An effective conversion of N '-ethoxymethylene-2-(N-Bocamino)propionohydrazides into 2-(1-aminoethyl)-1,3,4-oxadiazoles

Agnieszka Kudelko* and Wojciech Zieliński
Department of Chemical Organic Technology and Petrochemistry, The Silesian University of Technology, Ul. Krzywoustego 4, PL-44101 Gliwice, Poland
E-mail: Agnieszka.Kudelko@polsl.pl

Abstract

A series of N '-ethoxymethylene-2-(N-Boc-amino)propionohydrazide derivatives was obtained from the reactions of N-Boc-protected alanine hydrazide and triethyl orthoesters. They underwent cyclization to the corresponding 2-(1-N-Boc-aminoethyl)-1,3,4-oxadiazoles in glacial acetic acid.

Keywords: $\quad N$ '-Ethoxymethylene-2-(N-Boc-amino)propionohydrazide, 1,3,4-oxadiazole, cyclization, syn and anti isomerism, Boc protecting group

Introduction

1,3,4-Oxadiazoles belong to a group of heterocyclic compounds that exhibit a wide range of biological activities. ${ }^{1}$ A lot of compounds containing such an arrangement demonstrate strong antibacterial, anticonvulsant and anticancer activities; some of them are even used to fight infections involving AIDS. ${ }^{2-4}$ They also have some industrial applications in agriculture as pesticides, acaricides and nematocides ${ }^{5,6}$ or in material science because of their precious electrochemical properties. ${ }^{7,8}$

The most popular method to synthesize 1,3,4-oxadiazoles uses acid hydrazides as substrates that undergo reaction with aromatic aldehydes, ${ }^{9}$ carboxylic acids ${ }^{4}$ and orthoesters. ${ }^{10}$ Another comprises the reactions of diacylhydrazines with a range of cyclodehydrating agents, for example: polyphosphoric acid, ${ }^{11}$ phosphorus oxychloride, ${ }^{12}$ thionyl chloride, ${ }^{13}$ or boron trifluoride diethyl etherate ${ }^{14}$.

Our earlier research on the reactions of α-hydroxyacid hydrazides with triethyl orthoesters in the presence of glacial acetic acid led us to a mixture of two heterocyclic compounds: the derivatives of $1,3,4$-oxadiazole and 1,3,4-oxadiazin- $5(6 H)$-one. ${ }^{15}$ The formation of the latter sixmembered compounds was the result of the presence of a highly reactive hydroxy group in the molecule of hydrazide. The hydrazides of other acids, α-aminocarboxylic ones, possessing the
${ }^{\circ}$ ARKAT USA, Inc.
more reactive group at the α position, undergo the reaction with triethyl orthoesters yielding mainly the six-membered derivatives of 1,2,4-triazine-6(5H)-one. ${ }^{16}$ However, the protection of such a group in the α-amino substrate prevents the formation of the latter compounds and the five-membered 2 -aminomethyl-1,3,4-oxadiazoles are the only products of the reaction. ${ }^{17}$ Such compounds are of the great importance because they could be used as building blocks for macrocyclic systems.

Herein, we describe an easy procedure for the synthesis of N '-ethoxymethylene-2-(N-Bocamino)propionohydrazides and its application to the formation of 2-aminoethyl-1,3,4-oxadiazole derivatives.

Results and Discussion

The starting material was the racemic $D L$-alanine hydrazide protected at the α-amino group with tert-butoxycarbonyl. It was obtained in a few-step procedure according to well-known protocols. At first, the racemic $D L$-alanine was treated with methanol and thionyl chloride yielding $D L$ alanine methyl ester hydrochloride. The ester, which was produced in satisfactory yields, was protected by $\mathrm{Boc}_{2} \mathrm{O}$ in the presence of triethylamine and then transformed into the desired hydrazide $\mathbf{1}$ by the reaction with hydrazine hydrate. Heating N-Boc- $D L$-alanine hydrazide 1 with the excess of triethyl orthoester ($\mathrm{R}=\mathrm{H}, \mathrm{Me}, \mathrm{Et}, \mathrm{Ph}$, Scheme 1) we obtained the four acyclic derivatives of N^{\prime} 'ethoxymethylene-2-(N-Boc-amino)propionohydrazide $\mathbf{2}$ as stable solids.

