Novel fluorescent isoquinoline derivatives obtained *via* Buchwald-Hartwig coupling of isoquinolin-3-amines

József Balog, Zsuzsanna Riedl, György Hajós,* Zsombor Miskolczy, and László Biczók

Chemical Research Center, Hungarian Academy of Sciences, Pusztaszeri ut 59-67. H-1025 Budapest, Hungary E-mail: <u>ghajos@chemres.hu</u>

Dedicated to Prof. Ferenc Fülöp on the occasion of his 60th birthday

DOI: <u>http://dx.doi.org/10.3998/ark.5550190.0013.511</u>

Abstract

Isoquinolin-3-amines bearing an alkyl group or hydrogen atom in position 4 easily underwent Buchwald-Hartwig coupling reactions with various substituted aryl halides. Investigation of the selected new derivatives with fluorescent spectroscopy revealed that the reaction products have similar photophysical properties to those of isoquinolin-3-amine except the *N*-(nitrophenyl) derivatives, which emit negligible fluorescence.

Keywords: Isoquinolinamine, pyridinamine, fluorescence, Buchwald-Hartwig amination

Introduction

Recently we have published¹ that some isoquinoline derivatives bearing a morpholine group in position 1 or 3 represent a new group of fluorescent compounds. In the course of continuation of our activity in the area of isoquinolinamines, synthesis of variously substituted *N*-arylisoquinolinamines has been decided. Such compounds could serve as valuable starting compounds for subsequent ring closure reactions. To this end, use of the available isoquinolin-3-amine as well its 4-methyl and 4-benzyl derivative in Buchwald-Hartwig amination²⁻⁴ of aryl halides has been envisaged.

Results and Discussion

Inspection of the pertinent literature revealed that very few cases of direct amination with isoquinolinamine have been carried out.⁵ Similarly, Buchwald-Hartwig amination with

quinolinamines and pyridinamines and other related *N*-heterocycles have also been published by the same research group.⁶

In the frame of the present study, unsubstituted and 4-alkyl substituted isoquinolin-3-amines (1, $R^4 = H$, CH_3 and $CH_2C_6H_5$, respectively) were treated with various substituted bromobenzene derivatives and 2,3-dibromopyridine as shown in Scheme 1. The substituents of the bromobenzene reagent involved *m*- and *p*-Cl, *o*-, *m*-, and *p*-Br, *o*- and *p*-NO₂, *o*-, *m*-, and *p*-COOEt, *o*-CHO moieties. As a ligand to $Pd_2(dba)_3$ JohnPhos and Xantphos provided the best results. As bases, cesium carbonate and sodium *t*-butoxide were used. The products have been obtained in 46–94% yields. The derivatives and experimental conditions are summarized in Table 1.

Scheme 1

In order to reveal the photophysical properties of the new compounds, some selected derivatives have been studied by absorption and fluorescence spectroscopy. As shown in Figure 1, the nitro-substitution leads to a significant bathochromic shift of the first absorption band, whereas the introduction of the *p*-COOC₂H₅ moiety brings about marked blue- and red-shifts for the first and second absorption bands, respectively. The m-COOC₂H₅ and p-Cl substituents have smaller effect. Intramolecular hydrogen bonding between N-H and the oxygen of the o-NO₂ may contribute to the considerable diminution of the energy of the lowest singlet-excited state in the case of 21. Table 2 summarizes the photophysical parameters of the new compounds and, for the sake of comparison, those of isoquinolin-3-amine (1, $R^4 = H$). The fluorescence maximum $(\lambda_{max}(fl))$ exhibits a marked displacement to longer wavelength upon attachment of N-phenyl group to 1a, but $\lambda_{max}(fl)$ diminishes in the series of 2a > 2g > 2s > 2t > 1a. The Stokes-shift of the fluorescence band is larger when a substituted phenyl group is attached to the isoquinolinamine skeleton indicating that more substantial structural alteration occurs upon excitation than in the case of 1a. The N-(nitrophenyl) derivatives (2o and 2l) emit negligible fluorescence due probably to the enhanced charge transfer character of the lowest singlet-excited state. The new compounds have slightly smaller fluorescence quantum yields (Φ_f) and somewhat longer fluorescence lifetimes (τ_f) than 1a,¹ but neither of these quantities is sensitive to the COOC₂H₅ or Cl substitution. The rate constant of fluorescence emission (k_f) and radiationless deactivation (k_{nr}) from the singlet excited state were calculated using $k_f = \Phi_f / \tau_f$ and $k_{nr} =$ $(1-\Phi_f)/\tau_f$ relationships, respectively. As seen in Table 2, practically constant k_{nr} values were

obtained for all fluorescent derivatives, whereas k_f is slightly larger for **1a** compared to the corresponding values of the phenylamino derivatives.

Table 1.	Various	derivatives	of (2)	obtained	by	Buchwald-Hartwig	coupling	of isoquinolin-3	3-
amines (2	1)								

