Polyfunctional heteroaromatics: a route to dicyanomethylene thiazoles based on the reaction of α -thiocyanatoketones with malononitrile # Saleh Mohammed Al-Mousawi,* Moustafa Sherief Moustafa, and Mohamed Hilmy Elnagdi Department of Chemistry, Faculty of Science; University of Kuwait: Safat; 13060: Kuwait, P.O. Box. 12613 E-mail: salehalmousawi@hotmail.com **DOI:** http://dx.doi.org/10.3998/ark.5550190.0011.217 #### **Abstract** Reactions of α -S-cyanothioketones **6a-c** with malononitrile were observed to form 2-(thiazol-2(3H)-ylidene)malononitrile derivatives **7a-c**. The thiazole products readily react with aromatic diazonium salts to yield 2-(5-phenylazo-3H-thiazol-2-ylidene)-malononitrile derivatives **8a-c**. The malononitrile derivative **8c** undergoes a condensation with DMF/DMA to yield thiazolo[5,4-c]pyridazine **12**. Reactions of **7a-c** with hydrazine hydrate leads to the generation of diaminopyrazoles **9a-c**, which react with enaminone **13** to yield the corresponding thiazolylpyrazolo[1,5-a]pyrimidines **14**. In addition, reaction of the malononitrile derivative **8a** with benzenediazonium chloride readily affords the coupling product **10**. **Keywords:** α -Thiocyanatoketones, malononitrile, thiazoles, thiazolo[5,4-c]pyridazine, diaminopyrazoles, thiazolylpyrazolo[1,5-a]pyrimidines # Introduction The considerable biological activity observed for pyridazines and condensed pyridazines has stimulated considerable recent interest in the synthesis of these heterocyclic compounds.¹⁻⁴ Recent developments in this area have been reviewed by one of us.⁵ The results of earlier efforts have shown that condensation reactions of N-aryl- α -hydrazonoketones 1 with active methylene nitriles can be employed to prepare N-arylsubstituted-pyridazinones and pyridazine-6-imines.⁶⁻⁸ It is assumed that the pathway for this process involves initial condensation of the α -hydrazonoketones with the active methylene substances to yield conjugated hydrazone-esters 2 that readily cyclize to produce 3. In contrast, Abdelrazek and Fadda reported that the S-cyanothio unsaturated bis-nitrile 4 undergoes coupling with aromatic diazonium salts to yield the diazo compounds 5, which are reported to be stable substances (Scheme 1).⁹ We have already noted ISSN 1551-7012 Page 224 ©ARKAT USA, Inc. that this observation should be reevaluated since, if correct, it would represent the only reported example of an acyclic diazo compound of this type.⁵ # Scheme 1 Herein, we describe the results of an investigation of this process and, which has led to a reassignment of the structure of **5** to that of the thiazolidine derivatives **7a-c**. The recognition of the revised structures led to further work that culminated in the synthesis of a variety of novel condensed thiazolylpyrazolo[1,5-a]pyrimidines that are structurally related to zaleplone.