Scheme 1

The yields of products are high ($80-83 \%$), except for the reaction with triethyl orthoformate (52%). The new compounds were characterized by elemental analysis and typical spectroscopic methods.

Table 1. Products of reactions of N-Boc- $D L$-alanine hydrazide 1 with triethyl orthoesters

Entry	Product	R	Yield, $\%$
1	2a	H	52
2	2b	CH_{3}	80
3	2c	$\mathrm{C}_{2} \mathrm{H}_{5}$	82
4	2d	Ph	83

Both ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}-\mathrm{NMR}$ spectra show all the expected signals. Analyzing ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectra of 2a-d in DMSO we found that they show a double number of peaks due to syn and anti geometric isomerism. The signals coalesced upon heating the solution to $100^{\circ} \mathrm{C}$. The most characteristic peaks in the ${ }^{1} \mathrm{H}$-NMR spectra come from protons of the ethoxy group, which was introduced to the molecule of $\mathbf{2}$ by orthoester and appears as triplet $\left(-\mathrm{CH}_{3}\right)$ at ca. 1.40 ppm and quartet $\left(-\mathrm{CH}_{2}\right.$ - $)$ ranging from 3.60 to 4.30 ppm . In the ${ }^{13} \mathrm{C}$-NMR spectra, the characteristic methylene carbon atom comes at ca. 165 ppm . Two other typical signals of the ethoxy group which was introduced to N '-ethoxymethylene-2-(N-Boc-amino)propionohydrazide moiety, appear at $15 \mathrm{ppm}\left(-\mathrm{CH}_{3}\right)$ and 61-68 ppm ($-\mathrm{OCH}_{2}$ -).

Working earlier on the synthesis making use of α-hydroxycarboxylic acid hydrazides ${ }^{15}$ we came to the conclusion that the acyclic compound $\mathbf{3}$, belonging to the same class of iminoesters, should play the essential role in the formation of both heterocyclic 1,3,4-oxadiazole and 1,3,4-oxadiazin-5(6H)-one systems (Scheme 2).

Scheme 2

Thus, the synthesized iminoesters $\mathbf{2 a - d}$ were subjected to heating in acidic media in order to obtain the desired five-membered 1,3,4-oxadiazoles 4 (Scheme 3).

Scheme 3

The cyclization occurred in glacial acetic acid at elevated temperature to give the appropriate 5-substituted 2-aminoethyl-1,3,4-oxadiazoles 4a-d. The yields of products 4a-d are very high (Table 2), almost quantitative.

Table 2. The synthesis of 2-(1-N-Boc-aminoethyl)-1,3,4-oxadiazoles 4 from N^{\prime} '-ethoxymethylene-2-(N-Boc-amino)propionohydrazide 2

Entry	Product	R	Yield, $\%$
1	$\mathbf{4 a}$	H	95
2	$\mathbf{4 b}$	CH_{3}	97
3	$\mathbf{4 c}$	$\mathrm{C}_{2} \mathrm{H}_{5}$	98
4	$\mathbf{4 d}$	Ph	98

The structures of new products were confirmed by elemental analysis and typical spectroscopic methods. The ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectra show the disappearance of both the ethoxy group and the proton adjacent to hydrazide nitrogen atom, indicating the loss of ethanol during the reaction course. In the ${ }^{13} \mathrm{C}-\mathrm{NMR}$ spectra, the characteristic ring carbon atom $\mathrm{C}-2$ is seen at ca. 167 ppm . The location of the second carbon atom C-5 depends on the type of substituent attached to this position. For the unsubstituted compound $\mathbf{4 a}$ it appears at 154 ppm while for the rest of 1,3,4-oxadiazoles $\mathbf{4 b - d}$ at ca. 164 ppm .

Analyzing the ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectra of 2-(1-aminoethyl)-5-phenyl-1,3,4-oxadiazole 4d (Scheme 3), we found that the two protons H-2' and H-6' of the phenyl group substituted at position five of the 1,3,4-oxadiazole ring are shifted to low fields and appear as doublet at 7.95 ppm . Similar observations were made for other 1,3,4-oxadiazoles possesing the benzene ring in the mentioned position. ${ }^{17}$ Such significant change in the chemical shift could result from the proximity of H-2, and H-6' protons to the ring's nitrogen and oxygen atoms or from the presence of hydrogen bonds linking heteroatoms and the indicated protons. Thus, both $1,3,4$-oxadiazole and the phenyl rings lie untwisted in the same plane and are conjugated.

