2\left(4\right.$ "- $\left.\mathrm{CH}_{3}\right), 22.5$ and 22.8 (C-26 and $\mathrm{C}-27$), $23.8,24.2,27.8,28.0,28.2,31.8,35.0,35.1,35.8,36.2,37.1,38.3,38.4,39.5,39.8,42.6,54.1$, 56.2, 56.4, 60.7 (C-2), 67.9 (C-3), 118.8 (C-5'), 125.2 (2C, C-2" and C-6"), 127.4 (C-1"), 129.3 (2C, C-3" and C-5"), 137.6 (C-4"), 146.7 (C-4'); Anal. Calcd for $\mathrm{C}_{36} \mathrm{H}_{55} \mathrm{~N}_{3} \mathrm{O}: \mathrm{C}, 79.21$; H, 10.16; N, 7.70. Found: C, 79.34; H, 10.25; N, 7.94.
Continued elution resulted in $\mathbf{6 b}$ as a white solid ($370 \mathrm{mg}, 68 \%$), mp $258-260{ }^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{f}}=0.46$ (ss B); IR (KBr): 3512, 3144, 2934, 1497, 1466, 1443, 1387, 1227, 1183, 1108, 1073, $813 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) ; $\delta[\mathrm{ppm}]=0.65\left(\mathrm{~s}, 3 \mathrm{H}, 18-\mathrm{H}_{3}\right), 0.85-0.9$ (overlapping multiplets, 9 H , 21-, 26- and $27-\mathrm{H}_{3}$), $0.94\left(\mathrm{~s}, 3 \mathrm{H}, 19-\mathrm{H}_{3}\right), 2.35\left(\mathrm{~s}, 3 \mathrm{H}, 4\right.$ "- $\left.\mathrm{CH}_{3}\right), 4.10(\mathrm{~m}, 1 \mathrm{H}, 3-\mathrm{H}), 4.34(\mathrm{~m}, 1 \mathrm{H}$, $2-\mathrm{H}), 7.11(\mathrm{~d}, 2 \mathrm{H}, J=8 \mathrm{~Hz}, 3 "-$ and $5 "-\mathrm{H}), 7.46\left(\mathrm{~d}, 2 \mathrm{H}, J=8 \mathrm{~Hz}, 2 "-\right.$ and $\left.6^{\prime \prime}-\mathrm{H}\right), 7.68\left(\mathrm{~s}, 1 \mathrm{H}, 5^{\prime}-\right.$ $\mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$); $\delta[\mathrm{ppm}]=12.1(\mathrm{C}-18), 12.9(\mathrm{C}-19), 18.7(\mathrm{C}-21), 21.3,21.4$, 22.5 and 22.8 (C-26 and C-27), 23.8, 24.2, 27.9, 28.0, 28.2, 31.8, 35.0, 35.8, 36.2, 37.1, 39.5, $39.8,42.6,43.3,44.4,54.0,56.2,56.3,64.8$ (C-2), 72.8 (C-3), 119.9 (C-5'), 125.3 (2C, C-2" and C-6") 127.1 (C-1"), 129.3 (2C, C-3" and C-5"), 137.8, 146.3; Anal. Calcd for $\mathrm{C}_{36} \mathrm{H}_{55} \mathrm{~N}_{3} \mathrm{O}$: C, 79.21 ; H, 10.16; N, 7.70. Found: C, 79.42; H, 10.25; N, 7.94.
$3 \alpha-H y d r o x y-2 \alpha-[4-(3-t o l y l)-1 H-1,2,3-t r i a z o l-1-y l]-5 \alpha-c h o l e s t a n e ~(5 c) ~ a n d ~ 3 \beta-h y d r o x y-2 \alpha-[4-~$ (3-tolyl)-1H-1,2,3-triazol-1-yl]-5 $\boldsymbol{\alpha}$-cholestane (6c). Eluent: $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{EtOAc}$ (95:5), yielding 5c as a white solid ($160 \mathrm{mg}, 29 \%$), $\mathrm{mp} 259-263^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{f}}=0.66$ (ss B); IR (KBr): 3252, 3157, 2931, $1614,1590,1444,1382,1236,1078,788 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$); $\delta[\mathrm{ppm}]=0.66(\mathrm{~s}$, $3 \mathrm{H}, 18-\mathrm{H}_{3}$), 0.85-0.9 (overlapping multiplets, $9 \mathrm{H}, 21-$, 26 - and $27-\mathrm{H}_{3}$), $0.94\left(\mathrm{~s}, 3 \mathrm{H}, 19-\mathrm{H}_{3}\right), 2.31$ (s, $3 \mathrm{H}, 3$ "- CH_{3}), 4.46 (br s, $\left.1 \mathrm{H}, 3-\mathrm{H}\right), 4.72(\mathrm{~m}, 1 \mathrm{H}, 2-\mathrm{H}), 7.07(\mathrm{~d}, 1 \mathrm{H}, J=7.5 \mathrm{~Hz}, 4$ "-H), 7.23 (t,
$\left.1 \mathrm{H}, J=7.5 \mathrm{~Hz}, 5^{\prime \prime}-\mathrm{H}\right), 7.34(\mathrm{~s}, 1 \mathrm{H}, 2 "-\mathrm{H}), 7.44(\mathrm{~d}, 1 \mathrm{H}, J=7.5 \mathrm{~Hz}, 6 "-\mathrm{H}), 7.75\left(\mathrm{~s}, 1 \mathrm{H}, 5^{\prime}-\mathrm{H}\right) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$); $\delta[\mathrm{ppm}]=12.1(\mathrm{C}-18), 12.2(\mathrm{C}-19), 18.7(\mathrm{C}-21), 21.0(\mathrm{C}-11), 21.4$ $\left(3 "-\mathrm{CH}_{3}\right), 22.5$ and 22.8 (C-26 and C-27), 23.8, 24.2, 27.8, 28.0, 28.2, 31.7, 35.0, 35.1, 35.8, $36.2,37.1,38.3,38.4,39.5,39.8,42.6,54.1,56.2,56.4,60.7$ (C-2), 67.9 (C-3), 119.0 (C-5'), 122.4 (C-6"), 126.0 (C-2"), 128.6 and 128.7 (C-4" and C-5"), 130.1 (C-1"), 138.2 (C-3"), 146.7 (C-4'); Anal. Calcd for $\mathrm{C}_{36} \mathrm{H}_{55} \mathrm{~N}_{3} \mathrm{O}: \mathrm{C}, 79.21$; H, 10.16; N, 7.70. Found: C, 79.38; H, 10.35; N, 7.89 .