¹⁰ $$R = Ph$$ $$R$$ # Scheme 2 Initially, we explored the report by Abdelrazek *et al*, ⁹ which suggested that the *S*-cyanothio unsaturated bis-nitrile **4** is obtained *via* condensation reaction of α -thiocyanatoketones **6a** with malononitrile in presence of piperidine. Indeed, we observed that this reaction affords a product with the same molecular formula of **5**, reported by the authors, ⁹ However, careful analysis of spectroscopic data indicated that the product of this process has the thiazolidine structure **7a**. For example, the ¹H and ¹³C NMR spectra of the product contain no resonances that correspond to protons linked to sp³ hybridized carbons or sp³ carbons. The obtained data matched to those expected for the thiazolidine structure **7a**. In addition, we observed that reactions of the α -S-cyanothioketones **6b**,**c** with malononitrile afforded dicyanomethylene thiazolidines, whose spectroscopic properties matched those of **7b**,**c** (cf. Scheme 2). PhN $$\equiv$$ NCl \rightarrow NH₂NH₂ PhN \equiv NCl \rightarrow NH₂NH₂ R \equiv Ph R \equiv Ph NH₂NH₂ R \equiv Ph NH₂NH₂ NH ### Scheme 3 In further exploratory studies, we observed that **7a-c** react with benzenediazonium chloride to generate the diazo compounds **8a-c** and that **8a** can be transformed to the diaminopyrazoles **10** by reaction with hydrazine hydrate. The pyrazolo-thiazolidines, related to **10**, were also produced by direct reactions of **7a-c** with hydrazine hydrate and subsequent coupling of the diaminopyrazolyl thiazole products **9a-c** with benzenediazonium chloride (cf. Scheme 3). #### Scheme 4 In addition, we found that reaction of **8c** with DMF/DMA at reflux for 14 h afforded the thiazolo[5,4-c]pyridazine **12** in 80% yield. This process is assumed to follow a route in which **8c** was initially converted to the enamine derivative **11** that then underwent sequential electrocyclization and dimethylamine elimination to form **12** (cf. Scheme 4). # Scheme 5 **Figure 1**. Plot of the x-ray crystallographic data of pyrazolo[1,a]pyrimidine **14**. ISSN 1551-7012 Page 227 ©ARKAT USA, Inc. Furthermore, diaminopyrazolylthiazoles **9c** participate in an efficient condensation reaction with enaminone **13** to yield thiazolylpyrazolo[1,5-a]pyrimidines **14**. X-ray crystallographic analysis of this product showed unambiguously that it has the structure **14** (Figure 1) rather than that of the regioisomer **15** (Scheme 5). It is important to note that **14** exists in a planar conformation, which suggests that the amino group is hydrogen bonded to thiazole ring nitrogen. # **Conclusions** In conclusion, the results of this effort have led to the revised assignment of the thiazolidine structures for **7a-c** and a demonstration that these substances serve as versatile precursors to uniquely substituted pyrazolo[1,5-a]pyrimidines and thiazolylpyrazolo[1,5-a]pyrimidines. # **Experimental Section** **General.** Melting points are reported uncorrected and were determined with a Sanyo (Gallaenkamp) instrument. Infrared spectra were recorded using KBr pellets and a Perkin-Elmer 2000 FT–IR instrument. 