Conclusions

In conclusion, we have presented a two-step procedure for the preparation of $2-(1-\mathrm{N}$ - $\mathrm{Boc}-$ aminoethyl)-1,3,4-oxadiazoles from the racemic $D L$-alanine hydrazide and triethyl orthoesters via stable intermediates, the derivatives of N '-ethoxymethylene-2-(N-Boc-amino) propionohydrazide. This easy and efficient procedure may be applied to the synthesis of macrocyclic systems based on the easy-to-bind 2-(1-aminoethyl)-1,3,4-oxadiazole moiety.

Experimental Section

General. Melting points were measured using an APA II melting point apparatus and are uncorrected. UV spectra were recorded on a Shimadzu UV-2102 spectrophotometer. Elemental analyses were performed with a VarioEL analyzer. The ${ }^{1} \mathrm{H}$ - and ${ }^{13} \mathrm{C}$-NMR spectra were recorded on a Varian Inova 300 spectrometer in DMSO solution using TMS as the internal standard. Thinlayer chromatography was performed on silica gel $60 \mathrm{~F}_{254}$ (Merck) thin layer chromatography plates using benzene-ethyl acetate $(1: 5 \mathrm{v} / \mathrm{v})$ as the mobile phase.

Procedure for the synthesis of N^{\prime}-ethoxymethylene-2-(N-Boc-amino)-propionohydrazides 2