Continued elution resulted in 6c as a white solid ($360 \mathrm{mg}, 66 \%$), mp $251-254{ }^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{f}}=0.46$ (ss B); IR (KBr): 3526, 3131, 2934, 1615, 1588, 1446, 1385, 1224, 1169, 1077, 792, $699 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) ; $\delta[\mathrm{ppm}]=0.65\left(\mathrm{~s}, 3 \mathrm{H}, 18-\mathrm{H}_{3}\right), 0.85-0.9$ (overlapping multiplets, 9 H , 21-, 26- and $27-\mathrm{H}_{3}$), $0.95\left(\mathrm{~s}, 3 \mathrm{H}, 19-\mathrm{H}_{3}\right), 2.32\left(\mathrm{~s}, 3 \mathrm{H}, 3\right.$ "- $\left.\mathrm{CH}_{3}\right), 4.11(\mathrm{~m}, 1 \mathrm{H}, 3-\mathrm{H}), 4.34(\mathrm{~m}, 1 \mathrm{H}$, $2-\mathrm{H}), 7.08(\mathrm{~d}, 1 \mathrm{H}, J=7.5 \mathrm{~Hz}, 4 "-\mathrm{H}), 7.23(\mathrm{t}, 1 \mathrm{H}, J=7.5 \mathrm{~Hz}, 5 "-\mathrm{H}), 7.36(\mathrm{~s}, 1 \mathrm{H}, 2 "-\mathrm{H}), 7.44(\mathrm{~d}$, $1 \mathrm{H}, J=7.5 \mathrm{~Hz}, 6 "-\mathrm{H}), 7.69\left(\mathrm{~s}, 1 \mathrm{H}, 5^{\prime}-\mathrm{H}\right) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$); $\delta[\mathrm{ppm}]=12.1$ (C-18), 12.9 (C-19), 18.6 (C-21), 21.3 (C-11), 21.4 (3 "- CH_{3}), 22.5 and 22.8 ($\mathrm{C}-26$ and $\mathrm{C}-27$), 23.8, 24.2, $27.9,28.0,28.2,31.8,35.0,35.8,36.1,36.2,37.1,39.5,39.8,42.5,43.4,44.4,54.0,56.2,56.3$, 64.7 (C-2), 72.9 (C-3), 120.0 (C-5'), 122.5 (C-6"), 126.1 (C-2"), 128.5 and 128.7 (2C, C-4" and C-5"), 130.0 (C-1"), 138.2 (C-3"), 146.6 (C-4'); Anal. Calcd for $\mathrm{C}_{36} \mathrm{H}_{55} \mathrm{~N}_{3} \mathrm{O}: \mathrm{C}, 79.21$; H, 10.16; N, 7.70. Found: C, 79.45; H, 10.38; N, 7.85.
$2 \alpha-[4-(4$-Ethylphenyl)-1H-1,2,3-triazol-1-yl]-3 α-hydroxy- 5α-cholestane ($5 d$) and 2α-[4-(4-ethylphenyl)-1H-1,2,3-triazol-1-yl]-3 β-hydroxy-5 α-cholestane ($6 d$). Eluent: $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{EtOAc}$ (95:5), yielding 5d as a white solid ($170 \mathrm{mg}, 30 \%$), mp 254-256 ${ }^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{f}}=0.71$ (ss B); $\mathrm{IR}(\mathrm{KBr})$: $3267,3156,1446,1367,1216,1078,1041,818 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) ; \delta[\mathrm{ppm}]=$ $0.66\left(\mathrm{~s}, 3 \mathrm{H}, 18-\mathrm{H}_{3}\right), 0.85-0.9$ (overlapping multiplets, $9 \mathrm{H}, 21-$, 26- and $27-\mathrm{H}_{3}$), 0.94 (s, $3 \mathrm{H}, 19-$
 $(\mathrm{m}, 1 \mathrm{H}, 2-\mathrm{H}), 7.11(\mathrm{~d}, 2 \mathrm{H}, J=8 \mathrm{~Hz}, 3 "-\mathrm{and} 5 "-\mathrm{H}), 7.47(\mathrm{~d}, 2 \mathrm{H}, J=8 \mathrm{~Hz}, 2 "-$ and $6 "-\mathrm{H}), 7.74(\mathrm{~s}$, $\left.1 \mathrm{H}, 5^{\prime}-\mathrm{H}\right) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) ; $\delta[\mathrm{ppm}]=12.1(\mathrm{C}-18), 12.2(\mathrm{C}-19), 15.5\left(\mathrm{Et-CH}_{3}\right)$, 18.7 (C-21), 21.0 ($\mathrm{C}-11$), 22.5 and 22.8 (C-26 and C-27), 23.8, 24.2, 27.8, 28.0, 28.2, 28.6 (EtCH_{2}), 31.7, 35.1, 35.2, 35.8, 36.2, 37.2, 38.3, 38.4, 39.5, 39.9, 42.6, 54.1, 56.2, 56.4, 60.8 (C-2), 67.8 (C-3), 118.9 (C-5'), 125.3 (2C, C-2" and C-6") 127.3 (C-1"), 128.1 (2C, C-3" and C-5"), 144.1 (C-4"), 146.5 (C-4'); Anal. Calcd for $\mathrm{C}_{37} \mathrm{H}_{57} \mathrm{~N}_{3} \mathrm{O}: \mathrm{C}, 79.38$; H, 10.26; N, 7.51. Found: C, 79.54; H, 10.38; N, 7.65.

