A synthetic strategy to pyrrolidines and piperidines based on cyclization of α-sulfinyl carbanions

Wissawat Sakulsaknimitr, Chutima Kuhakarn, Patoomratana Tuchinda, Vichai Reutrakul, and Manat Pohmakotr*

Department of Chemistry and Center for Innovation in Chemistry (PERCH-CIC), Faculty of Science, Rama VI Road, Bangkok 10400, Thailand E-mail: <u>scmpk@mahidol.ac.th</u>

Abstract

A general synthetic strategy for the preparation of pyrrolidines, piperidines and their unsaturated analogs is described, which involves intramolecular cyclization of α -sulfinyl carbanions onto the carbonyl group of the readily prepared *N*-phenylsulfinylpropyl- or *N*-phenylsulfinylbutylamides, followed by reductive desulfurization or sulfoxide elimination of the resulting cyclized products.

Keywords: α-Sulfinyl carbanion, pyrrolidines, piperidines, intramolecular cyclization

Introduction

N-Heterocycles occur in many interesting classes of compounds, for example, naturally occurring substances, pharmaceuticals, polymers, electronic materials, and sensors. In particular, pyrrolidine and piperidine derivatives are present in a large number of physiologically interesting natural products.¹ As a result, a considerable number of synthetic approaches to pyrrolidines and piperidines have been reviewed² and the search for alternative, general, and convenient procedures for their synthesis is still desirable. As part of our research program on the synthetic utility of cyclization based on α -sulfinyl carbanions for the preparation of 1-azabicyclic compounds,³⁻⁵ we report a general route for the preparation of pyrrolidines and piperidines starting from simple amides.

Results and Discussion

The pyrrolidine and piperidine derivatives **5**–**6** were prepared according to the synthetic analysis outlined in Scheme 1, which involves N-alkylation of secondary amides with 1-bromo-3-phenylsulfanylpropane or 1-bromo-4-phenylsulfanylbutane, and oxidation of the resulting adducts to the corresponding sulfoxides followed by α -sulfinyl carbanions- mediated cyclization,

and reduction. The synthetic utility of our syntheses was further demonstrated by preparing substituted pyrrolidines or piperidines 7, 8 as well as their unsaturated analogs 9, 10.

Scheme 1. Synthetic pathway.

The required starting sulfoxides **3** (n = 1 or 2) were prepared in good yields by treatment of the secondary amides **1** with 1-bromo-3-phenylsulfanylpropane or 1-bromo-4-phenylsulfanylbutane, using NaH as a base in *N*,*N*-dimethylformamide (DMF) at 0 °C followed by oxidation of the resulting sulfides **2** with NaIO₄ in aqueous methanol at 0 °C to room temperature overnight. The results are summarized in Table 1.

Having the starting sulfoxides in hand, we explored the intramolecular cyclization, exploiting compound **3a** as a model substrate. In preliminary experiments, treatment of the sulfoxide **3a** with 1.0 or 1.2 equivalents of lithium hexamethyldisilazide (LiHMDS) in THF at – 78 °C followed by slowly warming to room temperature overnight (12-16 h) led to a low yield of the expected cyclized product **4a**. The starting sulfoxide **3a** still remained, as revealed by thin-layer chromatography and ¹H NMR analyses of the crude product. It is worth mentioning that the obtained cyclized product **4a** decomposed slowly upon standing, or purification on silica gel. To circumvent the decomposition problem, the crude material after the cyclization step was immediately subjected to reduction, employing NaBH₄ in methanol. A good yield (66%) of phenylsulfinylpyrrolidine **5a** was obtained when 2.0–2.2 equivalents of LiHMDS were employed for the cyclization step, followed by reduction of the initial cyclized product **4a** with NaBH₄ in methanol at room temperature. By performing the sequential cyclization and reduction reaction under the same reaction conditions as for **5a**, the phenylsulfinylpyrrolidines **5b–d** and

piperidines **6a** and **b** were prepared in moderate to good yields from the corresponding starting sulfoxides **3b–d** and **3e–f**, respectively, as summarized in Table 1.

Entry	Amide	n ¹	R^2	Product yields (%) ^a					
	1	K		2	n	3	5 ^b or 6 ^b	7 or 8	9 or 10
1	1a	Ph	Ph	2a , 84	1	3a , 90	5a , 66	7a , 68	9a , 65
2	1b	Me	Ph	2b , 88	1	3b , 92	5b , 50	7b , 60	с
3	1c	<i>n</i> -Pr	Ph	2c , 80	1	3c , 90	5 c, 57	7c , 62	с
4	1d	Ph	Bn	2d , 57	1	3d , 91	5d , 58	с	9d , 65
5	1a	Ph	Ph	2e , 82	2	3e , 90	6a , 72	8a , 61	10a , 76
6	1b	Me	Ph	2f , 85	2	3f , 90	6b , 56	8b , 70	10b , 72

Table 1. Pyrrolidine and piperidine derivatives prepared by this methodology

^a Isolated yields. ^b Obtained as mixtures of diastereomers. ^c Not performed.

It is worth noting that the phenylsulfinylpyrrolidines **5a–d** and phenylsulfinylpiperidines **6a–b**, in all cases, were obtained as a mixture of diastereomers. A maximum of four diastereoisomer was expected from those possess three chiral centers and their stereochemical outcomes can be explained as shown in Scheme 2. It was believed that the iminium ions **A** readily formed under protic conditions. Subsequent reduction by sodium borohydride gave **5a–d** and **6a–b**. Since the hydride anion can access the iminium ion from both the top- and the bottom-face of the iminium ions, this resulted in the formation of diastereomeric products of **5** and **6**.

Scheme 2. Formation of compounds 5a-d and 6a-b.

Having established the efficient access to pyrrolidine and piperidine core units, we envisioned that the presence of the phenylsulfinyl group in compounds 5 and 6 makes them useful for further synthetic manipulation. The preparation of pyrrolidines 7 and piperidines 8 as well as their unsaturated analogs 9 and 10 from compounds 5 and 6 were demonstrated. Thus, reductive cleavage of the phenylsulfinyl group of 5a was carried out by treatment with an excess of nickel boride (Ni₂B)⁶ in methanol at 3–5 °C, affording pyrrolidine 7a in 68% yield (Table 1,

entry 1). Similarly, reductive desulfurization of **5b–c** and **6a–b** gave the corresponding pyrrolidines **7b–c** and piperidines **8a–b** in 60–70% yields as summarized in Table 1 (entries 2–3 and 5–6).

It was observed that further reductive cleavage of the carbon–nitrogen bond of pyrrolidines **7b** and **7c** occurred to give the corresponding ring–opening products *N*-pentylaniline **11a** and *N*-heptylaniline **11b** in 14 and 15% yields, respectively. The formation of both compounds arose presumably by the hydrogenolysis of the initially formed **7b** and **7c** via a mechanism as proposed in Scheme 3.

Scheme 3. Plausible mechanism for the formation of 11a or 11b from the corresponding compounds 7b or 7c.

Finally, the pyrrolidines **5a**, **5d** and piperidines **6a–b** were subjected to sulfoxide elimination conditions (toluene, reflux), leading to the corresponding unsaturated derivatives **9a**, **9b** and **10a–b** in 65–76% yields as shown in Table 1 (entries 1, 4, 5 and 6).

Conclusions

Cyclization based on α -sulfinyl carbanions is shown to be a useful, general strategy for the preparation of substituted pyrrolidines and piperidines, and their unsaturated analogs, starting from simple amides.

Experimental Section

General. ¹H NMR and ¹³C NMR were recorded on a Bruker DPX-300 or a Bruker DPX-500 spectrometer. IR spectra were recorded either with a Jasco A-302 or a Perkin Elmer 683 Infrared

spectrometer. Mass spectra were performed on a Thermo Finnigan Polaris Q mass spectrometer. High resolution MS were obtained from either HR–TOF–MS Micromass model VQ-TOF2 or Finnigan MAT 95 mass spectrometer. Microanalyses were performed with a Perkin–Elmer Elemental Analyzer 2400 CHN. Melting points were determined on a Buchi 501 Melting Point Apparatus and were uncorrected. Tetrahydrofuran (THF) was freshly distilled from sodium–benzophenone ketyl. The molarity of *n*-BuLi (in hexane) was determined by titration with diphenylacetic acid in THF at 0 °C. The reactions dealing with anions were carried out under an argon atmosphere. Preparative plates were performed using Merck silica gel 60 PF₂₅₄. Column chromatography was performed on Merck silica gel 60 PF₂₅₄.

Sulfide 2. General procedure

To a suspension of NaH (1.1 equiv.) in DMF (~0.37 M) at 0 °C, was added a solution of amide (1 equiv.) in DMF (~1 M) under an argon atmosphere. The reaction mixture was stirred for 1 h until the generation of hydrogen ceased. To this mixture, was added a solution of 1-bromo-3-phenylsulfanylpropane (1.1 equiv.) in DMF (~2.75 M). After the reaction mixture was stirred at 0 °C to room temperature overnight (15 h), it was quenched with water and extracted with EtOAc (3 x 100 mL). The combined organic layers were washed with H₂O, brine, dried (anhydrous Na₂SO₄), and filtered. Removal of solvent gave a residue, which was further purified by column chromatography (silica gel) to furnish the analytically pure product.