1 H and 13 C NMR spectra were determined by using a Bruker DPX instrument at 400 MHz for 1 H NMR and 100 MHz for 13 C NMR and either CDCl₃ or DMSO- d_6 solutions with TMS as internal standards. Chemical shifts are reported in δ (ppm). Mass spectra were measured using VG Autospec Q MS 30 and MS 9 (AEI) spectrometer, with the EI (70 EV) mode. Elemental analyses were carried out by using a LEOCHNS-932 Elemental Analyzer. # General procedure for the syntheses 7a-c Solutions of malononitrile (0.66 g, 0.01 mol) and α -thiocyanatoketones **5a-c** (0.01 mol) in ethanol (15 mL) containing piperidine (5 drops) were stirred at reflux for 3-4 h (completion assessed by TLC, 1:1 ethyl acetate- petroleum ether). The solid products, produced by pouring the reaction mixtures into ice-water and subsequent separation by filtration, were crystallized from EtOH (green crystals). **2-(4-Phenylthiazol-2(3***H***)-ylidene)malononitrile (7a).** Yield 93 %; mp 275-76 °C; Anal. calcd. for C₁₂H₇N₃S (225.27): C, 63.98; H, 3.13; N, 18.65; S, 14.23. Found: C, 63.94; H, 3.31; N; 18.45; S, 13.92; IR (KBr): $\upsilon_{max} = 3147$ (NH), 2210 (CN), 2175 (CN); ¹H-NMR (DMSO): δ, ppm = 7.33 (s, 1H, CH), 7.45-7.49 (m, 3H, Ar-H), 7.71-7.72 (m, 2H, Ar-H), 13.23 (br, 1H, NH, D₂O exchangeable); ¹³C-NMR (DMSO): δ, ppm = 172.27, 143.70, 130.01, 129.12(2C), 128.92, 127.51 (2C), 127.64 117.75, 105.93 (2CN). MS: m/z (%) 225 (M⁺, 100), 180 (20), 134 (45), 108 (10), 102 (15), 89 (15), 77 (10). **2-(4-(4-Chlorophenyl)thiazol-2(3***H***)-ylidene)malononitrile (7b).** Yield 95 %; mp 270-72 °C; Anal. calcd. for $C_{12}H_6ClN_3S$ (259.7): C, 55.50; H, 2.33; N, 16.18; S, 14.34. Found: C, 55.32; H, 2.15; N; 15.95; S, 14.52; IR (KBr): $v_{max} = 3155$ (NH), 2219 (CN), 2185 (CN); ¹H-NMR (DMSO): δ , ppm = 7.38 (s, 1H, CH), 7.53-7.55 (d, 2H, Ar-H), 7.75-7.77 (d, 2H, Ar-H), 13.01 (br, 1H, NH, D₂O exchangeable); ¹³C-NMR (DMSO): δ , ppm = 171.70, 142.49, 133.98, 128.71 (2C), 128.62 (2C) , 127.82, 117.43, 115.75, 106.10 (2CN). MS: m/z (%) 261 (M⁺², 40), 260 (M⁺¹, 30), 259 (M⁺, 100), 224 (10), 168 (30), 159 (10), 133 (15), 89 (15), 75 (5). **2-(4-methylthiazol-2(3***H***)-ylidene)malononitrile (7c).** Yield 85 %; mp 290-91 °C; Anal. calcd. for $C_7H_5N_3S$ (163.2): C, 51.52; H, 3.09; N, 25.75; S, 19.64. Found: C, 51.26; H, 3.12; N; 25.54; S, 19.27; IR (KBr): $\upsilon_{max} = 3160$ (NH), 2179 (2CN); ¹H-NMR (DMSO): δ , ppm = 2.17 (s, 3H, CH₃), 6.71 (s, 1H, CH), 13.1 (br, 1H, NH, D₂O exchangeable); ¹³C-NMR (DMSO): δ , ppm = 170.10, 142.54, , 105.93 (2CN), 87.68, 16.54. MS: m/z (%) 163 (M⁺, 100), 136 (20), 118 (30), 98 (10), 71 (50). # General procedure for syntheses of 8a-c A cold solution of benzenediazonium chloride (0.01 mol) was prepared by adding a solution of sodium nitrite (0.7 g in 10 mL H₂O) to a cold solution of aniline hydrochloride (0.93 g, 0.01 mol of aniline in 5 mL concentrated HC1) with stirring at room temperature. The resulting solution was then added to cold solutions of **7a-c** (0.01 mol) in ethanol (50 mL) containing sodium acetate (2 g). The reaction mixtures was stirred for 1 h and then filtered. The solid products were crystallized from EtOH to give the products as red