Continued elution resulted in $\mathbf{6 d}$ as a white solid (365 mg , 65%), mp $249-252{ }^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{f}}=0.51$ (ss B); IR (KBr): 3513, 3143, 2932, 1498, 1444, 1380, 1225, 1181, 1074, 1011, $822 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) ; \delta[\mathrm{ppm}]=0.65\left(\mathrm{~s}, 3 \mathrm{H}, 18-\mathrm{H}_{3}\right), 0.85-0.9$ (overlapping multiplets, $9 \mathrm{H}, 21-, 26-$ and $\left.27-\mathrm{H}_{3}\right), 0.94\left(\mathrm{~s}, 3 \mathrm{H}, 19-\mathrm{H}_{3}\right), 1.24\left(\mathrm{t}, 3 \mathrm{H}, J=7.5 \mathrm{~Hz},{\left.\mathrm{Et}-\mathrm{CH}_{3}\right), 2.64(\mathrm{q}, 2 \mathrm{H}, J=7.5 \mathrm{~Hz}, \mathrm{Et}-\mathrm{t}}^{2}\right.$ $\left.\mathrm{CH}_{2}\right), 4.06(\mathrm{~m}, 1 \mathrm{H}, 3-\mathrm{H}), 4.41(\mathrm{~m}, 1 \mathrm{H}, 2-\mathrm{H}), 7.15(\mathrm{~d}, 2 \mathrm{H}, J=8 \mathrm{~Hz}, 3 "-$ and $5 "-\mathrm{H}), 7.54(\mathrm{~d}, 2 \mathrm{H}, J$ $=8 \mathrm{~Hz}, 2^{\prime \prime}$ - and $\left.6^{\prime \prime}-\mathrm{H}\right), 7.82\left(\mathrm{~s}, 1 \mathrm{H}, 5^{\prime}-\mathrm{H}\right) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$); $\delta[\mathrm{ppm}]=12.1(\mathrm{C}-18)$, 12.9 (C-19), $15.4\left(\mathrm{Et}-\mathrm{CH}_{3}\right), 18.7$ (C-21), 21.4 (C-11), 22.5 and 22.8 (C-26 and C-27), 23.8, 24.2, 27.9, 28.0, 28.2, $28.7\left(\mathrm{Et}-\mathrm{CH}_{2}\right), 31.8,35.0,35.8,36.2,36.3,37.1,39.5,39.8,42.6,43.2,44.4$, 54.0, 56.2, 56.3, 65.2 (C-2), 72.8 (C-3), 120.6 (C-5'), 125.7 (2C, C-2" and C-6") 126.1 (C-1"),
128.3 (2C, C-3" and C-5"), 144.8 (C-4"), 145.7 (C-4'); Anal. Calcd for $\mathrm{C}_{37} \mathrm{H}_{57} \mathrm{~N}_{3} \mathrm{O}: \mathrm{C}, 79.38$; H, 10.26; N, 7.51. Found: C, 79.53; H, 10.38; N, 7.85.
$3 \alpha-H y d r o x y-2 \alpha-[4-(4-p r o p y l p h e n y l)-1 H-1,2,3-t r i a z o l-1-y l]-5 \alpha-c h o l e s t a n e \quad(5 e)$ and 3β -hydroxy-2 α-[4-(4-propylphenyl)-1H-1,2,3-triazol-1-yl]-5 α-cholestane (6e). Eluent: $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{EtOAc}$ (95:5), yielding 5e as a white solid ($180 \mathrm{mg}, 31 \%$), mp $262-265{ }^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{f}}=0.74$ (ss B); IR (KBr): 3269, 3157, 2926, 1465, 1446, 1367, 1216, 1077, 1041, $811 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (500 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $; \delta[\mathrm{ppm}]=0.66\left(\mathrm{~s}, 3 \mathrm{H}, 18-\mathrm{H}_{3}\right), 0.85-0.9$ (overlapping multiplets, $9 \mathrm{H}, 21-$, 26-and $\left.27-\mathrm{H}_{3}\right), 0.93\left(\mathrm{~s}, 3 \mathrm{H}, 19-\mathrm{H}_{3}\right), 0.97\left(\mathrm{t}, 3 \mathrm{H}, J=7.5 \mathrm{~Hz}, \mathrm{Pr}^{2} \mathrm{CH}_{3}\right), 2.58\left(\mathrm{t}, 2 \mathrm{H}, J=7.5 \mathrm{~Hz}, \mathrm{CH}_{3}-\mathrm{CH}_{2}-\right.$ $\left.\mathrm{CH}_{2}\right), 4.47(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, 3-\mathrm{H}), 4.71(\mathrm{~m}, 1 \mathrm{H}, 2-\mathrm{H}), 7.09(\mathrm{~d}, 2 \mathrm{H}, J=8 \mathrm{~Hz}, 3 "-$ and $5 "-\mathrm{H}), 7.45(\mathrm{~d}, 2 \mathrm{H}$, $J=8 \mathrm{~Hz}, 2 "$ - and $\left.6^{\prime \prime}-\mathrm{H}\right), 7.70\left(\mathrm{~s}, 1 \mathrm{H}, 5^{\prime}-\mathrm{H}\right) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$); $\delta[\mathrm{ppm}]=12.1$ (C18), $12.2(\mathrm{C}-19), 13.8\left(\mathrm{Pr}^{2}-\mathrm{CH}_{3}\right), 18.7(\mathrm{C}-21), 21.0(\mathrm{C}-11), 22.5$ and $22.8(\mathrm{C}-26$ and $\mathrm{C}-27), 23.8$, 24.2, $24.5\left(\mathrm{CH}_{3}-\mathrm{CH}_{2}-\mathrm{CH}_{2}\right), 27.8,28.0,28.2,31.7,35.0,35.1,35.8,36.1,37.1,37.8\left(\mathrm{CH}_{3}-\mathrm{CH}_{2}-\right.$ CH_{2}), 38.2, 38.4, 39.5, 39.8, 42.6, 54.0, 56.2, 56.4, 60.7 (C-2), 67.8 (C-3), 118.7 (C-5'), 125.1 (2C, C-2" and C-6") 127.6 (C-1"), 128.7 (2C, C-3" and C-5"), 142.4 (C-4"), 146.7 (C-4'); Anal. Calcd for $\mathrm{C}_{38} \mathrm{H}_{59} \mathrm{~N}_{3} \mathrm{O}: \mathrm{C}, 79.53$; H, 10.36; N, 7.32. Found: C, $79.82 ; \mathrm{H}, 10.28 ; \mathrm{N}, 7.45$.