N-Phenyl-*N*-(3-phenylsulfanylpropyl)benzamide (2a). Prepared from *N*-phenylbenzamide (1.97 g, 10 mmol) and 1-bromo-3-phenylsulfanylpropane (2.7052 g, 11 mmol). Column chromatography (10% EtOAc–hexanes) gave 2a (2.9079 g, 84%; colorless liquid). ¹H NMR (300 MHz, CDCl₃): δ 7.36–7.14 (m, 13H, Ar*H*), 7.02 (app. d, *J* = 7.6 Hz, 2H, Ar*H*), 4.12 (t, *J* = 7.4 Hz, 2H, NC*H*₂), 3.02 (t, *J* = 7.4 Hz, 2H, C*H*₂S), 2.04 (quintet, *J* = 7.4 Hz, 2H, NCH₂C*H*₂). ¹³C NMR (75 MHz, CDCl₃): δ 171.14 (C=O), 143.91 (C), 136.74 (C), 136.68 (C), 130.3 (2 x CH), 130.2 (CH), 129.8 (2 x CH), 129.5 (2 x CH), 129.3 (2 x CH), 128.3 (4 x CH), 127.3 (CH), 126.8 (CH), 49.9 (CH₂), 32.2 (CH₂), 28.0 (CH₂). IR (neat) v_{max}/cm⁻¹: 1642, 1595, 1579, 1493, 739, 699. MS: *m/z* (% relative intensity): 347 (M⁺, 6), 238 (100), 210 (8), 106 (15), 105 (73), 77 (34). HRMS (ESI–TOF): *m/z* [M⁺] Calcd for C₂₂H₂₁NOS: 347.1344. Found: 347.1335.

N-Phenyl-*N*-(3-phenylsulfanylpropyl)acetamide (2b). Prepared employing *N*-phenylacetamide (4.0551 g, 30 mmol and 1-bromo-3-phenylsulfanylpropane (7.6283 g, 33 mmol). Column chromatography (10% EtOAc–hexanes) gave 2b (7.5079 g, 88%; pale yellow liquid). ¹H NMR (300 MHz, CDCl₃): δ 7.46–7.01(m, 10H, Ar*H*), 3.82 (t, *J* = 7.3 Hz, 2H, NC*H*₂), 2.90 (t, *J* = 7.4 Hz, 2H, C*H*₂S), 1.90–1.71 (m, 2H, NCH₂C*H*₂), 1.81 (s, 3H, C*H*₃). ¹³C NMR (75 MHz, CDCl₃): δ 170.9 (C=O), 142.4 (C), 135.9 (C), 129.8 (2 x CH), 129.8 (2 x CH), 128.8 (2 x CH), 128.1 (CH), 127.8 (2 x CH), 126.1 (CH), 48.3 (CH₂), 31.4 (CH₂), 27.3 (CH₂), 22.5 (CH₃). IR (neat) v_{max}/cm⁻¹: 1656, 1595, 1496, 1397, 741, 701. MS: *m/z* (% relative intensity): 286 (M+H⁺, 7), 285 (M⁺, 2), 176 (100), 134 (33), 106 (46), 79 (6), 77 (10). Anal. Calcd for C₁₇H₁₉NOS: C, 71.54; H, 6.71; N, 4.91. Found: C, 71.34; H, 6.66; N, 4.66.

N-Phenyl-*N*-(3-phenylsulfanylpropyl)butyramide (2c). Prepared from *N*-phenylbutyramide (3.5401 g, 20 mmol) and 1-bromo-3-phenylsulfanylpropane (5.082 g, 22 mmol). Column chromatography (10% EtOAc–hexanes) gave 2c (4.9587g, 80%; pale yellow liquid). ¹H NMR (300 MHz, CDCl₃): δ 7.50–7.05 (m, 10H, Ar*H*), 3.83 (t, *J* = 7.3 Hz, 2H, NC*H*₂), 2.93 (t, *J* = 7.3 Hz, 2H, C*H*₂S), 2.11–1.91 (m, 2H, CH₂CH₂CH₂), 1.91–1.75 (m, 2H, C*H*₂CO), 1.70–1.50 (m, 2H, CH₃C*H*₂), 0.83 (m, 3H, C*H*₃). ¹³C NMR (75 MHz, CDCl₃): δ 172.9 (C=O), 142.5 (C), 136.1 (C), 129.7 (3 x CH), 129.5 (CH), 128.8 (2 x CH), 128.2 (2 x CH), 127.8 (CH), 126.1 (CH), 48.2 (CH₂), 36.2 (CH₂), 31.4 (CH₂), 27.5 (CH₂), 18.8 (CH₂), 13.8 (CH₃). IR (neat) v_{max}/cm⁻¹: 1655, 1595, 1495, 740, 701. MS: *m/z* (% relative intensity): 314 (M⁺+1, 19), 313 (M⁺, 3), 205 (16), 204 (100), 134 (28), 106 (48), 77 (10). HRMS (ESI–TOF): *m/z* [M+Na⁺]. Calcd for C₁₉H₂₃NOSNa: 336.1398. Found: 336.1395.

N-Benzyl-*N*-(3-phenylsulfanylpropyl)benzamide (2d). Prepared from *N*-benzylbenzamide (4.55 g, 20 mmol) and 1-bromo-3-phenylsulfanylpropane (5.082 g, 22 mmol. Column chromatography (40% EtOAc–hexanes) gave 2d (4.1154 g, 57%; colorless liquid) as a mixture of two rotamers. ¹H NMR (300 MHz, CDCl₃): δ 7.52–7.00 (m, 15H, Ar*H*), 4.75 and 4.49 (each br. peak, 2H, NC*H*₂Ph), 3.55 and 3.26 (each br. peak, 2H, NC*H*₂CH₂), 2.94 and 2.63 (each br. peak, 2H, CH₂C*H*₂S), 2.13 and 1.78 (each br. peak, 2H, CH₂C*H*₂CH₂). ¹³C NMR (75 MHz, CDCl₃): 172.8 (C=O), 137.02 (3 x C), 130.2 (2 x CH), 129.6 (2 x CH), 129.4 (CH), 129.2 (2 x CH), 128.8 (CH), 128.3 (2 x CH), 127.6 (CH), 127.2 (2 x CH), 126.8 (CH). All CH₂ peaks split into two peaks due to rotamers: 53.6 (CH₂), 48.2 (CH₂), 47.8 (CH₂), 44.5 (CH₂), 32.0 (CH₂), 31.5 (CH₂), 28.2 (CH₂), 27.3 (CH₂). IR (neat) v_{max}/cm⁻¹: 1634, 1578, 1496, 738, 700. MS: *m/z* (% relative intensity): 361 (M⁺, 3), 256 (74), 252 (98), 224 (9), 151 (8), 105 (100), 77 (35). HRMS (ESI–TOF): *m/z* [M+H⁺] Calcd for C₂₃H₂₄NOS: 362.1579. Found: 362.1574.

N-Phenyl-*N*-(4-phenylsulfanylbutyl)benzamide (2e). Prepared from *N*-phenylbenzamide (5.872 g, 30 mmol) and 1-bromo-4-phenylsulfanylbutane (8.085 g, 33 mmol). Column chromatography (40% EtOAc–hexanes) gave 2e (8.6640 g, 82%; colorless liquid). ¹H NMR (300 MHz, CDCl₃): δ 7.33–7.08 (m, 13H, Ar*H*), 7.01–6.93 (m, 2H, Ar*H*), 3.92 (t, *J* = 7.0 Hz, 2H, NC*H*₂CH₂), 2.92 (t, *J* = 6.8 Hz, 2H, CH₂C*H*₂S), 1.83–1.64 (m, 4H, C*H*₂C*H*₂). ¹³C NMR (75 MHz, CDCl₃): δ 171.1 (C=O), 143.9 (C), 137.1 (C), 136.8 (C), 130.1 (CH), 129.9 (2 x CH), 129.8 (2 x CH), 129.5 (2 x CH), 129.3 (2 x CH), 128.4 (2 x CH), 128.3 (2 x CH), 127.3 (CH), 126.5 (CH), 50.3 (CH₂), 33.9 (CH₂), 27.5 (CH₂), 27.2 (CH₂). IR (neat) v_{max}/cm⁻¹: 1643, 1595, 1493, 739, 699. MS: *m/z* (% relative intensity): 361 (M⁺, 2), 197 (14), 146 (8), 105 (100), 77 (33). HRMS (ESI–TOF): *m/z* [M+Na⁺] Calcd for C₂₃H₂₃NOSNa: 384.1399; Found: 384.1398.

N-Phenyl-*N*-(4-phenylsulfanylbutyl)acetamide (2f). Prepared employing *N*-phenylacetamide (4.0551 g, 30 mmol) and 1-bromo-4-phenylsulfanylbutane (8.0850 g, 33 mmol). Column chromatography (40% EtOAc–hexanes) gave 2f (7.5264 g, 85%; colorless liquid). ¹H NMR (300 MHz, CDCl₃): δ 7.45–7.21 (m, 7H, Ar*H*), 7.20–7.07 (m, 3H, Ar*H*), 3.70 (br. t, *J* = 6.7 Hz, 2H, NC*H*₂CH₂), 2.91 (br. t, *J* = 6.7 Hz, 2H, CH₂C*H*₂S), 1.80 (s, 3H, C*H*₃), 1.70–1.55 (m, 4H, C*H*₂C*H*₂). ¹³C NMR (75 MHz, CDCl₃): δ 170.3 (C=O), 142.8 (C), 136.4 (C), 129.7 (2 x CH), 129.1 (2 x CH), 128.8 (2 x CH), 128.01 (2 x CH), 127.8 (CH), 125.8 (CH), 48.2 (CH₂), 33.2

(CH₂), 26.8 (CH₂), 26.3 (CH₂), 22.7 (CH₃). IR (neat) v_{max}/cm^{-1} : 1658, 1595, 1496, 1481, 1439, 1301, 740, 701. MS: *m/z* (% relative intensity): 299 (M⁺, 2), 191 (13), 190 (92), 148 (21), 135 (9), 123 (7), 106 (100), 93 (16), 79 (6), 77 (10). Anal. Calcd for C₁₈H₂₁NOS: C, 72.20; H, 7.07; N,4.68. Found: C, 72.28; H, 7.02; N, 4.46.