 The starting N-Boc protected $D L$-alanine hydrazide $1(0.01 \mathrm{~mol}, 3.00 \mathrm{~g})$ was added to a mixture of the appropriate triethyl orthoester (0.05 mol) and kept under reflux for about 5 h . After cooling the excessive orthoester was evaporated under reduced pressure. The crude oils were triturated with diethyl ether and then purified by crystallization from benzene-hexane mixtures.N^{\prime}-Ethoxymethylene-2-(N-Boc-amino)propionohydrazide 2a. Yield 52\%; white crystals; mp $121-123{ }^{\circ} \mathrm{C}$; Rf 0.35. UV: $\lambda_{\max }\left(\varepsilon \cdot 10^{-3}\right) \mathrm{MeOH} 230.60(10.67) .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}-d_{1}\right.$, $\left.\mathrm{Me}_{4} \mathrm{Si}\right): \delta=1.18-1.42\left(\mathrm{~m}, 15 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{3}, \mathrm{CH}_{3}-\mathrm{BOC}, \mathrm{CH}_{3}-\mathrm{Ala}\right), 3.64\left(\mathrm{q}, 2 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 4.02-$ 4.22 (m, 3H, $\mathrm{OCH}_{2} \mathrm{CH}_{3}, \mathrm{CH}$-Ala), 4.98 (m, 1H, CH-Ala), 5.23 ($\mathrm{s}, 1 \mathrm{H}, \mathrm{H}-\mathrm{R}$), 5.36 ($\mathrm{s}, 1 \mathrm{H}, \mathrm{H}-\mathrm{R}$), 6.43 (s, 1H, NH-Ala), 6.65 (s, 1H, NH-Ala), 8.63 ($\mathrm{s}, 1 \mathrm{H}, \mathrm{NH}$), 9.42 ($\mathrm{s}, 1 \mathrm{H}, \mathrm{NH}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}(75$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}-d_{1}, \mathrm{Me}_{4} \mathrm{Si}\right): \delta=15.34\left(\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 18.53\left(\mathrm{CH}_{3}\right.$-Ala $), 28.27\left(\mathrm{CH}_{3}-\mathrm{BOC}\right), 48.84$ $(\mathrm{CH}), 62.12\left(\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 77.43(\mathrm{C}-\mathrm{BOC}), 155.10(\mathrm{C}=\mathrm{O}-\mathrm{BOC}), 165.16(\mathrm{C}=\mathrm{N}), 168.76(\mathrm{C}=\mathrm{O}-$ Ala). Anal. Calcd. for $\mathrm{C}_{11} \mathrm{H}_{21} \mathrm{~N}_{3} \mathrm{O}_{4}$: C, 51.04; H, 8.20; N, 16.16. Found: C, 51.00; H, 8.15; N, 16.20.
N^{\prime} '(1-Ethoxyethylene)-2-(\boldsymbol{N}-Boc-amino)propionohydrazide 2b. Yield 80%; white crystals; mp 105-108 ${ }^{\circ} \mathrm{C} ; \operatorname{Rf} 0.36$. UV: $\lambda_{\max }\left(\varepsilon \cdot 10^{-3}\right) \mathrm{MeOH} 230.00$ (7.34). ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}\right.$, DMSO- d_{6}, $\left.\mathrm{Me}_{4} \mathrm{Si}\right): \delta=1.12-1.25\left(\mathrm{~m}, 6 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{3}, \mathrm{CH}_{3}-\mathrm{Ala}\right.$), 1.36 (s, $\left.9 \mathrm{H}, \mathrm{CH}_{3}-\mathrm{BOC}\right), 1.84$ (s, $3 \mathrm{H}, \mathrm{CH}_{3}-$ R), $1.92\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}-\mathrm{R}\right), 3.92-4.16\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{3}, \mathrm{CH}-\mathrm{Ala}\right)$, $4.61(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}-A l a), 6.78(\mathrm{~d}$, $J=7.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NH}-A l a), 6.96(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NH}-A l a), 9.80(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}), 9.92(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH})$; ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{DMSO}-d_{6}, \mathrm{Me}_{4} \mathrm{Si}\right): \delta=14.66\left(\mathrm{CH}_{3}-\mathrm{R}\right), 15.73\left(\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 18.65\left(\mathrm{CH}_{3}-\right.$ Ala $)$, $28.72\left(\mathrm{CH}_{3}-\mathrm{BOC}\right), 49.25(\mathrm{CH}), 62.28\left(\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 78.44(\mathrm{C}-\mathrm{BOC}), 155.62(\mathrm{C}=\mathrm{O}-\mathrm{BOC}), 165.63$