	v	D 4	D	Ligand	Basa	Solvent	$mn(^{\circ}C)$	colour	yield	time (h)
		K	K		Dase	Solvent	$\frac{\operatorname{Inp}(\mathbf{C})}{101,102}$	Coloui	(70)	<u>(II)</u> -
a	СН	Н	Н	JohnPhos	NaO'Bu	Toluene	101-102	yellow	87	5
b	CH	Me	Н	JohnPhos	NaO ^t Bu	Toluene	76-78	brownish yellow	77	5
c	CH	Benzyl	Н	JohnPhos	NaO ^t Bu	Toluene	155-157	dark yellow	70	5
d	CH	Н	<i>m</i> -Cl	JohnPhos	NaO ^t Bu	Toluene	123-126	yellow	91	6
e	CH	Me	<i>m</i> -Cl	JohnPhos	NaO ^t Bu	Toluene	77-79	pale yellow	75	6
f	CH	Benzyl	<i>m</i> -Cl	JohnPhos	NaO ^t Bu	Toluene	72-74	pale yellow	81	6
g	CH	Н	p-Cl	XantPhos	Cs_2CO_2	1,4-Dioxane	148-151	yellow	70	6
h	CH	Н	o-Br	XantPhos	Cs_2CO_3	1,4-Dioxane	100-102	green	47	8
i	CH	Н	<i>m</i> -Br	JohnPhos	NaO ^t Bu	Toluene	123-125	greenish yellow	46	1
j	CH	Benzyl	<i>m</i> -Br	JohnPhos	NaO ^t Bu	Toluene	60-62	yellow	49	1
k	CH	Н	<i>p</i> -Br	XantPhos	Cs_2CO_2	1,4-Dioxane	159-162	yellow	80	8
1	CH	Н	$o-NO_2$	XantPhos	Cs_2CO_3	1,4-Dioxane	148-149	dark orange	94	5
m	CH	Me	$o-NO_2$	XantPhos	Cs_2CO_4	1,4-Dioxane	130-133	dark orange	94	5
n	CH	Benzyl	$o-NO_2$	XantPhos	Cs_2CO_3	1,4-Dioxane	143-146	orange	95	5
0	CH	Н	p-NO ₂	XantPhos	Cs_2CO_3	1,4-Dioxane	174-176	brownish yellow	55	4
р	CH	Me	p-NO ₂	JohnPhos	NaO ^t Bu	Toluene	196-199	brownish orange	60	2
q	CH	Benzyl	p-NO ₂	JohnPhos	NaO ^t Bu	Toluene	120-122	brownish yellow	64	2
r	CH	Н	o-COOEt	XantPhos	Cs_2CO_2	1,4-Dioxane	44-46	green	43	6
s	CH	Н	<i>m</i> -COOEt	XantPhos	Cs_2CO_3	1,4-Dioxane	107-109	yellow	84	6
t	CH	Н	p-COOEt	XantPhos	Cs_2CO_3	1,4-Dioxane	141-144	yellow	83	6
u	CH	Н	o-CHO	XantPhos	Cs_2CO_3	1,4-Dioxane	92-95	brownish yellow	84	2
v	Ν	Н	-	XantPhos	Cs_2CO_3	1,4-Dioxane	107-110	brownish yellow	80	10
w	Ν	Benzyl	-	XantPhos	Cs_2CO_3	1,4-Dioxane	116-118	brownish yellow	70	10

Figure 1. Absorption spectra of 2a (thin line), 2t (thick line), 2o (thick dash line) and 2l (thin dash line) in acetonitrile. Inset shows the zoomed view of the long wavelength range.

	1a ^a	2a	2t	2s	2g	20	21
$\lambda_{max}(abs)/nm^b$	363	371	c	363°	367	395	433
$\lambda_{max}(fl)/nm$	431	464	441	446	457	d	d
$\Phi_{ m f}$	0.28	0.20	0.23	0.23	0.20	< 10 ⁻⁴	< 10 ⁻⁴
τ_f / ns	12.4	14.2	13.0	13.3	14.2	d	d
$k_{f} / 10^{7} \text{ s}^{-1}$	2.3	1.4	1.7	1.7	1.4	d	d
$k_{nr} / 10^7 \text{ s}^{-1}$	5.8	5.6	5.9	5.8	5.6	d	d

Table 2. Photophysical properties of the selected isoquinolin-3-amines in acetonitrile

^a Reference 1. ^b The location of the maximum of the lowest-energy absorption band, ^c shoulder, ^d fluorescence is too weak to determine precisely.

Conclusions

The present results reveal that a great number of actively fluorescent phenylamino and pyridylaminoisoquinolines can be easily obtained by one single manipulation starting from isoquinolinamines in medium to excellent yields. The quantum yield and lifetime of the fluorescence are insensitive to the substituent of the *N*-phenyl moiety but introduction of nitro group makes the compound practically nonfluorescent.

Experimental Section

General. Melting points were determined on a Büchi apparatus. The IR spectra were recorded on a Thermo Nicolet Avatar 320 FT-IR spectrometer. NMR measurements were performed on Varian INOVA-300 spectrometer equipped with a 5 mm inverse detection z-gradient probe. ¹H and ¹³C NMR spectra were measured at room temperature (25 °C) in an appropriate solvent. ¹H and ¹³C chemical shifts are expressed in ppm (δ) referenced to TMS or residual solvent signals. The elemental analysis has been carried out with an Elementar Vario EL III apparatus (at the Analytical Laboratory for Organic Chemistry, Chemical Research Center, Hungarian Academy of Sciences, H-1025 Budapest, Pusztaszeri út 59-67). Reactions were monitored with Merck silica gel 60 F₂₅₄ tlc plates (0.25 mm thickness). All the chemicals and solvents were used as supplied. The UV-visible absorption spectra were recorded on a Unicam UV 500 spectrophotometer. Corrected fluorescence spectra were obtained on a Jobin-Yvon Fluoromax-P photoncounting spectrofluorometer. Fluorescence lifetimes were measured with time-correlated single-photon counting technique as described previously.⁷ Fluorescence quantum yield was determined relative to that of quinine sulfate in 1 N H₂SO₄, for which a reference yield of $\Phi_f = 0.546$ was taken.⁸

General procedure for the synthesis of *N*-arylisoquinolin-3-amines

A round-bottomed flask was charged with $Pd_2(dba)_3$ (5 mol %), ligand (10 mol%), aryl halide (1 mmol), appropriate isoquinolinamine (1 mmol), base (1.5 mmol) and dry solvent (5 mL). The flask was flushed with argon for 5 min. The mixture was heated at reflux under magnetic stirring. After cooling down to room temperature, the reaction mixture was concentrated and the residue was purified by flash column chromatography on silica gel.

N-Phenylisoquinolin-3-amine (2a). Reaction time 5 h. Eluent: Hexane /EtOAc (4:1), yield: 87%; yellow crystals; mp 101-102 °C; v_{max} (KBr, cm⁻¹): 3239, 3054, 1631, 1453, 741; δ_{H} (300 MHz, CDCl₃): 6.91 (1H, s, NH), 7.08 (1H, dd, J = 6.6 Hz, 6.4 Hz, H-4'), 7.20 (1H, s, H-4), 7.27-7.41 (5H, m, H-7, H-2', H-3', H-5', H-6'), 7.49-7.58 (2H, m, H-5, H-6), 7.81 (1H, d, J = 8.2 Hz, H-8), 8.96 (1H, s, H-1); δ_{C} (75 MHz, CDCl₃): 99.3 (C-4), 120.2 (C-2', C-6'), 122.9 (C-4'), 123.9 (C-7), 124.8 (C-8a), 125.5 (C-5), 128.0 (C-8), 129.7(C-3',C-5'), 130.8 (C-6), 138.8 (C-4a), 141.3 (C-1'), 152.3 (C-3, C-1). Anal. Calcd for C₁₅H₁₂N₂ (220.26): C, 81.79; H, 5.49; N, 12.72% . Found: C, 81.41; H, 5.56; N, 13.03%.