Sulfoxide 3. General procedure

To a suspension of NaIO₄ (1.1 equiv) in 2:1 of MeOH : H_2O (~0.5 M) at 0 °C, was slowly added a solution of **2** (1 equiv) in MeOH (~0.67 M). The resulting mixture was stirred vigorously and slowly warmed up from 0 °C to room temperature overnight. The precipitates of NaIO₃ were filtered and washed with EtOAc (3 x 50 mL). The combined organic mixtures were washed with H_2O , brine and dried (anhydrous Na₂SO₄). Filtration followed by evaporation gave a crude product, which was purified by column chromatography (silica gel) to provide an analytically pure product.

N-Phenyl-*N*-(3-phenylsulfinylpropyl)benzamide (3a). Compound 2a (2.4186 g, 6.96 mmol) was employed. Column chromatography (50% EtOAc–hexanes to 100% EtOAc) provided 3a (2.3374 g, 90%, pale yellow viscous oil). ¹H NMR (400 MHz, CDCl₃): δ 7.60–7.53 (m, 2H, Ar*H*), 7.49–7.41 (m, 3H, Ar*H*), 7.25–7.05 (m, 8H, Ar*H*), 6.96–6.90 (m, 2H, Ar*H*), 4.03 (t, *J* = 7.0 Hz, 2H, NC*H*₂CH₂), 3.00–2.74 (m, 2H, C*H*₂), 2.18–1.85 (m, 2H, C*H*₂SO). ¹³C NMR (75 MHz, CDCl₃): δ 171.3 (C=O), 144.2 (C), 143.5 (C), 136.4 (C), 131.6 (CH), 130.3 (CH), 129.9 (2 x CH), 129.9(2 x CH), 129.2 (2 x CH), 128.4 (4 x CH), 127.6 (CH), 124.6 (2 x CH), 55.3 (CH₂), 49.5 (CH₂), 21.5 (CH₂). IR (neat) v_{max}/cm⁻¹: 1639, 1594, 1578, 1494, 1087, 1044, 749, 730. MS: *m/z* (% relative intensity): 363 (M⁺, 1), 238 (40), 198 (25), 132 (23), 105 (100), 77 (40). HRMS (ESI–TOF): *m/z* [M+Na⁺] Calcd for C₂₂H₂₁NO₂SNa: 386.1191. Found: 386.1191.

N-Phenyl-*N*-(3-phenylsulfinylpropyl)acetamide (3b). Compound 2b (5.7082 g, 20 mmol) was employed. Column chromatography (100% EtOAc to 5% MeOH in EtOAc) provided 3b (1.2431 g, 92%; viscous liquid). ¹H NMR (300 MHz, CDCl₃): δ 7.65–7.47 (m, 5H, Ar*H*), 7.47–7.32 (m, 3H, Ar*H*), 7.12 (app. d, *J* = 7.3, 2H, Ar*H*), 3.82 (t, *J* = 6.9 Hz, 2H, NC*H*₂CH₂), 3.02–2.70 (m, 2H, CH₂C*H*₂SO), 2.11–1.72 (m, 2H, CH₂C*H*₂CH₂), 1.83 (s, 3H, C*H*₃). ¹³C NMR (75 MHz, CDCl₃): δ 170.8 (C=O), 143.5 (C), 142.4 (C), 130.9 (CH), 129.9 (2 x CH), 129.2 (2 x CH), 128.2 (CH), 128.0 (2 x CH), 123.9 (2 x CH), 54.4 (CH₂), 47.6 (CH₂), 22.7 (CH₃), 20.6 (CH₂). IR (neat) v_{max} /cm⁻¹: 1655, 1595, 1496, 1044, 750, 701. MS: *m/z* (% relative intensity): 302 (M+H⁺, 1), 176 (98), 134 (26), 132 (37), 106 (100), 77 (15). HRMS (ESI–TOF): *m/z* [M+Na⁺] Calcd for C₁₇H₁₉NO₂SNa: 324.1034. Found: 324.1035.

N-Phenyl-*N*-(3-phenylsulfinylpropyl)butyramide (3c). Compound 2c (1.5650 g, 5 mmol) was employed. Column chromatography (80% EtOAc–hexanes to 5% MeOH in EtOAc) provided 3c (1.4775 g, 90%; pale yellow viscous liquid). ¹H NMR (300 MHz, CDCl₃): 7.69–7.30 (m, 8H, Ar*H*), 7.10 (d, J = 6.93 Hz, 2H, Ar*H*), 3.91–3.71 (m, 2H, NC*H*₂), 3.04–2.88 (m, 1H, C*H*HSO), 2.85–2.72 (m, 1H, CH*H*SO), 2.15–1.91 (m, 3H, C*H*HCH₂C=O and C*H*₂C=O), 1.90–1.72 (m, 1H, CH*H*CH₂C=O) 1.56 (sextet, J = 7.4 Hz, 2H, CH₃C*H*₂), 0.80 (t, J = 7.4 Hz, 3H, C*H*₃CH₂). ¹³C NMR (75 MHz, CDCl₃): δ 173.98 (C=O), 144.2 (C), 142.8 (C), 131.6 (CH), 130.5 (2 x CH),

129.9 (2 x CH), 128.9 (2 x CH), 128.8 (CH), 124.7 (2 x CH), 55.3 (CH₂), 48.4 (CH₂), 36.8 (CH₂), 21.4 (CH₂), 19.5 (CH₂), 14.4 (CH₃). IR (neat) v_{max}/cm^{-1} : 1650, 1594, 1495, 1043, 750, 702. MS: *m/z* (% relative intensity: 329 (M⁺, 1), 242 (16), 204 (100), 132 (34), 106 (95), 77 (15). HRMS (ESI-TOF): *m/z* [M+Na⁺] Calcd for C₁₉H₂₃NO₂SNa: 352.1449. Found: 352.1347.

N-Benzyl-*N*-(3-phenylsulfinylpropyl)benzamide (3d). Compound 2d (3.1602 g, 8.75 mmol) was employed. Column chromatography (100% EtOAc to 5% MeOH in EtOAc) provided 3d (3.0127 g, 91%; colorless viscous liquid). ¹H NMR (300 MHz, CDCl₃): δ 7.70–7.01 (m, 15H, Ar*H*), 4.75 and 4.50 (each br. peak, 2H, NC*H*₂Ph), 3.51 and 3.26 (each br. peak, 2H, NC*H*₂CH₂CH₂), 2.94 and 2.82 (each br. peak, 2H, CH₂CH₂CH₂S), 2.15–1.96 (br. , 2H, CH₂CH₂CH₂). ¹³C NMR (75 MHz, CDCl₃): δ 172.32 (C=O), 143.56 (C), 136.45 (C), 136.12 (C), 131.02 (CH), 129.65 (CH), 129.29 (CH), 129.27 (2 x CH), 129.85 (2 x CH), 128.57 (2 x CH), 127.71 (CH), 126.54 (2 x CH), 123.94 (3 x CH), 54.65 (CH₂), 52.40 (CH₂), 43.17 (CH₂), 20.02 (CH₂), 14.18 (CH₃). IR (neat) v_{max}/cm⁻¹: 1631, 1496, 1047, 749, 700. MS: *m/z* (% relative intensity): 378 (M+H⁺, 15), 272 (42), 252 (79), 146 (43), 105 (100), 91 (84), 77 (44). HRMS (ESI–TOF): *m/z* [M+Na⁺] Calcd for C₂₃H₂₃NO₂SNa: 400.1347. Found: 400.1343.

N-Phenyl-*N*-(4-phenylsulfinylbutyl)benzamide (3e). Compound 2e (6.2503 g, 17.30 mmol) was employed. Column chromatography (100% EtOAc to 5% MeOH in EtOAc) provided 3e (5.8645 g, 90%; pale yellow viscous liquid). ¹H NMR (300 MHz, CDCl₃): δ 7.65–7.43 (m, 5H, Ar*H*), 7.26–7.06 (m, 8H, Ar*H*), 6.99–6.92 (m, 2H, Ar*H*), 3.92 (t, *J* = 6.98 Hz, 2H, NC*H*₂CH₂), 2.96–2.75 (m, 2H, CH₂C*H*₂S), 1.90–1.55 (m, 4H, 2 x C*H*₂). ¹³C NMR (75 MHz, CDCl₃): δ 170.3 (C=O), 143.5 (C), 142.9 (C), 135.8 (C) 130.9 (CH), 129.5 (CH), 129.1 (4 x CH), 128.5 (2 x CH), 127.6 (4 x CH), 126.7 (CH), 123.9 (2 x CH), 56.3 (CH₂), 49.3 (CH₂), 26.4 (CH₂), 19.2 (CH₂). IR (neat) v_{max}/cm⁻¹: 1643, 1595, 1494, 1044, 752, 699. MS: *m/z* (% relative intensity): 359 (M⁺-H₂O, 36), 252 (13), 146 (42), 105 (100), 77 (45). HRMS (ESI–TOF): *m/z* [M+H⁺] Calcd for C₂₃H₂₄NO₂S: 378.1528. Found: 378.1526.