crystalls. **2-(4-Phenyl-5-phenylazo-3***H***-thiazol-2-ylidene**)**malononitrile** (**8a**). Yield 85 %; mp 198-200 °C; Anal. calcd. for $C_{18}H_{11}N_5S$ (329.38): C, 65.64; H, 3.37; N, 21.26; S, 9.73. Found: C, 65.49; H, 3.51; N; 21.15; S, 9.39; IR (KBr): $\upsilon_{max} = 3180$ (NH), 2216 (2CN); ¹H-NMR (DMSO): δ, ppm = 5.03 (br, 1H, NH, D₂O exchangeable), 7.25-7.60 (m, 8H, Ar-H), 8.22-8.24 (m, 2H, Ar-H); ¹³C-NMR (DMSO): δ, ppm = 175.46, 147.29, 138.67, 131.79, 131.47, 130.73 (2C), 130.70 (2C), 129.59 (2C), 128.63 (2C), 127.05, 118.96, 117.71, 115.70 (2CN). MS: m/z (%) 329 (M⁺, 100), 301 (20), 237 (15), 225 (25), 153 (5), 103 (20), 92 (25), 77 (65). **2-[4-(4-Chloro-phenyl)-5-phenylazo-3***H***-thiazol-2-ylidene]malononitrile (8b).** Yield 88 %; mp 240-42 °C; Anal. calcd. for $C_{18}H_{10}ClN_5S$ (363.82): C, 59.42; H, 2.77; N, 19.25; S, 8.81. Found: C, 58.99; H, 3.02; N; 18.99; S, 8.60; IR (KBr): $v_{max} = 3183$ (NH), 2222 (2CN); ¹H-NMR (DMSO): δ, ppm = 5.12 (br, 1H, NH, D₂O exchangeable), 7.28-7.65 (m, 7H, Ar-H), 8.25-8.28 (m, 2H, Ar-H); ¹³C-NMR (DMSO): δ, ppm = 171.23, 143.49, 135.54, 132.65, 131.98, 130.56 (2C), 130.42 (2C), 128.99 (2C), 128.63 (2C), 127.83, 118.54, 117.06, 115.70 (2CN). MS: m/z (%) 365 (M⁺², 40), 364 (M⁺¹, 20), 363 (M⁺, 100), 335 (10), 259 (20), 168 (10), 137 (15), 105 (10), 92 (35), 77 (50). **2-(4-Methyl-5-phenylazo-3***H***-thiazol-2-ylidene)malononitrile (8c).** Yield 92 %; mp 235-36 °C; Anal. calcd. for $C_{13}H_9N_5S$ (276.31): C, 58.41; H, 3.39; N, 26.20; S, 11.99. Found: C, 57.99; H, 3.63; N; 26.14; S, 11.59; IR (KBr): $v_{max} = 3193$ (NH), 2222 (2CN); ¹H-NMR (DMSO): δ , ppm = 2.65 (s, 3H, CH₃), 4.22 (br, 1H, NH, D₂O exchangeable), 7.28-7.60 (m, 5H, Ar-H); ¹³C-NMR (DMSO): δ , ppm = 169.88, 144.89, 134.44, 129.65 (2C), 129.30, 128.77 (2C), 119.77, 116.36, 114.11, 112.82 (2CN). MS: m/z (%) 276 (M⁺, 100), 239 (40), 176 (25), 162 (30), 98 (10), 71 (50). ISSN 1551-7012 Page 229 ©ARKAT USA, Inc. # General procedure for the syntheses of 9a-c Mixtures of **7a-c** (0.01 mol) and hydrazine monohydrate (0.50 g, 0.01 mol) in DMF (10 mL) were stirred at rflux for 20 h (completion assessed by TLC analysis using ethyl acetate-petroleum ether 1:1). The mixtures were cooled and poured into ice-water. The solid products, collected by filtration, were crystallized from DMF to give light yellow crystals. **4-(4-Phenylthiazol-2-yl)-1H-pyrazole-3,5-diamine** (**9a**). Yield 78 %; mp 322-23 °C; Anal. calcd. for $C_{12}H_{11}N_5S$ (257.31): C, 56.01; H, 4.31; N, 27.22; S, 12.41. Found: C, 55.80; H, 4.41; N; 26.88; S, 11.99; IR (KBr): $\upsilon_{max} = 3372$, 3256 (NH₂), 3176, 3112 (NH₂), 3132 (NH); ¹H-NMR (DMSO): δ, ppm = 5.39 (br, 4H, 2NH₂, D₂O exchangeable), 7.31-7.46 (m, 3H, Ar-H), 7.75 (s, 1H, CH), 7.96-7.98 (m, 2H, Ar-H), 10.73 (br, 1H, NH, D₂O exchangeable); ¹³C-NMR (DMSO): δ, ppm = 166.29, 162.08, 152.30 (2C), 134.31, 128.69 (2C), 127.69, 125.89 (2C), 107.48, 87.97. MS: m/z (%) 257 (M⁺, 100), 226 (10), 200 (5), 134 (35), 128 (10), 90 (10). **4-(4-(4-chlorophenyl)thiazol-2-yl)-1***H***-pyrazole-3,5-diamine (9b).