4-Methyl-*N***-phenylisoquinolin-3-amine (2b).** Reaction time 5 h. Eluent: Hexane /EtOAc (4:1); yield: 77%; brownish yellow crystals; mp 76-78 °C; v_{max} (KBr, cm⁻¹): 3253, 1581, 1498, 1247, 746; $\delta_{\rm H}$ (300 MHz, CDCl₃): 2.47 (3H, s, CH₃), 6.24 (1H, s, NH), 6.95 (1H. dd, *J* = 7.0, 7.1 Hz, H-4'), 7.21-7.28 (4H, m, H-2', H-3', H-5', H-6'), 7.38 (1H, dd, *J* = 7.4, 7.7 Hz, H-7), 7.62 (1H, dd, *J* = 7.3, 8.13 Hz, H-6), 7.85-7.90 (2H, m, H-5, H-8), 8.93 (1H, s, H-1); $\delta_{\rm C}$ (75 MHz, CDCl₃): 12.6 (CH₃), 111.2 (C-4), 118.3 (C-2', C-6'), 121.3 (C-5), 122.6 (C-4'), 124.1 (C-7), 125.5 (C-8a), 128.6 (C-8), 129.2 (C-3', C-5'), 130.4 (C-6), 137.6 (C-4a), 142.9 (C-1'), 148.9 (C-3), 149.6 (C-

1). Anal. Calcd for $C_{16}H_{14}N_2$ (234.29): C, 82.02; H, 6.02; N, 11.96%. Found: C, 81.86; H, 6.14; N, 12.00%.

4-Benzyl-*N***-phenylisoquinolin-3-amine (2c).** Reaction time 5 h. Eluent: Hexane /EtOAc (4:1); yield: 70%; dark yellow crystals; mp 155-157 °C; v_{max} (KBr, cm⁻¹): 3414, 1597, 1494, 1315, 747; $\delta_{\rm H}$ (300 MHz, CDCl₃): 4.39 (2H, s, CH₂), 6.17 (1H, s, NH), 6.95 (1H, dd, J = 6.3, 6.2 Hz, H-4'), 7.19-7.39 (10H, m, H-5, H2', H-3', H-5', H-6', H-2", H-3", H-4", H-5", H-6"), 7.61 (1H, dd, J = 7.6, 7.4 Hz, H-6), 7.87-7.91 (2H, m, H-8, H-5), 9.03 (1H, s, H-1); $\delta_{\rm C}$ (75 MHz, CDCl₃): 32.1 (CH₂), 112.0 (C-4), 118.9 (C-2', C-6'), 121.6 (C-5), 122.4 (C-4'), 123.9 (C-7), 125.4 (C-8a), 127.1 (C-4"), 128.4 (C-2', C-6"), 128.8 (C-8), 129.2 (C-3", C-5"), 129.3 (C-3', C-5'), 130.9 (C-6), 137.7 (C-4a), 138.6 (C-1"), 142.1 (C-1'), 149.8 (C-3), 150.5 (C-1). Anal. Calcd for C₂₂H₁₈N₂ (310.39): C, 85.13; H, 5.85; N, 9.03%. Found: C, 85.45; H, 5.90; N, 8.65%.

N-(**3-Chlorophenyl**)**isoquinolin-3-amine (2d).** Reaction time 6 h. Eluent: Hexane /EtOAc (3:1); yield: 91%; yellow crystals; mp 123-126 °C; v_{max} (KBr, cm⁻¹): 3259, 3057, 1630, 1589, 750; δ_{H} (300 MHz, CDCl₃): 6.84 (1H, s, NH), 7.00 (1H, d, *J* = 7.7 Hz, H-4'), 7.18-7.40 (5H, m, H-4, H-7, H-2', H-5', H-6'), 7.53-7.63 (2H, m, H-6, H-8), 7.83 (1H, d, *J* = 8.2 Hz, H-5), 8.97 (1H, s, H-1); δ_{C} (75 MHz, CDCl₃): 100.5 (C-4), 117.5 (C-6'), 119.2 (C-2'), 122.4 (C-4'), 124.4 (C-7), 125.1 (C-5), 125.6 (C-8a), 127.9 (C-8), 130.6 (C-5'), 130.9 (C-6), 135.2 (C-3'), 138.7 (C-4a), 142.7 (C-1'), 151.2 (C-3), 152.3 (C-1). Anal. Calcd for C₁₅H₁₁ClN₂ (245.71): C, 70.73; H, 4.35; N, 11.00%. Found: C, 70.45; H, 4.51; N, 11.15%.

N-(3-Chlorophenyl)-4-methylisoquinolin-3-amine (2e). Reaction time 6 h. Eluent: Hexane /EtOAc (3:1); yield: 75%; pale yellow crystals; mp 77-79 °C; v_{max} (KBr, cm⁻¹): 3215, 2992, 1572, 1475, 683; δ_{H} (300 MHz, CDCl₃): 2.48 (3H, s, CH₃): 6.26 (1H, s, NH), 6.89 (1H, d, *J* = 7.9 Hz, H-4'), 7.06 (1H, d, *J* = 8.1 Hz, H-6'), 7.18 (1H, dd, *J* = 8.0, 8.0 Hz, H-5'), 7.27 (1H, s, H-2'), 7.42 (1H, dd, *J* = 7.6, 7.7 Hz, H-7), 7.65 (1H, dd, *J* = 7.1, 8.2 Hz, H-6), 7.89 (2H, m, H-5, H-8), 8.95 (1H, s, H-1); δ_{C} (75 MHz, CDCl₃): 12.6 (CH₃), 112.1 (C-4), 116.1 (C-6'), 117.7 (C-2'), 121.0 (C-4'), 122.7 (C-5), 124.6 (C-7), 125.8 (C-8a), 128.6 (C-8), 130.2 (C-5'), 130.6 (C-6), 134.9 (C-3'), 137.5 (C-4a), 144.3 (C-1'), 148.1 (C-3), 149.7 (C-1). Anal. Calcd for C₁₆H₁₃ClN₂ (268.74): C, 71.51; H, 4.88; N, 10.42%. Found: C,71.26; H, 4.67; N, 10.65%.