$(\mathrm{C}=\mathrm{N}), 168.76(\mathrm{C}=\mathrm{O}-$ Ala $)$. Anal. Calcd.for $\mathrm{C}_{12} \mathrm{H}_{23} \mathrm{~N}_{3} \mathrm{O}_{4}$: C, 52.94; H, 8.42; $\mathrm{N}, 15.35$. Found: C, 52.80; H, 8.40; N, 15.40.
N^{\prime}-(1-Ethoxypropylene)-2-(N-Boc-amino)propionohydrazide 2c. Yield 82\%; white crystals; mp 98-99 ${ }^{\circ} \mathrm{C}$; Rf 0.32. UV: $\lambda_{\max }\left(\varepsilon \cdot 10^{-3}\right) \mathrm{MeOH} 230.60$ (9.62). ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}\right.$, DMSO- d_{6}, $\left.\mathrm{Me}_{4} \mathrm{Si}\right): \delta=0.92\left(\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H}, C H_{3} \mathrm{CH}_{2}-\mathrm{R}\right), 1.04\left(\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H}, C H_{3} \mathrm{CH}_{2}-\mathrm{R}\right), 1.12-1.24$ ($\mathrm{m}, 6 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{3}, \mathrm{CH}_{3}$-Ala), 1.35 ($\mathrm{s}, 9 \mathrm{H}, \mathrm{CH}_{3}-\mathrm{BOC}$), 2.24 ($\mathrm{q}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CH}_{2}-\mathrm{R}$), 2.40 (q, $J=7.5 \mathrm{~Hz} 2 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CH}_{2}-\mathrm{R}$), $3.85-4.14\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{3}, \mathrm{CH}-\mathrm{Ala}\right), 4.58(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}-$ Ala), 6.78 (br s, 1H, NH-Ala), 6.96 (br s, 1H, NH-Ala), $9.82(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}), 9.94(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}) ;{ }^{13} \mathrm{C}-$ NMR (75 MHz , DMSO- $\left.d_{6}, \mathrm{Me}_{4} \mathrm{Si}\right): \delta=9.58\left(\mathrm{CH}_{3} \mathrm{CH}_{2}-\mathrm{R}\right), 14.13\left(\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 18.10\left(\mathrm{CH}_{3}-\right.$ Ala $)$, $21.56\left(\mathrm{CH}_{3} \mathrm{CH}_{2}-\mathrm{R}\right), 28.20\left(\mathrm{CH}_{3}-\mathrm{BOC}\right), 48.73(\mathrm{CH}), 61.73\left(\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 77.96(\mathrm{C}-\mathrm{BOC}), 156.80$ (C=O-BOC), $166.58(\mathrm{C}=\mathrm{N})$, $168.38(\mathrm{C}=\mathrm{O}-$ Ala $)$. Anal. Calcd. for $\mathrm{C}_{13} \mathrm{H}_{25} \mathrm{~N}_{3} \mathrm{O}_{4}$: C, 54.39; H, 8.78; N, 14.48. Found: C, 54.45; H, 8.70; N, 14.60.
\boldsymbol{N} '-(1-Ethoxybenzylidene)-2-(\boldsymbol{N}-Boc-amino)propionohydrazide 2d. Yield 83\%; white crystals; mp 96-97 ${ }^{\circ} \mathrm{C}$; Rf 0.49 . UV: $\lambda_{\max }\left(\varepsilon \cdot 10^{-3}\right) \mathrm{MeOH} 266.00$ (17.14), 203.60 (15.77). ${ }^{1} \mathrm{H}-$ NMR (300 MHz , DMSO-d $\mathrm{d}_{6}, \mathrm{Me}_{4} \mathrm{Si}$): $\delta=1.16-1.42$ (m, 15H, $\mathrm{OCH}_{2} \mathrm{CH}_{3}, \mathrm{CH}_{3}-\mathrm{BOC}, \mathrm{CH}_{3}-$ Ala), 3.95-4.32 ($\mathrm{m}, 3 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{3}, \mathrm{CH}$-Ala), $4.82(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}-$ Ala), $6.95(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NH}-A l a)$, 7.25 (d, J = 7.5 Hz, 1H, NH-Ala), 7.50-7.64 (m, 5H, Ph-R), $9.86(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}), 10.43$ (s, 1H, NH); ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{DMSO}-d_{6}, \mathrm{Me}_{4} \mathrm{Si}\right): \delta=15.12\left(\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 17.59\left(\mathrm{CH}_{3}\right.$-Ala), $28.20\left(\mathrm{CH}_{3}-\right.$ BOC), $48.81(\mathrm{CH}), 66.63\left(\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 78.30(\mathrm{C}-\mathrm{BOC}), 127.23,127.90,128.79,130.50\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)$, $155.38(\mathrm{C}=\mathrm{O}-\mathrm{BOC})$, $166.60(\mathrm{C}=\mathrm{N})$, $169.02(\mathrm{C}=\mathrm{O}-A l a)$. Anal. Calcd. for $\mathrm{C}_{17} \mathrm{H}_{25} \mathrm{~N}_{3} \mathrm{O}_{4}: \mathrm{C}, 60.90$; H, 7.46; N, 12.54. Found: C, 60.79; H, 7.50; N, 12.63.