** Yield 75 %; mp 328-30 °C; Anal. calcd. for $C_{12}H_{11}ClN_5S$ (291.76): C, 49.40; H, 3.45; N, 24.00; S, 10.96. Found: C, 49.24; H, 3.61; N; 23.67; S, 10.85; IR (KBr): $\upsilon_{max} = 3369$, 3289 (NH₂), 3248, 3176 (NH₂), 3123 (NH); ¹H-NMR (DMSO): δ, ppm = 5.43 (br, 4H, 2NH₂, D₂O exchangeable), 7.49 (d, 2H, Ar-H), 7.75 (s, 1H, CH), 8.00 (d, 2H, Ar-H), 10.73 (br, 1H, NH, D₂O exchangeable); ¹³C-NMR (DMSO): δ, ppm = 165.79, 162.31, 151.08 (2C), 133.16, 132.09, 128.68 (2C), 127.61 (2C), 108.24, 87.94. MS: m/z (%) 293 (M⁺², 45), 292 (M⁺¹, 45), 291 (M⁺, 100), 260 (10), 168 (35), 133 (15), 123 (5), 89 (10), 67 (5). **4-(4-Methylthiazol-2-yl)-1***H***-pyrazole-3,5-diamine (9c).** Yield 76 %; mp 330-32 °C; Anal. calcd. for C₇H₉N₅S (195.24): C, 43.06; H, 4.65; N, 35.87; S, 16.42. Found: C, 42.89; H, 4.73; N; 35.60; S, 15.98; IR (KBr): $\upsilon_{max} = 3371$, 3275 (NH₂), 3255, 3180 (NH₂), 3118 (NH); ¹H-NMR (DMSO): δ, ppm = 2.23 (s, 3H, CH₃), 5.62 (br, 4H, 2NH₂, D₂O exchangeable), 6.86 (s, 1H, CH), 10.67 (br, 1H, NH, D₂O exchangeable); ¹³C-NMR (DMSO): δ, ppm = 164.33, 161.56, 150.03 (2C), 106.88, 87.68, 16.84. MS: m/z (%) 195 (M⁺, 100), 164 (20), 138 (10), 123 (15), 112 (5), 72 (15). ## Synthesis of 4-(4-phenyl-5-phenylazo-thiazol-2-yl)-1H-pyrazole-3,5-diamine (10) Procedure 1: A cold solution of benzenediazonium chloride (0.01 mol) was prepared by adding a solution of sodium nitrite (0.7 g into 10 mL H_2O) to a cold solution of aniline hydrochloride (0.93 g, 0.01 mol of aniline in 5 mL concentrated HC1) with stirring at room temperature. The resulting solution was then added to a cold solution of **9a** (2.57 g, 0.01 mol) in ethanol (50 mL) containing sodium acetate (2 g). The resultingmixture was stirred for 1 h.giving a solid, which was collected by filtration and crystallized from EtOH to give the pure product as yellow crystalls. Procedure 2: A mixture of **8a** (3.29 g, 0.01 mol) and hydrazine monohydrate (0.50 g, 0.01 mol) in DMF (10 mL) was stirred at reflux for 20 h (completion assessed by TLC analysis using ethyl acetate-petroleum ether 1:1 as eluent). The mixture was cooled and poured into ice-water, giving a solid that was collected by filtration and crystallized from EtOH to give the product as yellow ISSN 1551-7012 Page 230 [©]ARKAT USA, Inc. crystalls in a 75 % yield; mp 295-97 °C; Anal. calcd. for $C_{18}H_{15}N_7S$ (361.42): C, 59.82; H, 4.18; N, 27.13; S, 8.87. Found: C, 60.10; H, 3.98; N; 27.19; S, 8.93; IR (KBr): $\upsilon_{max} = 3398$, 3312 (NH₂), 3258, 3137 (NH₂); ¹H-NMR (DMSO): δ , ppm = 6.24 (br, 4H, 2NH₂, D₂O exchangeable), 7.48-8.09 (m, 10H, Ar-H). MS: m/z (%) 361 (M⁺, 100), 340 (60), 323 (15), 224 (45), 136 (40), 124 (10), 90 (15). # Synthesis of 2-(2-phenylthiazolo[5,4-c]pyridazin-6(2H)-ylidene)malononitrile (12) A mixture of **8c** (2.76 g, 0.01 mol) and *N*,*N*-dimethylformamide dimethyl acetal (DMFDMA, 1.19 g, 0.01 mol) in DMF (10 mL) was stirred at reflux for 14 h. Concentration the mixture in vacuo gave a residue which was crystallized from EtOH to give the product as dark yellow