N-Phenyl-*N*-(4-phenylsulfinylbutyl)acetamide (3f). Compound 2f (0.8405 g, 2.80 mmol) was employed. Column chromatography (100% EtOAc to 5% MeOH in EtOAc) provided 3f (3.0127 g, 90%; colorless viscous liquid). ¹H NMR (300 MHz, CDCl₃): δ 7.65–7.47 (m, 5H, Ar*H*), 7.46–7.32 (m, 3H, Ar*H*), 7.15–7.08 (m, 2H, Ar*H*), 3.70 (t, *J* = 7.0 Hz, 2H, NC*H*₂CH₂), 2.94–2.72 (m, 2H, CH₂C*H*₂S), 1.82 (s, 3H, C*H*₃), 1.85–1.53 (m, 4H, 2 x C*H*₂). ¹³C NMR (75 MHz, CDCl₃): δ 170.3 (C=O), 143.5 (C), 142.6 (C), 130.8 (CH), 129.7 (2 x CH), 129.1 (2 x CH), 127.9 (CH), 127.8 (2 x CH), 123.9 (2 x CH), 56.3 (CH₂), 47.9 (CH₂), 26.5 (CH₂), 22.6 (CH₃), 19.03 (CH₂). IR (neat) v_{max}/cm⁻¹: 1652, 1595, 1496, 1036, 752, 701. MS: *m/z* (% relative intensity): 298 (M+H⁺-H₂O, 62), 256 (38), 146 (94), 106 (100), 77 (21). HRMS (ESI–TOF): *m/z* [M+H⁺] Calcd for C₁₈H₂₂NO₂S: 316.1371. Found: 316.1372.

Pyrrolidine sulfoxides 5 and piperidine sulfoxides 6. General procedure

To a cooled (-78 °C) solution of hexamethyldisilazane (2.4 equiv.) in THF (~0.3 M) under an argon atmosphere, was added *n*-BuLi (2.2 equiv.). After stirring at -78 °C for 30 min, a solution of compound **3** (1 equiv.) in THF (~0.5 *M*) was added dropwise. The resulting mixture was slowly warmed up from -78 °C to room temperature overnight (15 h). The resulting red solution

was quenched with H_2O (10 mL) and extracted with EtOAc (3 x 50 mL). The combined organic extracts were washed with H_2O , brine, dried (anhydrous Na_2SO_4) and filtered. The filtrate was evaporated to yield a viscous oil of a crude product which was directly subjected to reduction by using $NaBH_4$.

To a solution of the crude product in MeOH (~0.25 *M*) at 3–5 °C under an argon atmosphere, NaBH₄ (5.73 equiv) was gradually added over 15 min. The mixture was stirred for 2 h at the same temperature before it was diluted with 1 N NaOH (20 mL) and H₂O (100 mL). The resulting mixture was extracted with EtOAc (3 x 100 mL). The combined organic extracts were washed with brine and dried (anhydrous Na₂SO₄). Filtration followed by evaporation afforded a crude product as a mixture of diastereomers which was further purified by column chromatography (silica gel).

1,2-Diphenyl-3-(phenylsulfinyl)pyrrolidine (5a). Compound **3a** (1.2841 g, 3.54 mmol) was employed to produce the title compound. Column chromatography (40% EtOAc–hexanes) gave three fractions (F_1 , F_2 and F_3) of **5a**.

F₁ (Isomer A, less polar): (0.2083 g, 17%; a white solid of a single isomer of **5a**; mp 136–137 °C after crystallization from EtOAc–hexanes). ¹H NMR (500 MHz, CDCl₃): 7.72–7.58 (m, 5H, Ar*H*), 7.35 (m, 3H, Ar*H*), 7.18–7.05 (m, 4H, Ar*H*), 6.75 (t, J = 8.0 Hz, 1H, Ar*H*), 6.47 (d, J = 8.0 Hz, 2H, Ar*H*), 5.32 (s, 1H, NC*H*Ph), 3.30–3.10 (m, 2H, CH₂C*H*₂N), 2.79 (ddd, J = 8.8, 3.6, 1.2 Hz, 1H, CH₂C*H*SO), 2.47–2.35 (m, 1H, C*H*HCH₂N), 2.19–2.08 (m, 1H, CH*H*CH₂N). ¹³C NMR (125 MHz, CDCl₃): δ 141. (C), 141.3 (2 x C), 132.1 (CH), 130.2 (2 x CH), 129.9 (2 x CH), 129.3 (CH), 129.1 (CH), 125.9 (2 x CH), 125.3 (2 x CH), 119.3 (CH), 114.4 (2 x CH), 71.03 (CH), 66.4 (CH), 42.8 (CH₂), 23.4 (CH₂). IR (CHCl₃) v_{max}/cm⁻¹: 1603, 1506, 1477, 750, 702. MS: *m/z* (% relative intensity): 348 (M+H⁺, 22), 330 (56), 220 (33), 132 (52), 106 (100), 77 (48). HRMS (ESI–TOF): *m/z* [M⁺] Calcd for C₂₂H₂₁NOS: 347.1344; Found: 347.1347.

F₂ (mixture of isomers B and C, more polar): (0.3091 g, 28%; pale yellow syrup of a 3:2 mixture of isomer B : isomer C of **5a**). ¹H NMR (300 MHz, CDCl₃, mixture of two diastereomers): 7.71–7.64 (m, 2H, Ar*H*), 7.55–7.40 (m, 8H, Ar*H*), 7.36–7.23 (m, 10H, Ar*H*), 6.97–6.91 (m, 4H, Ar*H*), 6.56–6.51 (m, 2H, Ar*H*), 6.07–6.02 (m, 4H, Ar*H*), 5.32 (d, J = 2.1 Hz, 1H, NC*H*Ph of isomer B), 4.79 (d, J = 9.3 Hz, 1H, NC*H*Ph of isomer C), 3.31–3.20 (m, 1H, C*H*SOPh of isomer C), 2.89–2.82 (m, 1H, C*H*SOPh of isomer B), 2.52–2.35 (m, 2H, C*H*₂N of isomer B), 2.32–2.18 (m, 2H, C*H*₂CH₂N of isomer B), 2.07–1.84 (m, 2H, C*H*₂N of isomer C), 1.58–1.51 (m, 1H, C*H*HCH₂N of isomer C), 1.35–1.19 (m, 1H, CH*H*CH₂N of isomer C). ¹³C NMR (75 MHz, CDCl₃, mixture of two diastereomers): δ 147.4 (C), 147.2 (C), 141.3 (C), 141.2 (C), 141. (C), 140.2 (C), 131.9 (CH), 131.2 (CH), 129.3 (2 x CH), 129.3 (2 x CH), 129.1 (2 x CH), 129.0 (2 x CH), 128.8 (2 x CH), 128.7 (2 x CH), 112.5 (2 x CH), 75.9 (CH), 73.5 (CH), 68.02 (CH), 67.1 (CH), 42.2 (CH₂), 41.3 (CH₂), 24.03 (CH₂), 20.1 (CH₂). IR (CHCl₃) v_{max}/cm^{-1} : 1603, 1507, 1477, 1452, 1028. MS: *m/z* (% relative intensity): 348 (M⁺+1, 8), 330 (34), 220 (38), 147 (92), 132 (72), 117 (32), 106 (100), 93 (32), 77 (65).

F₃ (Isomer D, most polar): (0.2821 g, 21%; a white solid of a single isomer of **5**a; mp 132–133 °C after crystallization from EtOAc–hexanes). ¹H NMR (500 MHz, CDCl₃): 7.64–7.52 (m, 5H, Ar*H*), 7.47–7.30 (m, 5H, Ar*H*), 7.06 (t, J = 7.6 Hz, 2H, Ar*H*), 6.72 (d, J = 7.60 Hz, 1H, Ar*H*), 6.15 (d, J = 8.0 Hz, 2H, Ar*H*), 5.06 (d, J = 8.4 Hz, 1H, NC*H*Ph), 3.12–3.02 (m, 1H, CH₂C*H*SO), 2.52 (t, J = 6.8 Hz, 2H, CH₂C*H*₂N), 1.97–1.85 (m, 1H, C*H*HCH₂N), 1.65–1.55 (m, 1H, CH*H*CH₂N). ¹³C NMR (125 MHz, CDCl₃): δ 147.1 (C), 141.6 (C), 141.5 (C), 131.7 (CH), 129.9 (2 x CH), 129.8 (2 x CH), 129.5 (2 x CH), 129.3 (CH), 127.6 (2 x CH), 125.4 (2 x CH), 119.1 (CH), 114.1 (2 x CH), 74.9 (CH), 68.3 (CH), 42.9 (CH₂), 23.0 (CH₂). IR (CHCl₃) v_{max}/cm⁻¹: 1603, 1506, 1487, 1036. MS: *m/z* (% relative intensity): 348 (M+H⁺, 4), 147 (100), 132 (92), 106 (90), 93 (42), 77 (66).