4-Benzyl-*N***-(3-chlorophenyl)isoquinolin-3-amine (2f).** Reaction time 6 h. Eluent: Hexane /EtOAc (5:1); yield:81%; pale yellow crystals; mp 71-74 °C; v_{max} (KBr, cm⁻¹): 3224, 1591, 1488, 1308, 752; δ_{H} (300 MHz, CDCl₃): 4.39 (2H, s, CH₂), 6.19 (1H, s, NH), 6.89 (1H, d, *J* = 7.8 Hz, H-4'), 7.04 (1H, d, *J* = 8.2 Hz, H-6'), 7.13-7.34 (7H, m, H-2', H-5', H-2", H-3", H-4", H-5", H-6"), 7.42 (1H, dd, *J* = 7.6, 7.6 Hz, H-7), 7.63 (1H, dd, *J* = 8.4, 7.1 Hz, H-6), 7.91-7.95 (2H, m, H-5, H-8), 9.04 (1H, s, H-1); δ_{C} (75 MHz, CDCl₃): 32.1 (CH₂), 112.9 (C-4), 116.6 (C-6'), 118.4 (C-2'), 121.3 (C-4'), 122.5 (C-5), 124.4 (C-7), 125.7 (C-8a), 127.2 (C-4"), 128.3 (C-2", C-6"), 128.8 (C-8), 129.4 (C-3", C-5"), 130.0 (C-5'), 131.1 (C-6), 134.8 (C-3'), 137.7 (C-4a), 138.4 (C-1"), 143.5 (C-1'), 149.1 (C-3), 150.5 (C-1). Anal. Calcd for C₂₂H₁₇ClN₂ (344.83): C, 76.63; H, 4.97; N, 8.12%. Found: C, 76. 52; H, 5.21; N: 8.01%.

N-(4-Chlorophenyl)isoquinolin-3-amine (2g). Reaction time 6 h. Eluent: Hexane /EtOAc (4:1); yield: 70%, yellow crystals, mp 148-151 °C; v_{max} (KBr, cm⁻¹): 3269, 3052, 1589, 1362, 823; δ_{H}

(300 MHz, CDCl₃): 6.79 (1H, s, NH), 7.12 (1H, m, H-7), 7.22-7.36 (5H, m, H-2',H-3', H-5', H-6', H-4), 7.53-7.60 (2H, m, H-6, H-5), 7.82 (1H, d, J = 7.0 Hz, H-8), 8.95 (1H, s, H-1); $\delta_{\rm C}$ (75 MHz, CDCl₃): 99.8 (C-4), 121.2 (C-2', C-6'), 124.2 (C-7), 124.9 (C-8a), 125.4(C-5), 127.5 (C-4'), 127.9 (C-8), 129.6 (C-3',C-5'), 130.9 (C-6), 138.7 (C-1'), 139.9 (C-4a), 151.8 (C-3), 152.3 (C-1). Anal. Calcd for C₁₅H₁₁ClN₂ (245.71): C, 70.73; H, 4.35; N, 11.00%. Found: C, 70.63; H, 4.54; N, 10.71%.

N-(2-Bromophenyl)isoquinolin-3-amine (2h). Reaction time 8 h. Eluent: CH₂Cl₂; yield: 47%; green crystals; mp 100-102 °C; v_{max} (KBr, cm⁻¹): 3390, 1588, 1484, 1304, 754; δ_{H} (300 MHz, CDCl₃): 6.84-6.96 (2H, m, NH, H-5'), 7.20-7.38 (3H, m, H-4, H-4', H-7), 7.52-7.65 (3H, m, H-6, H-3', H-6'), 7.76-7.88 (2H, m, H-5, H-8), 9.00 (1H, s, H-1); δ_{C} (75 MHz, CDCl₃): 101.5 (C-4), 114.6 (C-2'), 119.3 (C-4'), 123.1 (C-5), 124.5 (C-7), 125.3 (C-8a), 125.6 (C-6'), 128.0 (C-8), 128.4 (C-5'), 130.9 (C-6), 133.3 (C-3'), 138.6 (C-4a), 139.4 (C-1'), 151.0 (C-3), 152.3 (C-1). Anal. Calcd for C₁₅H₁₁BrN₂ (299.16): C, 60.22; H, 3.71; N, 9.36%. Found: C, 60.49; H, 3.79; N, 9.07%.

N-(**3-Bromophenyl**)isoquinolin-3-amine (2i). Reaction time 1 h. Eluent: Hexane /EtOAc (4:1); yield: 46%; greenish yellow crystals; mp 122-125 °C; v_{max} (KBr, cm⁻¹): 2925, 2853, 1589, 1361, 747; $\delta_{\rm H}$ (300 MHz, CDCl₃): 6.78 (1H, s, NH), 7.14-7.25 (4H, m, NH, H-2', H-4', H-5'), 7.34 (1H, dd, *J* = 7.4 Hz, 7.4 Hz, H-7), 7.53-7.63 (3H, m, H-6', H-6, H-8), 7.84 (1H, d, *J* = 8.1 Hz, H-5), 8.97 (1H, s, H-1); $\delta_{\rm C}$ (75 MHz, CDCl₃): 100.5 (C-4), 118.0 (C-2'), 122.1 (C-6'), 123.3 (C-3'), 124.4 (C-4'), 125.1 (C-8a), 125.3 (C-7), 125.6 (C-5), 127.9 (C-8), 130.9 (C-6), 131.0 (C-5'), 138.7 (C-4a), 142.8 (C-1'), 151.2 (C-3), 152.3 (C-1). Anal. Calcd for C₁₅H₁₁BrN₂ (299.16): C, 60.22; H, 3.71; N, 9.36%. Found: C, 60.31; H, 3.82; N, 9.45%.