Procedure for the preparation of N -Boc protected 2-(1-aminoethyl)-1,3,4-oxadiazoles 4

The appropriate N '-ethoxymethylene-2-(N-Boc-amino)propionohydrazides 2 (5 mmol) was dissolved in 10 mL of glacial AcOH . The mixture was kept on a water bath at $60^{\circ} \mathrm{C}$ for about 6 hours (TLC). Then the solution was concentrated on a rotary evaporator. The crude products 4ad were subjected to the column chromatography (silica gel, eluent: benzene-AcOEt, 1:5 mixture) or were crystallized from benzene-hexane mixtures.
2-(1-N-Boc-aminoethyl)-1,3,4-oxadiazole 4a. Yield 95%; white crystals; $\mathrm{mp} 81-83{ }^{\circ} \mathrm{C}$; (lit ${ }^{18} 80$ $82{ }^{\circ} \mathrm{C}$); Rf 0.45. UV: $\lambda_{\max }\left(\varepsilon \cdot 10^{-3}\right) \mathrm{MeOH} 203.20(1.52) .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{DMSO}-d_{6}, \mathrm{Me}_{4} \mathrm{Si}\right)$: $\delta=1.37$ (s, 9H, CH 3 -BOC), 1.43 (d, $J=7.2 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}-$ Ala), 4.89 (qui, $J=7.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}-$ Ala), 7.62 (d, $J=7.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NH}-A l a), 9.14(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-\mathrm{R}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}\right.$, $\left.\mathrm{Me}_{4} \mathrm{Si}\right): \delta=18.34\left(\mathrm{CH}_{3}\right.$-Ala), $28.19\left(\mathrm{CH}_{3}-\mathrm{BOC}\right), 42.36(\mathrm{CH}), 78.61$ (C-BOC), $154.47(\mathrm{C}-5)$, 154.96 (C=O-BOC), 167.36 (C-2). Anal. Calcd. for $\mathrm{C}_{9} \mathrm{H}_{15} \mathrm{~N}_{3} \mathrm{O}_{3}$: C, 50.70; H, 7.04; N, 19.72. Found: C, 50.57; H, 7.25; N, 19.62.
5-methyl-2-(1-N-Boc-aminoethyl)-1,3,4-oxadiazole 4b. Yield 97\%; white crystals; mp 79-80 ${ }^{\circ} \mathrm{C}$; Rf 0.44. UV: $\lambda_{\max }\left(\varepsilon \cdot 10^{-3}\right) \mathrm{MeOH} 202.80(1.94) .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{DMSO}-d_{6}, \mathrm{Me}_{4} \mathrm{Si}\right): \delta=$ 1.37 (s, 9H, CH3-BOC), $1.40\left(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right.$-Ala), $2.45\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}-\mathrm{R}\right.$), 4.80 (quin, $J=$ $6.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}-A l a), 7.57$ (d, J = $6.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NH}-$ Ala) ; ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{DMSO}-d_{6}, \mathrm{Me}_{4} \mathrm{Si}\right)$: $\delta=10.43\left(\mathrm{CH}_{3}-\mathrm{R}\right), 18.34\left(\mathrm{CH}_{3}\right.$-Ala $), 28.12\left(\mathrm{CH}_{3}-\mathrm{BOC}\right), 42.26(\mathrm{CH}), 78.46(\mathrm{C}-\mathrm{BOC}), 154.83$
(C=O-BOC), 163.63 (C-5), 167.37 (C-2). Anal. Calcd. for $\mathrm{C}_{10} \mathrm{H}_{17} \mathrm{~N}_{3} \mathrm{O}_{3}$: C, 52.86; H, 7.49; N , 18.50. Found: C, 53.01 ; H, 7.59; N, 18.35.

5-ethyl 2-(1-N-Boc-aminoethyl)-1,3,4-oxadiazole 4c. Yield 98\%; white crystals; mp 48-49 ${ }^{\circ} \mathrm{C}$; Rf 0.46. UV: $\lambda_{\max }\left(\varepsilon \cdot 10^{-3}\right) \mathrm{MeOH} 204.80$ (6.97). ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{DMSO}_{6}, \mathrm{Me}_{4} \mathrm{Si}\right): \delta=$ 1.22 (t, $\left.J=7.5 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CH}_{2}-\mathrm{R}\right), 1.37\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{CH}_{3}-\mathrm{BOC}\right), 1.41\left(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}-\mathrm{Ala}\right)$, 2.81 (quin, $J=7.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CH}_{2}-\mathrm{R}$), 4.81 (quin, $\left.J=6.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}-A l a\right)$, 7.58 (d, $J=6.9 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{NH}-$ Ala) ; ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{DMSO}-d_{6}, \mathrm{Me}_{4} \mathrm{Si}\right): \delta=10.44\left(\mathrm{CH}_{3} \mathrm{CH}_{2}-\mathrm{R}\right), 18.27\left(\mathrm{CH}_{3} \mathrm{CH}_{2}-\right.$ R), $18.31\left(\mathrm{CH}_{3}\right.$-Ala), $28.12\left(\mathrm{CH}_{3}\right.$-BOC), $42.34(\mathrm{CH}), 78.45(\mathrm{C}-\mathrm{BOC}), 154.85(\mathrm{C}=\mathrm{O}-\mathrm{BOC})$, 163.72 (C-5), 167.48 (C-2). Anal. Calcd. for $\mathrm{C}_{11} \mathrm{H}_{19} \mathrm{~N}_{3} \mathrm{O}_{3}$: C, 54.77; H, 7.88; N, 17.43. Found: C, 54.76; H, 7.98; N, 17.33.