2-Methyl-1-phenyl-3-(phenylsulfinyl)pyrrolidine (5b). Compound **3b** (1.6032 g, 5.32 mmol) was employed to produce the title compound. ¹H NMR of the crude product exhibited a 9:1 ratio of two diasteroisomers. Column chromatography (20% to 50% EtOAc–hexanes) gave a major isomer of **5b** (0.7556 g, 50%; a white solid; mp 151–153 °C after crystallization from EtOAc–hexanes). ¹H NMR (300 MHz, CDCl₃): 7.71–7.63 (m, 2H, Ar*H*), 7.57–7.45 (m, 3H, Ar*H*), 7.26–7.15 (m, 2H, Ar*H*), 6.68 (t, J = 7.3 Hz, 1H, Ar*H*), 6.53 (d, J = 8.1 Hz, 2H, Ar*H*), 4.12 (quint., J = 6.6 Hz, 1H, NC*H*CH₃), 3.49 (dt, J = 9.1, 1.8 Hz, 1H, CH₂C*H*HN), 3.36–3.24 (m, 1H, CH₂C*H*SO), 3.22 (q, J = 8.9 Hz, 1H, CH₂C*HHN*), 2.80–2.61 (m, 1H, C*H*HCH₂N, 2.09–1.91 (m, 1H, CH*H*CH₂N), 1.39 (d, J = 6.4 Hz, 3H, CH₃). ¹³C NMR (75 MHz, CDCl₃): δ 145.56 (C), 143.20 (C), 131.10 (2 x CH), 129.23 (3 x CH), 124.22 (2 x CH), 116.34 (2 x CH), 111.83 (CH), 66.36 (CH), 54.54 (CH), 45.37 (CH₂), 19.79 (CH₂), 14.78 (CH₃). IR (Nujol) v_{max}/cm^{-1} : 1598, 1502, 1489, 1032, 749. MS: m/z (% relative intensity): 386 (M⁺+1, 6), 268 (100), 160 (46), 158 (89), 118 (25), 77 (28). Anal Calcd for C₁₇H₁₉NOS; C, 71.54; H, 6.71; N, 4.91 Found: C, 71.45; H, 6.63; N, 4.87.

1-Phenyl-3-phenylsulfinyl-2-propylpyrrolidine (5c). Compound **3c** (1.2801 g, 3.80 mmol) was employed to produce the title compound. Column chromatography (30% EtOAc–hexanes) gave three fractions (F_1 , F_2 and F_3) of **5c**.

F₁ (less polar): (0.5292 g, 44%; a white solid of a pure isomer of **5**c; mp 107–109 °C after crystallization from EtOAc–hexanes). ¹H NMR (300 MHz, CDCl₃): 7.72–7.61 (m, 2H, Ar*H*), 7.59–7.50 (m, 3H, Ar*H*), 7.24 (t, *J* = 7.8 Hz, 2H, Ar*H*), 6.72 (t, *J* = 7.2 Hz, 1H, Ar*H*), 6.56 (d, *J* = 8.1 Hz, 2H, Ar*H*), 4.10 (dt, *J* = 11.4, 6.7 Hz, 1H, NC*H*CH₂CH₂CH₃), 3.56 (td, *J* = 9.0, 1.7 Hz, 1H, CH₂CH*H*N), 3.26 (t, *J* = 7.1 Hz, 1H, CH₂C*H*HN), 3.20–3.15 (m, 1H, CH₂C*H*SO), 2.73–2.61 (m, 1H, C*H*HCH₂N), 2.10–1.90 (m, 1H, C*H*HCH₂CH₃), 2.00–1.82 (m, 1H, CH*H*CH₂N), 1.80–1.52 (m, 3H, CH*H*CH₂CH₃), 1.01 (t, *J* = 7.0 Hz, 3H, CH₃). ¹³C NMR (75 MHz, CDCl₃): δ 146.6 (C), 143.5 (C), 130.9 (CH), 129.2 (2 x CH), 129.1 (2 x CH), 124.2 (2 x CH), 116.3 (CH), 111.9 (2 x CH), 66.3 (CH), 59.01 (CH), 46.3 (CH₂), 32.9 (CH₂), 20.3 (CH₂), 20.04 (CH₂), 14.5 (CH₃). IR (Nujol) v_{max} /cm⁻¹: 1594, 1505*s*, 1043, 1033, 745, 690. MS: *m*/*z* (% relative intensity): 313 (M⁺, 27), 296 (69), 188 (59), 145 (46), 144 (32). Anal Calcd for C₁₉H₂₃NOS; C, 72.80; H, 7.40; N, 4.47 Found: C, 73.15; H, 7.18; N, 4.31.

 F_2 (more polar): (0.0819 g, 7%; pale yellow syrup of a pure isomer of 5c). ¹H NMR (300 MHz, CDCl₃): 7.81–7.69 (m, 2H, ArH), 7.60–7.50 (m, 3H, ArH), 7.28–7.16 (m, 2H, ArH), 6.70 (t, J = 7.3 Hz, 1H, ArH), 6.58 (d, J = 8.0 Hz, 2H, ArH), 4.44 (q, J = 6.1 Hz, 1H, NCHCH₂CH₂CH₃), 3.52–3.36 (m, 2H, CH₂CHHN and CH₂CHSO), 3.18 (q, J = 8.9 Hz, 1H, CH₂CHHN), 2.17–2.02 (m, 2H, CH₂CH₂N), 1.90–1.30 (m, 4H, NCHCH₂CH₂CH₃) 0.98 (t, J = 7.2 Hz, 3H, CH₃). ¹³C NMR (75 MHz, CDCl₃): δ 146.7 (C), 142.9 (C), 131.8 (CH), 129.4 (2 x CH), 129.2 (2 x CH), 124.9 (2 x CH), 116.2 (CH), 111.8 (2 x CH), 68.9 (CH), 58.3 (CH), 46.7 (CH₂), 32.1 (CH₂), 24.7 (CH₂), 20.1 (CH₂), 14.6 (CH₃). IR (neat) v_{max}/cm^{-1} : 1599, 1505, 1043, 1033, 748, 692. MS: m/z(% relative intensity): 313 (M⁺, 21), 296 (42), 188 (100), 158 (30), 145 (76), 104 (28), 77 (21). F₃ (most polar): (0.0706 g, 6%; yellow syrup of a pure isomer of 5c). ¹H NMR (300 MHz, CDCl₃): 7.71–7.64 (m, 2H, ArH), 7.57–7.45 (m, 3H, ArH), 7.25–7.15 (m, 2H, ArH), 6.80–6.65 (m, 1H, ArH), 6.55–6.40 (m, 2H, ArH), 3.67 (app. d, J = 8.4 Hz, 1H, NCHCH₂CH₂CH₃), 3.48 (td, J = 9.2, 1.9 Hz, 1H, CH₂CHHN), 3.32 (t, J = 9.2 Hz, 1H, CH₂CHHN), 3.30–3.25 (m, 1H, CH₂CHSO), 2.82–2.68 (m, 1H, CHHCH₂N), 2.48–2.31 (m, 1H, CHHCH₂N), 1.69–1.52 (m, 1H, NCHCHHCH₂), 1.41–1.19 (m, 1H, NCHCHHCH₂), 1.06–0.79 (m, 2H, CH₂CH₂CH₃), 0.71 (t, J = 7.1 Hz, 3H, CH_3). ¹³C NMR (75 MHz, CDCl₃): δ 146.04 (C), 142.6 (C), 131.8 (2 x CH), 129.3(2 x CH), 129.3 (2 x CH), 125.4 (2 x CH), 116.3 (CH), 112.0 (CH), 70.3 (CH), 58.1 (CH), 46.3 (CH₂), 34.4 (CH₂), 23.5 (CH₂), 18.7 (CH₂), 13.6 (CH₃). IR (neat) v_{max}/cm⁻¹: 1594, 1505, 1043, 1033, 745, 690. MS: m/z (% relative intensity): 313 (M⁺, 2), 187 (82), 159 (100), 144 (48), 104 (20), 77 (19).

1-Benzyl-2-phenyl-3-(phenylsulfinyl)pyrrolidine (5d). Compound **3d** (2.6514 g, 7.03 mmol) was employed to produce the title compound. Column chromatography (50% EtOAc–hexanes) gave two fractions (F_1 and F_2) of **5d**.

F₁ (less polar): (1.2828 g, 50%; colorless needles of a pure isomer of **5d**; mp 146–148 °C after crystallization from EtOAc–hexanes). ¹H NMR (300 MHz, CDCl₃): 7.61 (app. d, J = 7.3 Hz, 2H, Ar*H*), 7.49–7.20 (m, 13H, Ar*H*), 3.96 (d, J = 13.4 Hz, 1H, NC*H*HPh), 3.86 (d, J = 8.1 Hz, 1H, NC*H*Ph), 3.39–3.30 (m, 1H, C*H*SO), 3.22 (t, J = 8.4 Hz, 1H, CH₂C*H*HN), 3.06 (d, J = 13.4 Hz, 1H, NC*H*Ph), 2.70–2.53 (m, 1H, C*H*HCH₂N), 2.20 (q, J = 8.6 Hz, 1H, CH₂CH*H*N), 1.70–1.55 (m, 1H, CH*H*CH₂N). ¹³C NMR (75 MHz, CDCl₃): δ 143.9 (C), 138.2 (C), 137.3 (C), 130.2 (CH), 129.1 (CH), 128.8 (2 x CH), 128.6 (2 x CH), 128.6 (2 x CH), 128.2 (CH), 128.1 (2 x CH), 126.9 (CH), 124.2 (3 x CH), 71.4 (CH), 68.9 (CH), 57.3 (CH₂), 51.7 (CH₂), 19.02 (CH₂). IR (nujol) v_{max}/cm^{-1} : 1495, 1455, 1040, 746, 710. MS: *m/z* (% relative intensity): 362 (M+H⁺, 16), 344 (76), 326 (15), 236 (44), 91 (100). Anal. Calcd for C₂₃H₂₃NOS: C, 76.42; H, 6.59; N, 3.52.