4-Benzyl-*N***-(3-bromophenyl)isoquinolin-3-amine (2j).** Reaction time 1 h. Eluent: Hexane /EtOAc (3:1); yield: 49%; yellow crystals; mp 60-62 °C; v_{max} (KBr, cm⁻¹): 1591, 1572, 1489, 994, 751; δ_{H} (300 MHz, CDCl₃): 4.39 (2H, s, CH₂), 6.17 (1H, s, NH), 7.04-7.33 (8H, m, H-2', H-4', H-5', H-2", H-3", H-4", H-5", H-6"), 7.40-7.47 (2H, m, H-7, H-6'), 7.64 (1H, dd, J = 7.9, 7.6 Hz, H-6), 7.91-7.95 (2H, m, H-5, H-8), 9.05 (1H, s, H-1); δ_{C} (75 MHz, CDCl₃): 32.1 (CH₂), 112.7 (C-4), 117.1 (C-2'), 121.2 (C-6'), 122.5 (C-4'), 122.9 (C-3'), 124.2 (C-5), 124.4 (C-7), 125.7 (C-8a), 127.2 (C-4"), 128.3 (C-2", C-6"), 128.8 (C-8), 129.4 (C-3", C-5"), 130.3 (C-6), 131.1 (C-5'), 137.7 (C-4a), 138.4 (C-1'), 143.6 (C-1'), 149.0 (C-3), 150.6 (C-1). Anal. Calcd for C₂₂H₁₇BrN₂ (389.28): C, 67.88; H, 4.40; N, 7.20%. Found: C, 67.65; H, 4.53; N, 7.31%.

N-(4-Bromophenyl)isoquinolin-3-amine (2k). Reaction time 8 h. Eluent: CH₂Cl₂; yield: 80%, yellow crystals; mp 159-162 °C; v_{max} (KBr, cm⁻¹): 3269, 3050, 1631, 1580, 749; δ_{H} (300 MHz, CDCl₃): 6.90 (1H, s, H-4), 7.05-7.19 (5H, m, H-2', H-3', H-5', H-6', H-7), 7.29-7.37 (2H, m, H-6, H-5), 7.58 (1H, d, J = 8.1 Hz, H-8), 7.69 (1H, s, NH), 8.72 (1H, s, H-1); δ_{C} (75 MHz, CDCl₃): 100.6 (C-4), 113.2 (C-4'), 120.6 (C-2', C-6'), 123.8 (C-5), 124.6 (C-8a), 125.3 (C-7), 127.7 (C-8), 130.6 (C-6), 131.9 (C-3', C-5'), 138.5 (C-4a), 141.1 (C-1'), 151.6 (C-1), 151.8 (C-3). Anal. Calcd for C₁₅H₁₁BrN₂ (299.16): C, 60.22; H, 3.71; N, 9.36%. Found: C, 60.53; H, 3.76; N, 9.11%.

N-(2-Nitrophenyl)isoquinolin-3-amine (2l). Reaction time 5 h. Eluent: CH₂Cl₂; yield: 94%; dark orange crystals; mp, 148-149 °C; v_{max} (KBr, cm⁻¹): 3340, 1617, 1509, 1263, 732; $\delta_{\rm H}$ (300 MHz, CDCl₃): 6.93 (1H, dd, *J* = 7.7 Hz, 8.4 Hz, H-4'), 7.39 (1H, s, H-4), 7.45-7.56 (2H, m, H-5', H-7), 7.62-7.75 (2H, m, H-6, H-8), 7.93 (1H, dd, *J* = 8.2 Hz, H-5), 8.27-8.29 (2H, m, H-3', H-6'), 9.10 (1H, s, H-1), 10.14 (1H, s, NH); $\delta_{\rm C}$ (75 MHz, CDCl₃): 107.9 (C-4), 118.7 (C-6'), 119.4 (C-4'), 125.9 (C-7), 126.0 (C-5), 126.2 (C-8a), 126.7 (C-3'), 128.0 (C-8), 131.2 (C-6), 134.9 (C-2'), 135.8 (C-5'), 138.3 (C-4a), 140.1 (C-1'), 148.9 (C-3), 152.1 (C-1). Anal. Calcd for C₁₅H₁₁N₃O₂ (265.26): C, 67.92; H, 4.18; N, 15.84%. Found: C, 67.99; H, 4.09; N, 15.78%.

4-Methyl-*N***-(2-nitrophenyl)isoquinolin-3-amine (2m).** Reaction time 5 h. Eluent: CH₂Cl₂; yield: 94%; dark orange crystals; mp 130-133 °C; v_{max} (KBr, cm⁻¹): 3341, 1616, 1509, 1249, 734; $\delta_{\rm H}$ (300 MHz, CDCl₃): 2.64 (3H, s, CH₃), 6.87 (1H, dd, *J* = 7.4 Hz, 8.1 Hz, H-4'), 7.45-7.55 (2H, m, H-5', H-7), 7.72 (1H, dd, *J* = 7.4Hz, 8.0 Hz, H-6), 7.94-8.04 (3H, m, H-5, H-8, H-5'), 8.24 (1H, d, *J* = 8.6 Hz, H-3'), 9.02 (1H, s, H-1), 10.2 (1H, s, NH); $\delta_{\rm C}$ (75 MHz, CDCl₃): 12.6 (CH₃), 116.4 (C-4), 118.7 (C-6'), 118.8 (C-4'), 123.2 (C-5), 125.8 (C-7), 126.5 (C-3'), 127.8 (C-4a), 128.5 (C-8), 130.9 (C-6), 134.2 (C-2'), 135.8 (C-5'), 137.4 (C-4a), 141.3 (C-1'), 146.3 (C-3), 149.7 (C-1). Anal. Calcd for C₁₆H₁₃N₃O₂ (279.29): C, 68.81; H, 4.69; N, 15.05%. Found: C, 68.62; H, 4.80; N, 14.83%.