Continued elution resulted in $6 \mathbf{e}$ as a white solid ($355 \mathrm{mg}, 62 \%$), mp $218-220^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{f}}=0.55$ (ss B); IR (KBr): 3497, 3250, 2931, 1500, 1466, 1446, 1382, 1237, 1077, 1047, $797 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) ; \delta[\mathrm{ppm}]=0.65\left(\mathrm{~s}, 3 \mathrm{H}, 18-\mathrm{H}_{3}\right), 0.85-0.9$ (overlapping multiplets, $9 \mathrm{H}, 21-, 26-$ and $27-\mathrm{H}_{3}$), $0.94\left(\mathrm{~s}, 3 \mathrm{H}, 19-\mathrm{H}_{3}\right), 0.96\left(\mathrm{t}, 3 \mathrm{H}, J=7.5 \mathrm{~Hz}, \operatorname{Pr}-\mathrm{CH}_{3}\right), 2.58\left(\mathrm{t}, 2 \mathrm{H}, J=7.5 \mathrm{~Hz}, \mathrm{CH}_{3}-\right.$ $\left.\mathrm{CH}_{2}-\mathrm{CH}_{2}\right), 4.11(\mathrm{~m}, 1 \mathrm{H}, 3-\mathrm{H}), 4.34(\mathrm{~m}, 1 \mathrm{H}, 2-\mathrm{H}), 7.10(\mathrm{~d}, 2 \mathrm{H}, J=8 \mathrm{~Hz}, 3 "-$ and $5 "-\mathrm{H}), 7.46(\mathrm{~d}$, $2 \mathrm{H}, J=8 \mathrm{~Hz}, 2^{\prime \prime}$ - and 6 "-H), $7.67\left(\mathrm{~s}, 1 \mathrm{H}, 5^{\prime}-\mathrm{H}\right) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$); $\delta[\mathrm{ppm}]=12.1$ (C-18), $12.8(\mathrm{C}-19), 13.8\left(\mathrm{Pr}_{\mathrm{CH}}^{3}\right.$), $18.6(\mathrm{C}-21), 21.3(\mathrm{C}-11), 22.5$ and $22.8(\mathrm{C}-26$ and $\mathrm{C}-27)$, $23.8,24.2,24.4,27.9,28.0,28.2,31.8,35.0,35.8,36.1,36.2,37.1,37.8,39.5,39.8,42.5,43.3$, $44.4,54.0,56.2,56.3,64.9$ (C-2), 72.9 (C-3), 120.0 (C-5'), 125.3 (2C, C-2" and C-6") 127.2 (C1"), 128.8 (2C, C-3" and C-5"), 142.7 (C-4"), 146.3 (C-4'); Anal. Calcd for $\mathrm{C}_{38} \mathrm{H}_{59} \mathrm{~N}_{3} \mathrm{O}: \mathrm{C}$, 79.53 ; H, 10.36; N, 7.32. Found: C, 79.81; H, 10.45; N, 7.48.
$2 \alpha-[4-(4-T e r t-b u t y l p h e n y l)-1 H-1,2,3-t r i a z o l-1-y l]-3 \alpha-h y d r o x y-5 \alpha-c h o l e s t a n e ~(5 f) ~ a n d ~ 2 \alpha-[4-~$ (4-tert-butylphenyl)-1H-1,2,3-triazol-1-yl]-3ß-hydroxy-5 α-cholestane (6f). Eluent: $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{EtOAc}$ (95:5), yielding 5f as a white solid (170 mg , 29\%), mp 282-285 ${ }^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{f}}=0.76$ (ss B); IR (KBr): $3278,3161,1444,1383,1367,1235,1078,985,841,819 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (500 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) ; \delta[\mathrm{ppm}]=0.66\left(\mathrm{~s}, 3 \mathrm{H}, 18-\mathrm{H}_{3}\right), 0.85-0.9$ (overlapping multiplets, $9 \mathrm{H}, 21-$, 26- and $27-\mathrm{H}_{3}$), $0.94\left(\mathrm{~s}, 3 \mathrm{H}, 19-\mathrm{H}_{3}\right), 1.34\left(\mathrm{~s}, 9 \mathrm{H}, 3 \times t \mathrm{Bu}-\mathrm{CH}_{3}\right), 4.47(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, 3-\mathrm{H}), 4.72(\mathrm{~m}, 1 \mathrm{H}, 2-\mathrm{H})$, $7.30(\mathrm{~d}, 2 \mathrm{H}, J=8,5 \mathrm{~Hz}, 3 "-\mathrm{and} 5 "-\mathrm{H}), 7.44(\mathrm{~d}, 2 \mathrm{H}, J=8,5 \mathrm{~Hz}, 2 "-$ and $6 "-\mathrm{H}), 7.69(\mathrm{~s}, 1 \mathrm{H}, 5$ '$\mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$); $\delta[\mathrm{ppm}]=12.1(\mathrm{C}-18), 12.2(\mathrm{C}-19), 18.7(\mathrm{C}-21), 21.0(\mathrm{C}-11)$,
 $35.1,35.2,35.8,36.2,37.2,38.2,38.4,39.5,39.9,42.6,54.1,56.2,56.4,60.7$ (C-2), 67.8 (C-3), 118.7 (C-5'), 124.9 and 125.5 (4C, C-2", C-3", C-5", C-6"), 127.3 (C-1"), 146.5 (C-4'), 150.8 (C-4"); Anal. Calcd for $\mathrm{C}_{39} \mathrm{H}_{61} \mathrm{~N}_{3} \mathrm{O}: \mathrm{C}, 79.67$; H, 10.46; N, 7.15. Found: C, 79.85; H, 10.68; N, 7.34.

Continued elution resulted in $\mathbf{6 f}$ as a white solid ($375 \mathrm{mg}, 64 \%$), mp $262-265^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{f}}=0.56$ (ss B); IR (KBr): 3270, 2931, 1496, 1467, 1384, 1365, 1234, 1077, 1045, 845, 830, $799 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$); $\delta[\mathrm{ppm}]=0.65\left(\mathrm{~s}, 3 \mathrm{H}, 18-\mathrm{H}_{3}\right), 0.85-0.9$ (overlapping multiplets, 9 H , 21-, 26- and $27-\mathrm{H}_{3}$), $0.96\left(\mathrm{~s}, 3 \mathrm{H}, 19-\mathrm{H}_{3}\right), 1.34\left(\mathrm{~s}, 9 \mathrm{H}, 3 \mathrm{x} t \mathrm{Bu}^{2} \mathrm{CH}_{3}\right), 4.15(\mathrm{~m}, 1 \mathrm{H}, 3-\mathrm{H}), 4.33(\mathrm{~m}$, $1 \mathrm{H}, 2-\mathrm{H}), 7.31(\mathrm{~d}, 2 \mathrm{H}, J=8 \mathrm{~Hz}, 3$ "- and $5 "-\mathrm{H}), 7.46(\mathrm{~d}, 2 \mathrm{H}, J=8 \mathrm{~Hz}, 2 "-$ and $6 "-\mathrm{H}), 7.65(\mathrm{~s}, 1 \mathrm{H}$, $\left.5^{\prime}-\mathrm{H}\right) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$); $\delta[\mathrm{ppm}]=12.1(\mathrm{C}-18), 12.9(\mathrm{C}-19), 18.7(\mathrm{C}-21), 21.4(\mathrm{C}-$ 11), 22.5 and 22.8 (C-26 and C-27), 23.8, 24.2, 27.9, 28.0, 28.2, 31.3 ($3 \mathrm{C}, 3 \mathrm{x} t \mathrm{Bu}^{2}-\mathrm{CH}_{3}$), 31.8, $34.6,35.0,35.8,36.1,36.2,37.1,39.5,39.8,42.6,43.2,44.4,54.0,56.2,56.3,64.7$ (C-2), 72.9 (C-3), 119.8 (C-5'), 125.0 (2C), 125.5 (2C), 127.2, 146.4 (C-4"), 150.9 (C-4’); Anal. Calcd for $\mathrm{C}_{39} \mathrm{H}_{61} \mathrm{~N}_{3} \mathrm{O}$: C, 79.67 ; H, 10.46; N, 7.15. Found: C, 79.81 ; H, 10.37; N, 7.34.