F₂ (more polar): (0.2015 g, 8%; yellow viscous oil of a pure isomer of **5d**). ¹H NMR (300 MHz, CDCl₃): 7.60 (d, J = 7.4 Hz, 2H, Ar*H*), 7.57–7.51 (m, 2H, Ar*H*), 7.43–7.08 (m, 11H, Ar*H*), 3.99 (d, J = 8.5 Hz, 1H, NC*H*Ph), 3.80 (d, J = 13.3 Hz, 1H, NC*H*HPh), 3.44 (q, J = 8.9 Hz, 1H, C*H*SO), 3.25 (d, J = 13.2 Hz, 1H, NCH*H*Ph), 3.04 (t, J = 8.1 Hz, 1H, CH₂C*H*HN), 2.19–2.04 (m, 1H, CH₂CH*H*N), 1.60–1.43 (m, 1H, C*H*HCH₂N), 1.25–1.10 (m, 1H, CH*H*CH₂N). ¹³C NMR (75

MHz, CDCl₃): δ 143.2 (C), 138.3 (C), 137.2 (C), 131.3 (CH), 129.6 (2 x CH), 128.9 (3 x CH), 128.6 (CH), 128.3 (2 x CH), 128.1 (CH), 128.1 (2 x CH), 126.9 (CH), 125.6 (2 x CH), 70.3 (CH), 69.4 (CH), 57.1 (CH₂), 51.3 (CH₂), 26.3 (CH₂). IR (neat) v_{max}/cm⁻¹: 1494, 1453, 1046, 699. MS: *m/z* (% relative intensity): 362 (M+H⁺, 4), 344 (40), 236 (16), 144 (11), 92 (8), 91 (100).

1,2-Diphenyl-3-phenylsulfinylpiperidine (6a). Compound **3e** (2.8425 g, 8.12 mmol) was employed to produce the title compound. Column chromatography (40% EtOAc–hexanes) afforded three fractions (F_1 , F_2 and F_3) of **6a**.

F₁ (less polar): (0.6605 g, 22%; pale yellow syrup of a pure isomer of **6a**). ¹H NMR (300 MHz, CDCl₃): 7.60–7.45 (m, 5H, Ar*H*), 7.27–6.95 (m, 7H, Ar*H*), 6.62 (t, J = 7.3 Hz, 1H, Ar*H*), 6.40 (d, J = 8.0 Hz, 2H, Ar*H*), 5.20 (s, 1H, NC*H*CH), 2.98–2.80 (m, 2H, CH₂C*H*₂N), 2.51–2.40 (m, 1H, CHC*H*SO), 2.17–2.00 (m, 1H, C*H*HCH₂N), 1.87–1.60 (m, 2H, CH*H*CH₂N and C*H*HCHSO), 1.53–1.32 (m, 1H, CH*H*CHSO). ¹³C NMR (75 MHz, CDCl₃): δ 147.4 (C), 141.2(C), 140.8 (C), 131.3 (CH), 129.5 (2 x CH), 129.2 (2 x CH), 128.3 (2 x CH), 127.3 (CH), 125.2 (2 x CH), 124.5 (2 x CH), 117.6 (CH), 112.9 (2 x CH), 70.4 (CH), 68.6 (CH), 43.4 (CH₂), 26.7 (CH₂), 20.02 (CH₂). IR (neat) v_{max}/cm⁻¹: 1600, 1504, 1476, 1454, 1260, 1088, 1019, 799. MS: *m/z* (% relative intensity): 362 (M+H⁺, 6), 344 (43), 254 (26), 132 (46), 106 (100), 91 (32), 77 (37).

F₂ (mixture of two isomers, more polar): (0.6822 g, 23%; pale yellow syrup of a 1:1 mixture of isomers of **6a**. ¹H NMR (300 MHz, CDCl₃, mixture of two diastereomers): 7.64–7.61 (m, 2H, Ar*H*), 7.52–7.33 (m, 8H, Ar*H*), 7.32–7.18 (m, 10H, Ar*H*), 7.09–6.98 (m, 4H, Ar*H*), 6.63–6.58 (m, 2H, Ar*H*), 6.33–6.30 (m, 4H, Ar*H*), 5.27 (d, J = 3.6 Hz, 1H, NC*H*Ph of an isomer), 4.87 (d, J = 9.2 Hz, 1H, NC*H*Ph of an isomer), 3.12–3.00 (m, 1H, C*H*SOPh of an isomer), 2.52 (q, J = 4.7 Hz, 1H C*H*SOPh of an isomer), 2.68–2.50 (m, 4H, CH₂C*H*₂NPh of both isomers), 1.86–1.60 (m, 2H, C*H*₂), 1.44–1.24 (m, 1H of C*H*₂), 1.12–0.75 (m, 6H, C*H*₂ of both isomers). ¹³C NMR (75 MHz, CDCl₃, mixture of two diastereomers): δ 147.3 (C), 147.1 (C), 141.8 (C), 141.3 (C), 141.2 (C), 140.3 (C), 131.8 (CH), 131.1 (CH), 129.3 (2 x CH), 129.2 (2 x CH), 129.1 (2 x CH), 129.1 (2 X CH), 128.5 (2 x CH), 127.9 (2 x CH), 127.3 (2 x CH), 125.8 (2 X CH), 125.6 (2 x CH), 124.3 (2 x CH), 117.7 (CH), 117.6 (CH), 113.2 (2 x CH), 112.9 (2 x CH), 75.8 (CH), 73.1 (CH), 69.9 (CH), 69.4 (CH), 43.5 (CH₂), 43.1 (CH₂), 27.7(CH₂), 26.3 (CH₂), 22.2 (CH₂), 17.8 (CH₂). IR (neat) v_{max}/cm⁻¹: 1603, 1506, 1086, 1027, 997. MS: *m/z* (% relative intensity): 362 (M+H⁺, 2), 254 (17), 236 (13), 130 (24), 126 (22), 106 (100), 77 (33).

F₃ (most polar): (0.7906 g, 27%; pale yellow syrup of a pure isomer of **6a**). ¹H NMR (500 MHz, CDCl₃): 7.67–7.51 (m, 5H, Ar*H*), 7.48–7.30 (m, 5H, Ar*H*), 7.20–7.15 (m, 1H, Ar*H*), 6.78 (t, J = 7.2 Hz, 1H, Ar*H*), 6.52 (d, J = 7.2 Hz, 2H, Ar*H*), 5.04 (d, J = 8.0 Hz, 1H, NC*H*CH), 3.15–2.95 (m, 1H, C*H*SOPh), 2.87–2.72 (m, 2H, C*H*₂NPh), 1.65–1.53 (m, 1H, C*H*HCH₂), 1.48–1.34 (m, 1H, CH*H*CH₂), 1.29–1.80 (m, 2H, CH*H*CH₂). ¹³C NMR (125 MHz, CDCl₃): δ 147.3 (C), 141.8 (C), 141.0 (C), 131.7 (CH), 130.2 (2 x CH), 129.9 (2 x CH), 129.9 (2 x CH), 129.35 (2 X CH), 129.08 (CH), 127.49 (2 x CH), 125.48 (2 X CH), 119.12 (CH), 114.3 (2 x CH), 74.9 (CH), 69.3

(CH), 44.6 (CH₂), 27.5 (CH₂), 21.3 (CH₂). IR (neat) v_{max}/cm^{-1} : 1601, 1505, 1477, 1455. MS: *m/z* (% relative intensity): 362 (M+H⁺, 2), 254 (17), 130 (26), 106 (100), 77 (32). HRMS (ESI-TOF): *m/z* [M⁺] Calcd for C₂₃H₂₃NOS: 361.1500. Found: 361.1511.

2-Methyl-1-phenyl-3-phenylsulfinylpiperidine (6b). Compound **3f** (1.6013 g, 5.08 mmol) was employed to produce the title compound. Column chromatography (20% EtOAc–hexanes) gave three fractions (F_1 , F_2 and F_3) of **6b**.

F₁ (lees polar): (0.3139 g, 21%; a white solid of a pure isomer of **6b**; mp 121–122 °C after crystallization from EtOAc–hexanes). ¹H NMR (300 MHz, CDCl₃): 7.68–7.48 (m, 5H, Ar*H*), 7.24 (t, *J* = 7.9 Hz, 2H, Ar*H*), 6.80 (t, *J* = 7.3 Hz, 1H, Ar*H*), 6.52 (d, *J* = 7.7 Hz, 2H, Ar*H*), 4.40–4.25 (m, 1H, NC*H*CH), 3.37–3.18 (m, 2H, CH₂C*H*₂N), 2.40–2.29 (m, 1H, CHC*H*SO), 2.26–1.94 (m, 3H, C*H*₂CH₂N and C*H*HCHSO), 2.00–1.80 (m, 1H, CH*H*CHSO), 1.14 (d, *J* = 6.6 Hz, 3H, C*H*₃). ¹³C NMR (75 MHz, CDCl₃): δ 146.9 (C), 141.1 (C), 131.2 (2 x CH), 129.4 (3 x CH), 124.6 (2 x CH), 118.5 (CH), 113.6 (2 x CH), 67.5 (CH), 65.6 (CH), 44.3 (CH₂), 27.3 (CH₂), 20.9 (CH₂), 20.7 (CH₃). IR (CHCl₃) v_{max} /cm⁻¹: 1603, 1506, 1478, 1085, 997, 692. MS: *m/z* (% relative intensity): 300 (M+H⁺, 37), 282 (52), 207 (19), 192 (45), 174 (42), 172 (48).