4-Benzyl-*N***-**(**2-nitrophenyl)isoquinolin-3-amine** (**2n**). Reaction time 5 h. Eluent: CH₂Cl₂; yield: 95%; orange crystals; mp 143-146 °C; v_{max} (KBr, cm⁻¹): 3365, 1613, 1495, 1247, 738; $\delta_{\rm H}$ (300 MHz, CDCl₃): 4.53 (2H, s, CH₂), 6.88 (1H, dd, *J* = 7.2, 7.1 Hz, C-4'), 7.15-7.27 (5H, m, H-2", H-3", H-4", H-5", H-6"), 7.47-7.55 (2H, m, H-5', H-7), 7.71 (1H, dd, *J* = 8.4, 8.2 Hz, H-6), 7.97-8.03 (3H, m, H-8, H-5, H-6'), 8.20 (1H, d, *J* = 8.6 Hz, H-3'), 9.11 (1H, s, H-1), 10.07 (1H, s, NH); $\delta_{\rm C}$ (75 MHz, CDCl₃): 32.2 (CH₂), 118.6 (C-4), 118.7 (C-4'), 118.9 (C-6'), 123.3 (C-5), 125.7 (C-7), 126.2 (C-3'),126.6 (C-8a), 126.7 (C-4"), 128.1 (C-2", C-6"), 128.4 (C-8), 128.8 (C-3", C-5"), 131.2 (C-6), 134.3 (C-2'), 135.3 (C-5'), 137.4 (C-4a), 137.9 (C-1"), 140.8 (C-1'), 146.8 (C-3), 150.4 (C-1). Anal. Calcd for C₂₂H₁₇N₃O₂ (355.38): C, 74.35; H, 4.82; N, 11.82%. Found: C, 74.52; H, 4.80; N, 11.95%.

N-(4-Nitrophenyl)isoquinolin-3-amine (20). Reaction time 4 h. Eluent: Hexane /EtOAc (3:1); yield: 55%; brownish yellow crystals; mp 174-176 °C; v_{max} (KBr, cm⁻¹): 3229, 1582, 1495, 1318, 747; $\delta_{\rm H}$ (300 MHz, CDCl₃): 7.31 (1H, s, H-4), 7.40 (1H, dd, J = 7.5, 7.6 Hz, H-7), 7.61 (1H, dd, J = 7.6, 7.5 Hz, H-6), 7.70-7.75 (3H, m, H-5, H-2', H-6'), 7.91 (1H, d, J = 7.4 Hz, H-8), 8.12-8.15 (2H, m, H-3', H-5'), 9.06 (1H, s, H-1), 9.57 (1H, s, NH); $\delta_{\rm C}$ (75 MHz, CDCl₃): 104.2 (C-4), 115.4 (C-2', C-6'), 124.2 (C-7), 124.5 (C-8a), 124.9 (C-3', C-5'), 125.0 (C-5), 127.2 (C-8), 130.2 (C-6), 137.5 (C-4a), 139.0 (C-4'), 148.5 (C-1'), 149.8 (C-3), 150.6 (C-1). Anal. Calcd for C₁₅H₁₁N₃O₂ (265.26): C, 67.92; H, 4.18; N, 15.84%. Found: C, 67.99; H, 4.03; N, 15.69%.

4-Methyl-*N***-(4-nitrophenyl)isoquinolin-3-amine (2p).** Reaction time 2 h. Eluent: CH₃Cl; yield: 60%; brownish orange crystals; mp 196-199 °C; v_{max} (KBr, cm⁻¹): 3354, 1603, 1329, 1114, 743; $\delta_{\rm H}$ (300 MHz, CDCl₃): 2.55 (3H, s, CH₃), 6.76 (1H, s, NH), 7.21-7.24 (2H, m, H-2', H-6'), 7.52 (1H, dd, *J* = 7.6 Hz, 7.4 Hz, H-7), 7.73 (1H, dd, *J* = 7.4 Hz, 7.7 Hz, H-6), 7.95-7.98 (2H, m, H-8, H-5), 8.14-8.18 (2H, m, H-3', H-5'), 9.00 (1H, s, H-1); $\delta_{\rm C}$ (75 MHz, CDCl₃): 12.8 (CH₃), 114.9

(C-4), 115.7 (C-2', C-6'), 123.1 (C-5), 125.7 (C-7), 126.0 (C-3', C-5'), 126.5 (C-8a), 128.6 (C-8), 131.0 (C-6), 137.4 (C-4a), 140.8 (C-4'), 146.4 (C-1'), 149.2 (C-3), 150.0 (C-1). Anal. Calcd for C₁₆H₁₃N₃O₂ (279.29): C, 68.81; H, 4.69; N, 15.05%. Found: C, 68.59; H: 4.78; N, 15.25%.

4-Benzyl-*N***-(4-nitrophenyl)isoquinolin-3-amine (2q)**. Reaction time 2 h. Eluent: CH₂Cl₂; yield: 64%; brownish yellow crystals; mp 120-122 °C; v_{max} (KBr, cm⁻¹): 3426, 1588, 1310, 1113, 747; $\delta_{\rm H}$ (300 MHz, CDCl₃): 4.44 (2H, s, CH₂), 6.65 (1H, s, NH), 7.16-7.34 (7H, m, H-2', H-6', H-2", H-3", H-4", H-5", H-6"), 7.51 (1H, dd, *J* = 7.2 Hz, 7.8 Hz, H-7), 7.70 (1H, dd, *J* = 7.8, 8.0 Hz, H-6), 7.98-8.01 (2H, m, H-5, H-8), 8.11-8.13 (2H, m, H-3', H-5'), 9.08 (1H, s, H-1); $\delta_{\rm C}$ (75 MHz, CDCl₃): 32.2 (CH₂), 115.7 (C-4), 116.4 (C-2', C-6'), 122.9 (C-5), 125.5 (C-7), 125.8 (C-3', C-5'), 126.4 (C-8a), 127.4 (C-4"), 128.3 (C-2", C-6"), 128.8 (C-8), 129.5 (C-3", C-5"), 131.5 (C-6), 137.5 (C-4a), 138.1 (C-1"), 140.8 (C-4'), 147.5 (C-1'), 148.5 (C-3), 150.7 (C-1). Anal. Calcd for C₂₂H₁₇N₃O₂ (355.38): C, 74.35; H, 4.82; N, 11.82%. Found: C, 74.51; H, 4.75; N, 11.61%.