crystalls in a 75 % yiled; mp 298-299 °C; Anal. calcd. for $C_{14}H_7N_5S$ (277.30): C, 60.64; H, 2.54; N, 25.26; S, 11.56. Found: C, 60.39; H, 2.66; N; 25.19; S, 11.23; IR (KBr): $v_{max} = 2192$ (2CN); ¹H-NMR (DMSO): δ , ppm = 7.34-7.50 (m, 6H, Ar-H, CH), 7.65 (d, 1H, J = 5, CH). MS: m/z (%) 277 (M⁺, 100), 256 (10), 169 (15), 129 (10), 93 (15), 77 (60), 73 (20). # Synthesis of 3-(4-Methyl-thiazol-2-yl)-7-phenyl-pyrazolo[1,5-a]pyrimidin-2-ylamine (14) A mixture of **9c** (1.95 g, 0.01 mol) and 3-dimethylamino-1-phenyl-propenone **13** (1.75 g, 0.01 mol) in DMF (10 mL) was stirred at reflux for 10 h (completion assessed by TLC analysis using ethyl acetate-petroleum ether 1:1 as eluent). The reaction mixture was cooled and poured into ice-water giving a solid which was collected by filtration and crystallized from DMF to give a the product as yellow crystalsin a yield of 80 %; mp 285-87 °C; Anal. calcd. for $C_{16}H_{13}N_5S$ (307.37): C, 62.52; H, 4.26; N, 22.78; S, 10.43. Found: C, 62.35; H, 4.39; N; 22.72; S, 10.18; IR (KBr): $v_{max} = 3380$, 3279 (NH₂); ¹H-NMR (DMSO): δ , ppm = 2.41 (s, 3H, CH₃), 6.88 (br, 2H, NH₂, D₂O exchangeable), 7.13 (d, 1H, J = 5.4, CH), 7.60-8.10 (m, 5H, Ar-H), 8.56 (d, 1H, J = 5, CH); ¹³C-NMR (DMSO): δ , ppm = 195.12, 158.00, 150.33, 149.45, 146.80, 144.65, 130.93, 130.64, 129.39 (2C), 128.41 (2C), 110.30, 106.78, 89.28, 16.79.. MS: m/z (%) 307 (M⁺, 100), 234 (15), 182 (5), 156 (15), 103 (5), 72 (30). # Acknowledgements The authors are grateful to Kuwait University Research Administration for financial support of project SC 01/10. Financial support to Mr. Moustafa Sherief by the College of Graduate Studies is highly appreciated. The use of analytical facilities provided by SAF projects No. GS 01/05 & GS 03/01 are greatly appreciated. ISSN 1551-7012 Page 231 [©]ARKAT USA, Inc. # References - 1. Worms, P.; Gueudet, C.; Biziere, K. Life Sci. 1986, 39, 2199. - 2. Pu, Y.-M.; Ku, Y.-Y.; Ku, T.; Henry, Bhatia, R.; A. V. Tetrahedron Lett. 2006, 47, 149. - 3. Butnariu, R.; Caprusu, M.; Bejan, V.; Ungureanu, M.; Poiata, A.; Tuchiius, C.; Florescu, M.; Magalagiu, I. *J. Heterocic.Chem.* **2007**, *44*, 1149. - 4. Tucaliuc, R. B.; Risca, I.; Drochioiu, G.; Mangalagiu, I. *Rumanian Biotech. Lett.* **2008**, *13* (4), 3837. - 5. Elnagdi, M. H.; Al-Awadi, N. A.; Abdelhamid, I. A. Advances in heterocyclic chem. 2009, 97. 1. - 6. Elnagdi, M. H.; Sadek, K. U.; Taha, N. M.; Yassin, Y. M. *Collect. Czech. Chem. Commun.* **1990**, *55*, 734. - 7. Elnagdi, M. H.; Negm, A. M.; Sadek, K. U. *Synlett* **1994**, 27. - 8. Al-Awadi, H.; Al-Omran, F.; Elnagdi, M. H.; Infantes, L.; Foces-foces, C.; Jagerovic, N.; Elguero, J. *Tetrahedron* **1995**, *51*, 12745. - 9. Abdelrazek, F. M.; Fadda, A. A. Z. Naturforsch. B. 1986, 41b, 499. - 10. Wermath, G. G. The Principals of Medicinal Chemistry, Academic: Oxford, 2004. - 11. CCDC 771782 contains the supplementary crystallographic data for compound **14**. These data can be obtained free of charge from the Cambridge Crystallographic Data Centre *via* www.ccdc.cam.ac.uk.