F₂ (more polar): (0.3101 g, 20%; yellow syrup of a pure isomer of **6b**). ¹H NMR (300 MHz, CDCl₃): 7.66–7.54 (m, 2H, Ar*H*), 7.48–7.31 (m, 3H, Ar*H*), 7.09 (t, J = 7.9 Hz, 2H, Ar*H*), 6.65 (t, J = 7.3 Hz, 1H, Ar*H*), 6.47 (d, J = 8.3 Hz, 2H, Ar*H*), 4.19 (quintet, J = 6.4 Hz, 1H, NC*H*CH), 3.01–2.83 (m, 2H, CH₂C*H*₂N), 2.80–2.70 (m, 1H, CHC*H*SO), 1.73–1.30 (m, 4H, C*H*₂C*H*₂CHSO), 1.23 (d, J = 6.3 Hz, 3H, C*H*₃). ¹³C NMR (75 MHz, CDCl₃): δ 147.5 (C), 142.2 (C), 131.6 (CH), 129.2 (2 x CH), 129.2 (2 x CH), 125.4 (2 x CH), 117.6 (CH), 112.9 (2 x CH), 67.9 (CH), 68.2 (CH), 43.4 (CH₂), 26.5 (CH₂), 22.5 (CH₂), 20.8 (CH₃). IR (CHCl₃) v_{max}/cm⁻¹: 1603, 1506, 1444, 1085, 996. MS: *m/z* (% relative intensity): 300 (M+H⁺, 19), 282 (18), 207 (28), 192 (28), 172 (28), 146 (14), 132 (9), 118 (19), 106 (100), 77 (25).

F₃ (most polar): (0.2182 g, 15%; a white solid of a pure isomer of **6b**; mp 109–111 °C after crystallization from EtOAc–hexanes). ¹H NMR (300 MHz, CDCl₃): 7.68–7.45 (m, 5H, Ar*H*), 7.17 (t, *J* = 7.8 Hz, 2H, Ar*H*), 6.72 (t, *J* = 7.3 Hz, 1H, Ar*H*), 6.52 (d, *J* = 8.3 Hz, 2H, Ar*H*), 4.52–4.40 (m, 1H, NC*H*CH), 2.92 (t, *J* = 6.8 Hz, 2H, CH₂C*H*₂N), 2.58–2.54 (m Hz, 1H, CHC*H*SO), 1.97–1.67 (m, 2H, C*H*₂CH₂N), 1.51–1.45 (m, 1H, C*H*HCHSO), 1.42 (d, *J* = 6.5 Hz, 3H, CH₃), 1.21–1.10 (m, 1H, CH*H*CHSO). ¹³C NMR (75 MHz, CDCl₃): δ 147.6 (C), 142.8 (C), 130.9 (CH), 129.2 (4 x CH), 124.2 (2 x CH), 117.6 (CH), 112.9 (2 x CH), 69.7 (CH), 68.03 (CH), 43.7 (CH₂), 28.4 (CH₂), 21.02 (CH₂), 18.1 (CH₃). IR (CHCl₃) v_{max}/cm⁻¹: 1603, 1506, 1444, 1086, 1020. MS: *m/z* (% relative intensity): 300 (M+H⁺, 25), 282 (43), 192 (41), 172 (49), 118 (26), 106 (100), 77 (42).

Pyrrolidine 7 and Piperidine 8. General procedure

To a stirred 0 °C solution of compound **5** or **6** (1 equiv) and NiCl₂·6H₂O (10 equiv) in solvent (see details for each reaction), was added portionwise NaBH₄ (30 equiv) at such a rate that the temperature was kept below 10 °C (about 20 min). The resulting mixture was stirred at room temperature for 2 h. The black precipitate was filtered off over Celite and washed several times

with EtOAc. The organic phase was washed with H_2O , brine, dried (anhydrous Na_2SO_4) and filtered. Removal of solvent gave a crude product which was further purified by radial chromatography (silica gel).

1,2-Diphenylpyrrolidine (7a).^{7,8} Compound **5a** as a mixture of isomers (0.1735 g, 0.50 mmol) and MeOH (6 mL) was employed to yield, after radial chromatography (100% hexanes), compound **7a** (0.0758 g, 68%; pale yellow liquid). ¹H NMR (300 MHz, CDCl₃): δ 7.29–7.05 (m, 5H, Ar*H*), 6.71–6.59 (m, 3H, Ar*H*), 6.62 (d, *J* = 7.7 Hz, 2H, Ar*H*), 4.65–4.56 (dd, *J* = 7.4, 5.0 Hz, 1H, NC*H*Ph), 3.06 (t, *J* = 6.6 Hz, 2H, C*H*₂N), 1.90–1.50 (m, 4H, C*H*₂C*H*₂CH). ¹³C NMR (75 MHz, CDCl₃): δ 146.9 (C), 144.46 (C), 129.26 (2 x CH), 128.46 (2 x CH), 127.56 (CH), 125.79 (2 x CH), 118.59 (CH), 113.9 (2 x CH), 74.2 (CH), 44.9 (CH₂), 36.5 (CH₂), 25.5 (CH₂). IR (neat) v_{max}/cm⁻¹: 1603, 1505, 1477, 750, 700. MS: *m/z* (% relative intensity): 224 (M+H⁺, 11), 23 (M⁺, 21), 147 (11), 146 (52), 106 (100), 93 (16), 77 (36).

2-Methyl-1-phenylpyrrolidine (7b).⁹ Compound **5b** as a single isomer (0.4671 g, 1.64 mmol), THF (8 mL) and MeOH (24 mL) were employed to yield, after radial chromatography (100% hexanes), compound **7b** and *N*-pentylaniline (**11a**).

F₁ (less polar): **7b** (0.1577 g, 60%; colorless liquid). ¹H NMR (300 MHz, CDCl₃): δ 7.16–7.08 (m, 2H, Ar*H*), 6.59–6.49 (m, 3H, Ar*H*), 3.80–3.76 (m, 1H, NC*H*CH₃), 3.35–3.29 (m,1H, C*H*HN), 3.13–3.01 (m, 1H, CH*H*N), 2.08–1.82 (m, 3H, C*H*₂C*H*H), 1.65–1.58 (m, 1H, CH₂CH*H*), 1.11 (d, *J* = 6.9 Hz, 3H, C*H*₃). ¹³C NMR (75 MHz, CDCl₃): δ 147.1 (C), 129.1 (2 x CH), 115.1 (CH), 111.7 (2 x CH), 53.5 (CH), 48.1 (CH₂), 32.9 (CH₂), 23.2 (CH₂), 19.3 (CH₃). IR (neat) v_{max}/cm^{-1} : 1599, 1505, 1459, 1362, 1162, 1036, 994, 745, 691. MS: *m/z* (% relative intensity): 161 (M⁺, 29), 157 (5), 146 (100), 145 (6), 130 (6), 125 (12), 117 (9), 111 (6), 104 (25), 99 (9), 91 (10), 81 (9), 77 (29), 71 (8), 57 (9).

F₂ (more polar): *N*-pentylaniline (**11a**)⁸ (0.0374 g, 14%; colorless liquid). ¹H NMR (300 MHz, CDCl₃): δ 7.12–7.07 (m, 2H, Ar*H*), 6.76–6.64 (m, 3H, Ar*H*), 3.16 (t, *J* = 7.1 Hz, 2H, NC*H*₂CH₂), 1.79–1.57 (m, 2H, C*H*₂CH₂N), 1.52–1.30 (m, 4H, C*H*₂C*H*₂CH₃), 1.05–0.91 (m, 3H, C*H*₃). ¹³C NMR (75 MHz, CDCl₃): δ 148.4 (C), 129.2 (2 x CH), 117.1 (CH), 112.7 (2 x CH), 44.0 (CH₂), 29.3 (CH₂), 29.2 (CH₂), 22.5 (CH₂), 14.01 (CH₃). IR (neat) v_{max} /cm⁻¹: 1604, 1506, 1321, 747, 692. MS: *m/z* (% relative intensity): 163 (M⁺, 23), 149 (34), 106 (68), 93 (100), 77 (36), 71 (40).

1-Phenyl-2-propylpyrrolidine (7c).⁶ Compound **5c** as a mixture of isomers (0.1768 g, 0.56 mmol), THF (3 mL) and MeOH (9 mL) were employed to yield, after radial chromatography (100% hexanes), compound **7c** and *N*-heptylaniline (**11b**).

F₁ (less polar): **7c** (0.0662 g, 62%; colorless liquid). ¹H NMR (300 MHz, CDCl₃): δ 7.29–7.24 (m, 2H, Ar*H*), 6.71–6.59 (m, 3H, Ar*H*), 3.78–3.61 (m, 1H, NC*H*CH₂), 3.47 (app. t, J = 7.4 Hz, 1H, CH₂C*H*HN), 3.25–3.10 (m, 1H, CH₂CH*H*N), 2.18–1.25 (m, 8H of CH₂), 1.02 (t, J = 7.2 Hz, 3H, CH₃). ¹³C NMR (75 MHz, CDCl₃): δ 147.30 (C), 129.12 (2 x CH), 115.08 (CH), 111.74 (2 x CH), 58.36 (CH), 48.18 (CH₂), 35.28 (CH₂), 30.24 (CH₂), 23.43 (CH₂), 19.85 (CH₂), 14.20 (CH₃). IR (neat) v_{max} /cm⁻¹: 1598, 1505, 1479, 745, 691. MS: *m*/*z* (% relative intensity): 189 (M⁺, 20), 188 (60), 146 (100), 117 (28), 104 (24), 77 (28).