$3 \alpha-H y d r o x y-2 \alpha-[4-(4-m e t h o x y p h e n y l)-1 H-1,2,3-t r i a z o l-1-y l]-5 \alpha-c h o l e s t a n e ~(5 g) ~ a n d ~ 3 \beta-$ hydroxy-2 α-[4-(4-methoxyphenyl)-1H-1,2,3-triazol-1-yl]-5 α-cholestane ($\mathbf{g g}$). Eluent: $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{EtOAc}$ (95:5), yielding $\mathbf{5 g}$ as a white solid (155 mg , 28\%), mp 266-269 ${ }^{\circ} \mathrm{C}$, $\mathrm{R}_{\mathrm{f}}=0.48$ (ss B); IR (KBr): 3254, 3156, 2927, 1618, 1579, 1558, 1498, 1466, 1445, 1367, 1235, 1180, 1081, $1033,834,820 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$); $\delta[\mathrm{ppm}]=0.66\left(\mathrm{~s}, 3 \mathrm{H}, 18-\mathrm{H}_{3}\right), 0.85-0.9$ (overlapping multiplets, $9 \mathrm{H}, 21-$, $26-$ and $\left.27-\mathrm{H}_{3}\right), 0.93\left(\mathrm{~s}, 3 \mathrm{H}, 19-\mathrm{H}_{3}\right), 3.82\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 4.46$ (br s, 1H, 3-H), $4.70(\mathrm{~m}, 1 \mathrm{H}, 2-\mathrm{H}), 6.82(\mathrm{~d}, 2 \mathrm{H}, J=8.5 \mathrm{~Hz}, 3 "-$ and $5 "-\mathrm{H}), 7.47(\mathrm{~d}, 2 \mathrm{H}, J=8.5$ $\mathrm{Hz}, 2 "$ " and $6 "-\mathrm{H}), 7.66\left(\mathrm{~s}, 1 \mathrm{H}, 5\right.$ '-H); ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$); $\delta[\mathrm{ppm}]=12.1$ (C-18), 12.2 (C-19), 18.7 (C-21), 21.0 (C-11), 22.5 and 22.8 (C-26 and C-27), 23.8, 24.2, 27.8, 28.0, 28.2, $31.7,35.0,35.1,35.8,36.1,37.1,38.2,38.4,39.5,39.8,42.6,54.0,55.3\left(\mathrm{OCH}_{3}\right), 56.2,56.4,60.7$ (C-2), 67.8 (C-3), 114.1 (2C, C-3" and C-5"), 118.3 (C-5'), 123.0 (C-1"), 126.5 (2C, C-2" and C6"), 146.4 (C-4'), 159.4 (C-4"); Anal. Calcd for $\mathrm{C}_{36} \mathrm{H}_{55} \mathrm{~N}_{3} \mathrm{O}_{2}$: C, 76.96; H, 9.87; N, 7.48. Found: C, 77.12; H, 10.02; N, 7.32.
Continued elution with $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{EtOAc}(90: 10)$ resulted in $\mathbf{6 g}$ as a white solid ($365 \mathrm{mg}, 65 \%$), mp $238-241^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{f}}=0.30$ (ss B); IR (KBr): 3521, 3135, 2940, 1618, 1563, 1498, 1467, 1387, 1248, $1185,1074,1039,835,814 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$); $\delta[\mathrm{ppm}]=0.65\left(\mathrm{~s}, 3 \mathrm{H}, 18-\mathrm{H}_{3}\right)$, 0.85-0.9 (overlapping multiplets, $9 \mathrm{H}, 21-$, 26- and $27-\mathrm{H}_{3}$), 0.94 (s, $3 \mathrm{H}, 19-\mathrm{H}_{3}$), 3.82 (s, 3 H , OCH_{3}), $4.11(\mathrm{~m}, 1 \mathrm{H}, 3-\mathrm{H}), 4.31(\mathrm{~m}, 1 \mathrm{H}, 2-\mathrm{H}), 6.84(\mathrm{~d}, 2 \mathrm{H}, J=8.5 \mathrm{~Hz}, 3 "-$ and $5 "-\mathrm{H}), 7.47(\mathrm{~d}$, $2 \mathrm{H}, J=8.5 \mathrm{~Hz}, 2^{\prime \prime}$ - and 6 "-H), $7.59\left(\mathrm{~s}, 1 \mathrm{H}, 5^{\prime}-\mathrm{H}\right) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$); $\delta[\mathrm{ppm}]=12.1$ (C-18), 12.8 (C-19), 18.6 (C-21), 21.3 (C-11), 22.5 and 22.8 (C-26 and C-27), 23.8, 24.2, 27.9, $28.0,28.2,31.8,35.0,35.8,36.1,36.2,37.1,39.5,39.8,42.6,43.3,44.4,53.9,55.3\left(\mathrm{OCH}_{3}\right)$, 56.2, 56.3, 64.8 (C-2), 72.9 (C-3), 114.1 (2C, C-3" and C-5"), 119.4 (C-5'), 122.8 (C-1"), 126.7 (2C, C-2" and C-6"), 146.1 (C-4'), 159.4 (C-4"); Anal. Calcd for $\mathrm{C}_{36} \mathrm{H}_{55} \mathrm{~N}_{3} \mathrm{O}_{2}$: C, 76.96; H, 9.87; N, 7.48. Found: C, 77.05; H, 9.92; N, 7.55.