5-phenyl-2-(1-N-Boc-aminoethyl)-1,3,4-oxadiazole 4d. Yield 98\%; white crystals; mp 143-145 ${ }^{\circ} \mathrm{C}$; Rf 0.59. UV: $\lambda_{\max }\left(\varepsilon \cdot 10^{-3}\right) \mathrm{MeOH} 250.40$ (19.34), 204.80 (18.78). ${ }^{1} \mathrm{H}-\mathrm{NMR}(300 \mathrm{MHz}$, DMSO- $d_{6}, \mathrm{Me}_{4} \mathrm{Si}$): $\delta=1.39\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{CH}_{3}-\mathrm{BOC}\right), 1.50\left(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right.$-Ala), 4.95 (quin, J $=6.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}), 7.58-7.62\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{Ph}-\mathrm{R}: \mathrm{H}-\mathrm{C}-3^{\prime}, \mathrm{H}^{\prime} 4^{\prime}, \mathrm{H}-5^{\prime}\right), 7.69$ (d, J=6.9 Hz, 1H, NHAla), 7.95 (d, $J=7.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ph}-\mathrm{R}: \mathrm{H}-2^{\prime}, \mathrm{H}-6^{\prime}$); ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(75 \mathrm{MHz}\right.$, DMSO- $\mathrm{d}_{6}, \mathrm{Me}_{4} \mathrm{Si}$): δ $=18.27\left(\mathrm{CH}_{3}\right.$-Ala $), 28.10\left(\mathrm{CH}_{3}-\mathrm{BOC}\right), 42.54(\mathrm{CH}), 78.57(\mathrm{C}-\mathrm{BOC}), 123.36,126.35,129.44$, $131.94\left(\mathrm{C}_{6} \mathrm{H}_{5}\right), 154.95(\mathrm{C}=\mathrm{O}-\mathrm{BOC}), 163.94(\mathrm{C}-5), 167.69(\mathrm{C}-2)$. Anal. Calcd. for $\mathrm{C}_{15} \mathrm{H}_{19} \mathrm{~N}_{3} \mathrm{O}_{3}$: C, 62.28; H, 6.58; N, 14.53. Found: C, 62.19; H, 6.65; N, 14.47.

References

1. Suwiński, J.; Szczepankiewicz, W. in Katritzky, A. R.; Ramsden, C. A.; Scriven, E. F. V.; Taylor, R. J. K., Eds. Comprehensive Heterocyclic Chemistry III, Elsevier Science Ltd.: Oxford, 2008; Vol. 5, Ch. 5.06, p 398.
2. Amir, M.; Shikha, K. Eur. J. Med. Chem. 2004, 39, 535.
3. Almasirad, A.; Tabatabai, S. A.; Faizi, M.; Kebriaeezadeh, A; Mehrabi, N.; Dalvandi, A.; Shafiee, A. Bioorg. Med. Chem. Lett. 2004, 14, 6057.
4. Rajapakse, H. A.; Zhu, H.; Young, M. B.; Mott, B. T. Tetrahedron Lett. 2006, 47, 4827.
5. Zheng, X.; Li, Z.; Wang, Y.; Chen, W.; Huang, Q.; Liu, C.; Song, G. J. Fluorine Chem. 2003, 123, 163.
6. Zou, X.-J.; Lai, L.-H.; Jin G.-Y.; Zhang, Z.-X. J. Agric. Food Chem. 2000, 50, 3757.
7. Schulz, B.; Orgzall, I.; Freydank, A.; Xu, C. Adv Colloid Interface Sci. 2005, 116, 143.
8. Chen, Z. K.; Meng, H.; Lai, Y. H.; Huang, W. Macromolecules 1999, 32, 4351.
9. Dabiri, M.; Salehi, P.; Baghbanzadeh, M.; Bahramnejad, M. Tetrahedron Lett. 2006, 47, 6983.
10. Ainsworth, C. J. Am. Chem. Soc. 1955, 77, 1148.
11. Tully, W. R.; Cardner, C. R.; Gillespie, R. J.; Westwood, R. J. Med. Chem. 1991, 34, 2060.
12. Cao, S.; Qian, X.; Song, G.; Huang, Q. J. Fluorine Chem. 2002, 117, 63.
13. El Kain, L.; Le Menestrel, I.; Morgentin, R. Tetrahedron Lett. 1998, 39, 6885.
14. Tandon, V. K.; Chhor, R. B. Synth. Commun. 2001, 31, 1727.
15. Kudelko, A.; Zieliński, W. Heterocycles 2006, 68, 2269.
16. Neunhoeffer, H.; Klein-Cullmann, B. Liebigs Ann. Chem. 1992, 12, 1271.
17. Kudelko, A.; Zieliński, W. Tetrahedron 2009, 65, 1200.
18. Kramer, J. B.; Boschelli, D. H.; Connor, D. T. J. Heterocycl. Chem. 1994, 31, 1439.