Ethyl 2-(isoquinolin-3-ylamino)benzoate (2r). Reaction time 6 h. Eluent: Hexane /EtOAc (3:1); yield: 43%, green crystals; mp 44-46 °C; v_{max} (KBr, cm⁻¹): 3298, 3049, 1614, 1451, 745; $\delta_{\rm H}$ (300 MHz, CDCl₃): 1.42 (3H, t, J = 7.1, 7.1 Hz, CH₃), 4.39 (2H, q, J = 7.1, 14.28 Hz, CH₂), 6.88 (1H, dd, J = 7.2, 7.9 Hz, H-5'), 7.38 (1H, dd, J = 7.0, 7.8 Hz, H-4'), 7.47 (1H, dd, J = 7.7, 7.8 Hz, H-7), 7.55 (1H, dd, J = 7.8, 7.2 Hz, H-6), 7.60-7.62 (2H, m, H-5, H-4), 7.85 (1H, d, J = 8.1 Hz, H-8), 8.05 (1H, d, J = 8.0 Hz, H-3'), 8.26 (1H, d, J = 8.3 Hz, H-6'), 9.04 (1H, s, H-1), 10.42 (1H, s, NH); $\delta_{\rm C}$ (75 MHz, CDCl₃): 14.5 (CH₃), 61.1 (CH₂), 105.0 (C-4), 113.9 (C-1'), 117.0 (C-3'), 119.0 (C-5'), 124.7 (C-7), 125.4 (C-8a), 125.7 (C-5), 127.9 (C-8), 130.7 (C-6'), 131.6 (C-6), 134.2 (C-4'), 138.5 (C-4a), 145.5 (C-2'), 150.7 (C-3), 151.7 (C-1), 168.7 (C=O). Anal. Calcd for C₁₈H₁₆N₂O₂ (292.33): C, 73.95; H, 5.52; N, 9.58%. Found: C, 74.06; H, 5.72; N, 9.35%.

Ethyl 3-(isoquinolin-3-ylamino)benzoate (2s). Reaction time 6 h. Eluent: Hexane /EtOAc (3:1); yield: 84%; yellow crystals; mp 107-109 °C; v_{max} (KBr, cm⁻¹): 3257, 3060, 1721, 1365, 745; $\delta_{\rm H}$ (300 MHz, CDCl₃): 1.40 (3H, t, J = 6.9, 7.2 Hz, CH₃), 4.39 (2H, q, J = 7.2, 14.1 Hz, CH₂), 6.79 (1H, s, NH), 7.19 (1H, s, H-4), 7.33 (1H, dd, J = 7.2, 7.2 H-7), 7.42 (1H, dd, J = 7.8, 7.5 Hz, H-5'), 7.52-7-59 (3H, m, H-5, H-6, H-4'), 7.72 (1H, d, J = 7.2 Hz, H-6'), 7.83 (1H, d, J = 7.8 Hz, H-8), 7.99 (1H, s, H-2'), 8.98 (1H, s, H-1); $\delta_{\rm C}$ (75 MHz, CDCl₃): 14.6 (CH₃), 61.3 (CH₂), 100.1 (C-4), 120.6 (C-2'), 123.6 (C-6'), 123.9 (C-5), 124.2 (C-7), 125.0 (C-8a), 125.5 (C-4'), 128.0 (C-8), 129.6 (C-5'), 130.9 (C-6), 132.0 (C-1'), 138.7 (C-4a), 141.5 (C-3'), 151.6 (C-3), 152.3 (C-1), 166.7(C=O). Anal. Calcd for C₁₈H₁₆N₂O₂ (292.33): C, 73.95; H, 5.52; N, 9.58%. Found: C, 74.01; H, 5.30; N, 9.63%.

Ethyl 4-(isoquinolin-3-ylamino)benzoate (2t). Reaction time 6 h. Eluent: Hexane /EtOAc (4:1); yield: 83%; yellow crystals; mp 141-144 °C; v_{max} (Br, cm⁻¹): 3357, 2977, 1679, 1285, 770; $\delta_{\rm H}$ (300 MHz, CDCl₃): 1.39 (3H, m, CH₃), 4.38 (2H, m, CH₂), 7.09 (1H. s, NH), 7.34-7.37 (4H, m, H-2', H-6', H-4, H-7), 7.60-7.64 (2H, m, H-6, H-5), 7.86 (1H, d, J = 7.1 Hz, H-8), 8.02- 8.05 (2H, m, H-3', H-5'), 9.00 (1H, s, H-1); $\delta_{\rm C}$ (75 MHz, CDCl₃): 14.7 (CH₃), 60.8 (CH₂), 102.1 (C-4), 117.0 (C-3', C-5'), 123.3 (C-1'), 124.7 (C-7), 125.3 (C-8a), 125.7 (C-5), 127.9 (C-8), 131.1 (C-6), 131.5 (C-2', C-6'), 138.5 (C-4a), 145.8 (C-4'), 150.3 (C-3), 152.3 (C-1), 166.6 (C=O).

Anal. Calcd for C₁₈H₁₆N₂O₂ (292.33): C, 73.95; H, 5.52; N, 9.58%. Found: C, 73.61; H, 5.52; N, 9.67%.

2-(Isoquinolin-3-ylamino)benzaldehyde (2u). Reaction time 2 h. Eluent: Hexane /EtOAc (2:1); yield: 84%; brownish yellow; mp 92-95 °C; v_{max} (KBr, cm⁻¹): 2819, 2741, 1602, 1447, 754; δ_{H} (300 MHz, CDCl₃): 6.98 (1H, dd, J = 7.3, 7.3 Hz, H-5'), 7.31 (1H, s, H-4), 7.41 (1H, dd, J = 7.3, 7.4, H-7), 7.54-7.71 (4H, m, H-5, H-6, H-4', H-6'), 7.89 (1H, d, J = 8.1 Hz, H-8), 8.45 (1H, d, J = 8.4 Hz, H-3'), 9.08 (1H, s, H-1), 9.95 (1H, s, CHO), 10.90 (1H, s, NH); δ_{C} (75 MHz, CDCl₃): 106.4 (C-4), 116.3 (C-3'), 119.0 (C-5'), 120.5 (C-1'), 125.1 (C-7), 125.6 (C-8a), 125.8 (C-5), 127.9 (C-8), 130.9 (C-6), 136.0 (C-4'), 136.8 (C-6'), 138.4 (C-4a), 145.6 (C-2'), 150.1 (C-3), 151.6 (C-1), 194.9 (CHO). Anal. Calcd for C₁₆H₁₂N₂O (248.27): C, 77.40; H, 4.87; N, 11.28%. Found: C, 77.25; H, 4.82; N, 11.41%.