$3 \alpha-H y d r o x y-2 \alpha-[4-(2-m e t h o x y p h e n y l)-1 H-1,2,3-t r i a z o l-1-y l]-5 \alpha-c h o l e s t a n e ~(5 h) ~ a n d ~ 3 \beta-~$

 hydroxy-2 α-[4-(2-methoxyphenyl)-1H-1,2,3-triazol-1-yl]-5 α-cholestane (6 h). Eluent: $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{EtOAc}$ (95:5), yielding $\mathbf{5 h}$ as a white solid ($165 \mathrm{mg}, 29 \%$), mp 238-241 ${ }^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{f}}=0.65$ (ss B); IR (KBr): 3250, 3191, 1607, 1586, 1547, 1492, 1467, 1441, 1245, 1072, 1027, $754 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $; \delta[\mathrm{ppm}]=0.66\left(\mathrm{~s}, 3 \mathrm{H}, 18-\mathrm{H}_{3}\right), 0.85-0.9$ (overlapping multiplets, 9 H , 21-, 26- and $27-\mathrm{H}_{3}$), $0.95\left(\mathrm{~s}, 3 \mathrm{H}, 19-\mathrm{H}_{3}\right), 3.82\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 4.45(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, 3-\mathrm{H}), 4.72(\mathrm{~m}, 1 \mathrm{H}$,$2-\mathrm{H}), 6.82(\mathrm{~d}, 1 \mathrm{H}, J=7.5 \mathrm{~Hz}, 3 "-\mathrm{H}), 7.02(\mathrm{t}, 1 \mathrm{H}, J=7.5 \mathrm{~Hz}, 5 "-\mathrm{H}), 7.25(\mathrm{t}, 1 \mathrm{H}, J=7.5 \mathrm{~Hz}, 4 "-$ H), $8.06\left(\mathrm{~s}, 1 \mathrm{H}, 5^{\prime}-\mathrm{H}\right), 8.17\left(\mathrm{~d}, 1 \mathrm{H}, J=7.5 \mathrm{~Hz}, 6{ }^{\prime}-\mathrm{H}\right) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$); $\delta[\mathrm{ppm}]=$ 12.1 ($\mathrm{C}-18$), 12.2 ($\mathrm{C}-19$), 18.7 (C-21), 21.0 (C-11), 22.5 and 22.8 (C-26 and C-27), 23.8, 24.2, $27.8,28.0,28.2,31.7,35.0,35.1,35.8,36.2,37.2,38.3,38.4,39.5,39.9,42.6,54.0,55.2$ $\left(\mathrm{OCH}_{3}\right), 56.2,56.4,60.8(\mathrm{C}-2), 67.9(\mathrm{C}-3), 110.5(\mathrm{C}-3 "), 118.6(\mathrm{C}-1 "), 120.9(\mathrm{C}-5 "), 122.7(\mathrm{C}-$ $\left.5^{\prime}\right), 127.4$ and 128.8 (C-4" and C-6"), 142.1 (C-4'), 155.5 (C-2"); Anal. Calcd for $\mathrm{C}_{36} \mathrm{H}_{55} \mathrm{~N}_{3} \mathrm{O}_{2}$: C, 76.96; H, 9.87; N, 7.48. Found: C, 77.08; H, 10.04; N, 7.32.
Continued elution resulted in $\mathbf{6 h}$ as a white solid ($375 \mathrm{mg}, 67 \%$), mp 206-209 ${ }^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{f}}=0.40$ (ss B); IR (KBr): 3511, 2931, 1607, 1582, 1551, 1490, 1465, 1440, 1247, 1070, 1029, $752 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) ; $\delta[\mathrm{ppm}]=0.65\left(\mathrm{~s}, 3 \mathrm{H}, 18-\mathrm{H}_{3}\right), 0.85-0.9$ (overlapping multiplets, 9 H , 21-, 26- and $\left.27-\mathrm{H}_{3}\right), 0.97\left(\mathrm{~s}, 3 \mathrm{H}, 19-\mathrm{H}_{3}\right), 3.75\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 4.17(\mathrm{~m}, 1 \mathrm{H}, 3-\mathrm{H}), 4.38(\mathrm{~m}, 1 \mathrm{H}, 2-$ H), $6.77\left(\mathrm{~d}, 1 \mathrm{H}, J=7.5 \mathrm{~Hz}, 3^{\prime \prime}-\mathrm{H}\right), 7.00(\mathrm{t}, 1 \mathrm{H}, J=7.5 \mathrm{~Hz}, 5 "-\mathrm{H}), 7.22\left(\mathrm{t}, 1 \mathrm{H}, J=7.5 \mathrm{~Hz}, 4^{\prime \prime}-\mathrm{H}\right)$, $8.03\left(\mathrm{~s}, 1 \mathrm{H}, 5^{\prime}-\mathrm{H}\right), 8.10\left(\mathrm{~d}, 1 \mathrm{H}, J=7.5 \mathrm{~Hz}, 6{ }^{\prime \prime}-\mathrm{H}\right) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) ; \delta[\mathrm{ppm}]=12.1$ (C-18), 12.9 (C-19), 18.6 (C-21), 21.3 (C-11), 22.5 and 22.8 (C-26 and C-27), 23.8, 24.2, 27.9, $28.0,28.2,31.8,35.1,35.8,36.1,36.2,37.1,39.5,39.8,42.6,43.3,44.4,54.0,55.1\left(\mathrm{OCH}_{3}\right)$, 56.2, 56.3, 64.8 (C-2), 73.0 (C-3), 110.4 (C-3"), 118.2 (C-1"), 120.8 (C-5"), 123.9 (C-5'), 127.3 and 128.7 (2C, C-4" and C-6"), 141.5 (C-4'), 155.5 (C-2"); Anal. Calcd for $\mathrm{C}_{36} \mathrm{H}_{55} \mathrm{~N}_{3} \mathrm{O}_{2}$: C, 76.96; H, 9.87; N, 7.48. Found: C, 77.03; H, 9.92; N, 7.67.
$2 \alpha-(4-C y c l o p e n t y l-1 H-1,2,3-t r i a z o l-1-y l)-3 \alpha-h y d r o x y-5 \alpha-c h o l e s t a n e ~(5 i) ~ a n d ~ 2 \alpha-(4-~$ cyclopentyl-1H-1,2,3-triazol-1-yl)-3 $\boldsymbol{\beta}$-hydroxy- $\mathbf{5} \alpha$-cholestane ($\mathbf{6 i}$). Eluent: $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{EtOAc}$ (90:10), yielding $5 \mathbf{5 i}$ as a white solid ($145 \mathrm{mg}, 28 \%$), mp 192-195 ${ }^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{f}}=0.38$ (ss B); IR (KBr): $3265,3160,2931,1445,1383,1221,1120,1062,890 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) ; \delta$ $[\mathrm{ppm}]=0.64\left(\mathrm{~s}, 3 \mathrm{H}, 18-\mathrm{H}_{3}\right), 0.84-0.89$ (overlapping multiplets, $9 \mathrm{H}, 21-, 26-$ and $\left.27-\mathrm{H}_{3}\right), 0.91(\mathrm{~s}$, $3 \mathrm{H}, 19-\mathrm{H}_{3}$), $3.08\left(\mathrm{~m}, 1 \mathrm{H}, 1\right.$ "-H), 4.35 (br s, 1H, 3-H), $4.61(\mathrm{~m}, 1 \mathrm{H}, 2-\mathrm{H}), 7.36(\mathrm{~s}, 1 \mathrm{H}, 5$ ' -H$) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$); $\delta[\mathrm{ppm}]=12.1(\mathrm{C}-18), 12.2(\mathrm{C}-19), 18.6(\mathrm{C}-21), 20.9(\mathrm{C}-11), 22.5$ and 22.8 (C-26 and C-27), 23.8, 24.1, 25.1 (2C, C-3", C-4"), 27.7, 28.0, 28.2, 31.7, 33.0 (2C, C2", C-5"), 35.0, 35.1, 35.7, 36.1, 36.6, 37.1, 38.2, 38.6, 39.5, 39.8, 42.5, 54.0, 56.1, 56.3, 60.4 (C-2), 67.8 (C-3), 119.4 (C-5'), 151.4 (C-4'); Anal. Calcd for $\mathrm{C}_{34} \mathrm{H}_{57} \mathrm{~N}_{3} \mathrm{O}: \mathrm{C}, 77.96$; H, 10.97; N, 8.02. Found: C, 77.85; H, 11.08; N, 8.19.

Continued elution with $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{EtOAc}(85: 15)$ resulted in $\mathbf{6 i}$ as a white solid ($345 \mathrm{mg}, 66 \%$), mp $207-209{ }^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{f}}=0.26$ (ss B); IR (KBr): 3521, 3140, 2939, 1550, 1466, 1451, 1380, 1216, 1076, $1050 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) ; \delta[\mathrm{ppm}]=0.64\left(\mathrm{~s}, 3 \mathrm{H}, 18-\mathrm{H}_{3}\right), 0.84-0.89$ (overlapping multiplets, $9 \mathrm{H}, 21-26-$ and $\left.27-\mathrm{H}_{3}\right), 0.93\left(\mathrm{~s}, 3 \mathrm{H}, 19-\mathrm{H}_{3}\right), 3.04(\mathrm{~m}, 1 \mathrm{H}, 1 "-\mathrm{H}), 4.06(\mathrm{~m}, 1 \mathrm{H}, 3-\mathrm{H})$, $4.30(\mathrm{~m}, 1 \mathrm{H}, 2-\mathrm{H}), 7.29\left(\mathrm{~s}, 1 \mathrm{H}, 5\right.$ '-H); ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$); $\delta[\mathrm{ppm}]=12.1(\mathrm{C}-18), 12.9$ (C-19), 18.6 (C-21), 21.3 (C-11), 22.5 and 22.8 (C-26 and C-27), 23.8, 24.2, 25.1 (2C, C-3" and C-4"), 27.9, 28.0, 28.2, 31.8, 33.0 (2C, C-2" and C-5"), 35.0, 35.7, 36.0, 36.1, 36.6, 37.0, 39.5, $39.8,42.5,43.5,44.4,54.0,56.1,56.3,64.1$ (C-2), 72.7 (C-3), 119.7 (C-5'), 151.3 (C-4'); Anal. Calcd for $\mathrm{C}_{34} \mathrm{H}_{57} \mathrm{~N}_{3} \mathrm{O}: \mathrm{C}, 77.96$; H, 10.97; N, 8.02. Found: C, 77.83; H, 11.06; N, 8.14.
$\mathbf{2 \alpha - (4 - C y c l o h e x y l - 1 H - 1 , 2 , 3 - t r i a z o l - 1 - y l) - 3 \alpha - h y d r o x y - 5 \alpha - c h o l e s t a n e ~ (5 j) ~ a n d ~} 2 \alpha$-(4-cyclohexyl-1H-1,2,3-triazol-1-yl)-3ß-hydroxy-5 α-cholestane ($\mathbf{6 j}$). Eluent: $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{EtOAc}$
(90:10), yielding $\mathbf{5 j}$ as a white solid (160 mg , 30%), mp 225-228 ${ }^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{f}}=0.40$ (ss B); IR (KBr): $3522,3127,2930,1466,1447,1382,1210,1054,887 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$); δ $[\mathrm{ppm}]=0.65\left(\mathrm{~s}, 3 \mathrm{H}, 18-\mathrm{H}_{3}\right), 0.85-0.90$ (overlapping multiplets, $9 \mathrm{H}, 21-, 26-$ and $27-\mathrm{H}_{3}$), $0.91(\mathrm{~s}$, $\left.3 \mathrm{H}, 19-\mathrm{H}_{3}\right), 2.68\left(\mathrm{~m}, 1 \mathrm{H}, 1\right.$ "-H), $4.35(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, 3-\mathrm{H}), 4.61(\mathrm{~m}, 1 \mathrm{H}, 2-\mathrm{H}), 7.35\left(\mathrm{~s}, 1 \mathrm{H}, 5^{\prime}-\mathrm{H}\right) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$); $\delta[\mathrm{ppm}]=12.1(\mathrm{C}-18), 12.2(\mathrm{C}-19), 18.6(\mathrm{C}-21), 20.9(\mathrm{C}-11), 22.5$ and 22.8 (C-26 and C-27), 23.8, 24.1, 26.0, 26.1, 27.7, 28.0, 28.2, 31.7, 32.8, 32.9, 35.0, 35.1, $35.2,35.8,36.1,37.1,38.2,38.7,39.5,39.8,42.6,54.0,56.2,56.4,60.4$ (C-2), 67.9 (C-3), 119.1 (C-5'), 152.5 (C-4'); Anal. Calcd for $\mathrm{C}_{35} \mathrm{H}_{59} \mathrm{~N}_{3} \mathrm{O}: \mathrm{C}, 78.16$; H, 11.06; N, 7.81. Found: C, 78.32; H, 9.98; N, 7.93 .
Continued elution with $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{EtOAc}$ ($85: 15$) resulted in $\mathbf{6 j}$ as a white solid ($345 \mathrm{mg}, 64 \%$), mp $232-233{ }^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{f}}=0.25$ (ss B); IR (KBr): 3520, 3137, 2933, 1544, 1466, 1446, 1380, 1213, 1076, $1049 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) ; \delta[\mathrm{ppm}]=0.65\left(\mathrm{~s}, 3 \mathrm{H}, 18-\mathrm{H}_{3}\right), 0.84-0.89$ (overlapping multiplets, $9 \mathrm{H}, 21-$, 26- and $27-\mathrm{H}_{3}$), $0.94\left(\mathrm{~s}, 3 \mathrm{H}, 19-\mathrm{H}_{3}\right), 2.67(\mathrm{~m}, 1 \mathrm{H}, 1 "-\mathrm{H}), 4.04(\mathrm{~m}, 1 \mathrm{H}, 3-\mathrm{H})$, $4.32(\mathrm{~m}, 1 \mathrm{H}, 2-\mathrm{H}), 7.29\left(\mathrm{~s}, 1 \mathrm{H}, 5{ }^{\prime}-\mathrm{H}\right) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$); $\delta[\mathrm{ppm}]=12.1(\mathrm{C}-18), 12.9$ (C-19), 18.6 (C-21), 21.4 (C-11), 22.5 and 22.8 (C-26 and C-27), 23.8, 24.2, 26.0, 26.1, 27.9, $28.0,28.2,31.8,32.8,32.9,33.0,35.0,35.1,35.8,36.0,36.1,37.1,39.5,39.8,42.5,43.5,44.4$, 54.0, 56.2, 56.3, 64.0 (C-2), 72.8 (C-3), 119.3 (C-5'), 152.5 (C-4'); Anal. Calcd for $\mathrm{C}_{35} \mathrm{H}_{59} \mathrm{~N}_{3} \mathrm{O}$: C, 78.16; H, 11.06; N, 7.81. Found: C, 78.34; H, 11.23, N, 7.67.