N-(**3-Bromopyridin-2-yl)isoquinolin-3-amine** (**2v**). Reaction time 10 h. Eluent: Hexane /EtOAc (2:1); yield: 80%; brownish yellow; mp 107-110 °C; v_{max} (KBr, cm⁻¹): 3386, 1584, 1512, 1014, 742; $\delta_{\rm H}$ (300 MHz, CDCl₃): 6.72 (1H, m, H-5'), 7.39 (1H, dd, J = 7.8, 7.3 Hz, H-7), 7.59 (1H, dd, J = 8.1, 7.1 Hz, H-6), 7.78-7.87 (3H, m, H-4', H-5, H-8), 7.99 (1H, s, NH), 8.31 (1H, d, J = 4.7 Hz, H-6'), 8.78 (1H, s, H-4), 8.98 (1H, s, H-1); $\delta_{\rm C}$ (75 MHz, CDCl₃): 105.3 (C-4), 107.2 (C-3'), 116.5 (C-5'), 124.9 (C-7), 125.9 (C-8a), 126.8 (C-5), 127.7 (C-8), 130.7 (C-6), 138.5 (C-4a), 140.5 (C-4'), 146.5 (C-6'), 148.4 (C-3), 151.1 (C-2'), 151.3 (C-1). Anal. Calcd for C₁₄H₁₀BrN₃ (300.15): C, 56.02; H, 3.36; N, 14.00%. Found: C, 56.06; H, 3.48; N,13.88%.

4-Benzyl-*N***-(3-bromopyridin-2-yl)isoquinolin-3-amine** (**2w**). Reaction time 10 h. Eluent: Hexane /EtOAc (2:1); yield: 70%; brownish yellow crystals; mp 116-118 °C; v_{max} (KBr, cm⁻¹): 3396, 1590, 1488, 1012, 728; $\delta_{\rm H}$ (300 MHz, CDCl₃): 4.45 (2H, s, CH₂), 6.64 (1H, m, H-5'), 7.03 (1H, s, NH), 7.15-7.25 (5H, m, H-2", H-3", H-4", H-5", H-6"), 7.52 (1H, dd, J = 7.6, 7.5 Hz, H-7), 7.65 (1H, dd, J = 7.8, 8.0 Hz, H-6), 7.73 (1H, d, J = 7.8 Hz, H-4'), 7.97-8.02 (2H, m, H-5, H-8), 8.1 (1H, d, J = 4.7 Hz, H-6'), 9.16 (1H, s, H-1); $\delta_{\rm C}$ (75 MHz, CDCl₃): 33.1 (CH₂), 107.2 (C-3'), 116.6 (C-5'), 122.2 (C-4), 123.7 (C-5), 126.0 (C-7), 126.6 (C-4"), 127.5 (C8a), 128.5 (C-3", C-5"), 128.5 (C-8), 128.9 (C-2", C-6"), 130.9 (C-6), 137.4 (C-4a), 139.4 (C-1"), 140.5 (C-4'), 146.7 (C-3), 147.1 (C-6'), 151.2 (C-1), 153.1 (C-2'). Anal. Calcd for C₂₁H₁₆BrN₃ (390,27): C, 64.63; H, 4.13; N, 10.77%. Found: C, 64.91; H, 4.21; N: 10.39%.

Acknowledgements

The support of OTKA 77784, K75015, Nanotransport (CRC-HAS-2009) and Hungarian GVOP-3.2.1.-2004-04-0210/3.0 projects are gratefully acknowledged.

References

- 1. Balog, J.; Riedl, Zs.; Hajós, Gy.; Miskolczy, Zs.; Biczók, L. *Tetrahedron Lett.* **2011**, *53*, 5264.
- 2. Guram, A. S.; Rennels, R. A.; Buchwald, S. L. Angew. Chem., Int. Ed. 1995, 34, 1348.
- 3. Louie, J.; Hartwig, J. F. Tetrahedron Lett. 1995, 36, 3609.
- 4. (a) Muci, A. R.; Buchwald, S. L. *Top. Curr. Chem.* **2002**, *219*, 131. (b) Schlummer, B.; Scholz, U. *Adv. Synth. Catal.* **2004**, *346*, 1599.
- Van Baelen, G.; Meyers, C.; Lemiere, Guy L. F.; Hostyn, S.; Dommisse, R.; Maes, Bert U. W.; Maes, L.; Augustyns, K.; Haemers, A.; Pieters, L. *Tetrahedron* 2008, 64, 11802.
- (a) Loones, K. T. J.; Maes, B. U. W.; Meyers, C.; Deruytter, J. J. Org. Chem. 2006, 71, 260.
 (b) Hostyn, S.; Maes, B. U. W.; Pieters, L.; Lemiére, G. L. F.; Mátyus, P.; Hajós, G.; Dommisse, R. A. Tetrahedron 2005, 61, 1571. (c) Hostyn, S.; Maes, B. U. W.; Van Baelen, G.; Gulevskaya, A.; Meyers, C.; Smits, K. Tetrahedron 2006, 62, 4676. (d) Jonckers, T. H. M.; Maes, B. U. W.; Lemiére, G. L. F.; Rombouts, G.; Pieters, L.; Haemers, A.; Dommisse, R.A. Synlett 2003, 615.
- 7. Megyesi, M.; Biczók, L.; Jablonkai, I. J. Phys. Chem. C 2008, 112, 3410.
- 8. Melhuish, W. H. J. Phys. Chem. 1961, 65, 229.