Determination of antiproliferative effects

Human cancer cell lines were purchased from ECACC (Salisbury, UK). HeLa (cervix adenocarcinoma), A431 (skin epidermoid carcinoma) and MCF7 (breast adenocarcinoma) cells were cultivated in minimal essential medium supplemented with 10% foetal bovine serum, 1% non-essential amino acids and an antibiotic-antimycotic mixture.
Near-confluent cancer cells were seeded onto a 96-well microplate (5000/well) and attached to the bottom of the well overnight. On the second day, $200 \mu \mathrm{~L}$ of new medium containing the tested compound (at 10 or $30 \mu \mathrm{M}$) was added. After incubation for 72 h at $37^{\circ} \mathrm{C}$ in humidified air with $5 \% \mathrm{CO}_{2}$, the living cells were assayed by the addition of $20 \mu \mathrm{~L}$ of $5 \mathrm{mg} / \mathrm{mL}$ MTT solution. MTT was converted by intact mitochondrial reductase and precipitated as blue crystals during a 4 h contact period. The medium was then removed and the precipitated crystals were dissolved in $100 \mu \mathrm{~L}$ DMSO during a 60 min period of shaking at $25^{\circ} \mathrm{C}$. Finally, the reduced MTT was assayed at 545 nm , using a microplate reader; wells with untreated cells were utilized as controls (Mosmann, 1983). ${ }^{17}$ All in vitro experiments were carried out on two microplates with at least five parallel wells. Cisplatin was used as positive control. Stock solutions of the tested substances (10 mM) were prepared with DMSO. The DMSO content of the medium $(0.1 \%$ or 0.3%) did not have any significant effect on the cell proliferation.

Acknowledgements

This work was supported by the New Hungary Development Plan (TÁMOP 4.2.1/B09/1/KONV) and the Hungarian Scientific Research Fund (OTKA K101659).

References

1. Wu, P.; Fokin, V. V. Aldrichim. Acta 2007, 40, 7.
2. Genin, M. J.; Allwine, D. A.; Anderson, D. J.; Barbachyn, M. R.; Emmert, D. E.; Garmon, S. A.; Graber, D. R.; Grega, K. C.; Hester, J. B.; Hutchinson, D. K.; Morris, J.; Reischer, R. D.; Stper, D.; Yagi, B. H. J. Med. Chem. 2000, 43, 953.
3. Buckle, D. R.; Rockell, C. J. M.; Smith, H.; Spicer, B. A. J. Med. Chem. 1986, 29, 2262.
4. Alvarez, R.; Velazquez, S.; San-Felix, A.; Aquaro, S.; De Clercq, E.; Perno, C. F.; Karlsson, A.; Balzarini, J.; Camarasa, M. J. J. Med. Chem. 1994, 37, 4185.
5. (a) Rostovtsev, V. V.; Green, L. G.; Fokin, V. V.; Sharpless, K. B. Angew. Chem., Int. Ed. 2002, 41, 2596. (b) Tornøe, C. W.; Christensen, C.; Meldal, M. J. Org. Chem. 2002, 67, 3057.
6. (a) Pore, V. S.; Aher, N. G.; Kumar, M.; Shukla, P. K. Tetrahedron 2006, 62, 11178. (b) Aher, N. G.; Pore, V. S.; Patil, S. P. Tetrahedron 2007, 63, 12927. (c) Aher, N. G.; Pore, V. S. Synlett 2005, 14, 2155. (d) Zhang, Z.; Ju, Y.; Zhao, Y. Chem. Lett. 2007, 36, 1450.
7. Banday, A. H.; Shameem, A. S.; Gupta, B. D.; Sampath Kumar, H. M. Steroids 2010, 75, 801.
8. (a) Frank, É.; Molnár, J.; Zupkó, I.; Kádár, Z.; Wölfling, J. Steroids 2011, 76, 1141. (b) Ondré, D.; Wölfling, J.; Tóth, I.; Szécsi, M.; Julesz, J.; Schneider, Gy. Steroids 2009, 74, 1025. (c) Ondré, D.; Wölfling, J.; Iványi, Z.; Schneider, Gy.; Tóth, I.; Szécsi, M.; Julesz, J. Steroids 2008, 73, 1375. (d) Frank, É.; Mucsi, Z.; Zupkó, I.; Réthy, B.; Falkay, G.; Schneider, Gy.; Wölfling, J. J. Am. Chem. Soc. 2009, 131, 3894.
9. Kádár, Z.; Kovács, D.; Frank, É.; Schneider, Gy.; Huber, J.; Zupkó, I.; Bartók, T.; Wölfling, J. Molecules 2011, 16, 4786.
10. (a) Butenandt, A.; Wolff, A. Ber. Dtsch. Chem. Ges. 1935, 68, 2091. (b) Fieser, L. F.; Dominguez X. A. J. Am. Chem. Soc. 1953, 75, 1704.
11. Salunke, D. B.; Hazra, B. G.; Gonnade, R. G.; Bhadbhade, M. M.; Pore, V. S. Tetrahedron 2005, 61, 3605.
12. Meldal, M.; Tornøe, C. W. Chem. Rev. 2008, 108, 2952.
13. Lee, B. Y.; Park, S. R.; Jeon, H. B.; Kim, K. S. Tetrahedron Lett. 2006, 47, 5105.
14. Gonschior, M.; Kötteritzsch, M.; Rost, M.; Schönecker, B.; Wyrwa, R. Tetrahedron Asymmetry 2000, 11, 2159.
15. Kamuhabwa, A.; Nshimo, C.; de Witte, P. J. Ethnopharmacol. 2000, 70, 143.
16. Schönecker, B.; Ponsold, K. J. prakt. Chem. 1971, 313, 817.
17. Mosmann, T. J. Immunol. Methods 1983, 65, 55.

[^0]: ${ }^{a}$ Yields of purified isolated products.