F₂ (more polar): *N*-heptylaniline (**11b**)¹⁰ (0.0160 g, 15%; colorless liquid). ¹H NMR (300 MHz, CDCl₃): δ 7.18–7.07 (m, 2H, ArH), 6.64–6.52 (m, 3H, ArH), 3.02 (t, *J* = 7.1 Hz, 2H, PhNCH₂), 1.55 (app. quint., *J* = 7.4 Hz, 2H, CH₂), 1.40–1.05 (m, 8H, 4 x CH₂), 0.81 (t, *J* = 6.6 Hz, 3H, CH₃). ¹³C NMR (75 MHz, CDCl₃): δ 148.40 (C), 129.20 (2 x CH), 117.18 (CH), 112.78 (2 x CH), 44.09 (CH₂), 31.80 (CH₂), 29.54 (CH₂), 29.10 (CH₂), 27.13 (CH₂), 22.60 (CH₂), 14.07 (CH₃). IR (neat) v_{max} /cm⁻¹: 1603, 1505, 1365, 747, 691. MS: *m/z* (% relative intensity): 191 (M⁺, 25), 149 (37), 106 (100), 97 (22), 81 (31), 77 (26).

1,2-Diphenylpiperidine (8a).¹¹ Compound **6a** as a mixture of isomers (0.3705 g, 1.03 mmol), and MeOH (20 mL) were employed to yield, after radial chromatography (100% hexanes), compound **8a** (0.1470 g, 61%; colorless liquid). ¹H NMR (300 MHz, CDCl₃): δ 7.28–7.13 (m, 5H, Ar*H*), 7.07 (br. t, *J* = 7.8 Hz, 2H, Ar*H*), 6.61 (t, *J* = 7.3 Hz, 1H, Ar*H*), 6.49 (d, *J* = 7.8 Hz, 2H, Ar*H*), 4.68 (app. t, *J* = 6.6 Hz, 1H, NC*H*Ph), 3.12 (t, *J* = 7.0 Hz, 2H, CH₂C*H*₂N), 1.97–1.28 (m, 6H, 3 x C*H*₂). ¹³C NMR (75 MHz, CDCl₃): δ 147.9 (C), 144.6 (C), 129.2 (2 x CH), 128.4 (2 x CH), 127.5 (CH), 125.8 (2 x CH), 117.4 (CH), 112.9 (2 x CH), 74.3 (CH), 43.9 (CH₂), 38.6 (CH₂), 29.1 (CH₂), 23.3 (CH₂). IR (neat) v_{max}/cm⁻¹: 1603, 1506, 1028, 750, 700. MS: *m/z* (%) relative intensity 237 (M⁺, 6), 160 (15), 106 (100), 93 (12), 77 (25).

2-Methyl-1-phenylpiperidine (8b).⁹ Compound **6b** as a mixture of isomers (0.1615 g, 0.54 mmol) and MeOH (11 mL) were employed to yield, after radial chromatography (100% hexanes), compound **8b** (0.0658 g, 70%; colorless liquid). ¹H NMR (300 MHz, CDCl₃): δ 7.22–7.17 (m, 2H, Ar*H*), 6.74–6.70 (m, 1H, Ar*H*), 6.65–6.62 (m, 2H, Ar*H*), 3.85–3.80 (m, 1H, NC*H*CH₃), 3.14 (t, *J* = 7.0 Hz, 2H, CH₂C*H*₂N), 1.63–1.60 (m, 1H of CH₂), 1.60–1.40 (m, 5H of CH₂), 1.21 (d, *J* = 6.4 Hz, 3H, CHC*H*₃). ¹³C NMR (75 MHz, CDCl₃): δ 148.7 (C), 129.9 (2 x CH), 118.2 (CH), 113.7 (2 x CH), 68.6 (CH), 44.8 (CH₂), 39.6 (CH₂), 30.1 (CH₂), 24.2 (CH₃), 23.9 (CH₂). IR (neat) v_{max}/cm⁻¹: 1603, 1508, 1477, 1322, 750, 693. MS: *m/z* (% relative intensity): 175 (M⁺, 1), 106 (100), 93 (4), 79 (14), 77 (16).

Unsaturated derivatives 9 and 10. General procedure

A solution of compound **5** or **6** in dry toluene (~ 0.05 M) was refluxed under an argon atmosphere overnight. After cooling to room temperature, the resulting solution was concentrated to give a crude product, which was further purified by radial chromatography (silica gel).

1,2-Diphenyl-2,5-dihydro-1*H***-pyrrole (9a).** Compound **5a** as a mixture of isomers (0.1730 g, 0.49 mmol) was employed to produce, after radial chromatography (100% hexanes), compound **9a** (0.0704 g, 65%; pale yellow liquid). ¹H NMR (300 MHz, CDCl₃): δ 7.37–7.09 (m, 8H, Ar*H*), 6.83–6.78 (m, 2H, Ar*H*), 5.96–5.87 (m, 2H, CH₂*H*C=C*H*CH), 5.16–5.10 (m, 1H, NC*H*Ph), 3.80–3.70 (m, 2H, NC*H*₂CH). ¹³C NMR (75 MHz, CDCl₃): δ 144.5 (C), 142.3 (C), 136.3 (CH), 129.4 (2 x CH), 128.6 (CH), 128.5 (2 x CH), 127.7 (CH), 126.2 (2 x CH), 126.03 (CH), 120.7 (CH), 115.7 (CH), 74.2 (CH), 47.7 (CH₂). IR (neat) v_{max}/cm⁻¹: 1602, 1505, 1452, 750, 695. MS: *m/z* (% relative intensity): 221 (M⁺, 47), 220 (15), 146 (100), 132 (41), 117 (42), 93 (68), 77 (51). HRMS (ESI–TOF): *m/z* [M⁺] Calcd for C₁₆H₁₅N: 221.1204. Found: 221.1211.

1-Benzyl-2-phenyl-2,5-dihydro-1*H***-pyrrole (9d).** Compound **5d** as a mixture of isomers (0.4826 g, 1.34 mmol) was employed to produce, after radial chromatography (100% hexanes), compound **9d** (0.2046 g, 65%; yellow oil). ¹H NMR (300 MHz, CDCl₃): δ 7.35 (d, *J* = 7.3 Hz, 2H, Ar*H*), 7.32–7.08 (m, 8H, Ar*H*), 5.81–5.74 (m, 1H, HC=*CH*CH), 5.68–5.59 (m, 1H, CH₂C*H*=CH), 4.54–4.50 (m, 1H, NC*H*Ph), 3.89 (d, *J* = 13.3 Hz, 1H, NC*H*Ph), 3.76–3.61 (m, 1H, CHCHHN), 3.48 (d, J = 13.4 Hz, 1H, NCHHPh), 3.30–3.18 (m, 1H, CHCHHN). ¹³C NMR (75 MHz, CDCl₃): δ 143.8 (C), 140.5 (C), 133.4 (CH), 129.9 (2 x CH), 128.9 (2 x CH), 128.8 (2 x CH), 128.5 (2 x CH), 127.9 (CH), 127.8 (CH), 127.5 (CH), 74.9 (CH), 59.8 (CH₂), 58.1 (CH₂). IR (neat) v_{max}/cm⁻¹: 1490, 1452, 1372, 1029, 759, 738, 700 cm⁻¹. MS: m/z (% relative intensity): 236 (M⁺+1, 100), 235 (M⁺, 45), 234 (29), 158 (45), 144 (42), 91 (80). HRMS (ESI–TOF): m/z [M+H⁺] Calcd for C₁₇H₁₈N: 236.1439. Found: 236.1449.

1,2-Diphenyl-1,2,3,6-tetrahydropyridine (**10a**).¹² Compound **6a** as a mixture of isomers (0.2013 g, 0.55 mmol) was employed to produce, after radial chromatography (100% hexanes), compound **10a** (0.0983 g, 76%; pale yellow oil). ¹H NMR (300 MHz, CDCl₃): δ 7.45–7.27 (m, 5H, Ar*H*), 7.25–7.18 (m, 2H, Ar*H*), 6.75 (br. t, *J* = 7.6 Hz, 1H, Ar*H*), 6.63 (br. d, *J* = 7.6 Hz, 2H, Ar*H*) 5.83–5.78 (m, 2H, *H*C=C*H*), 5.24–5.18 (m, 1H, NC*H*Ph), 3.22 (t, *J* = 7.0 Hz, 2H, CH₂N), 2.47–2.37 (m, 2H, CHCH₂CH₂). ¹³C NMR (75 MHz, CDCl₃): δ 147.9 (C), 143.1 (C), 134.9 (CH), 129.2 (2 x CH), 128.7 (CH), 128.5 (2 x CH), 127.6 (CH), 126.1 (2 x CH), 117.6 (CH), 113.1 (2 x CH), 74.9 (CH), 43.1 (CH₂), 32.0 (CH₂). IR (neat) v_{max}/cm⁻¹: 1602, 1505, 1475, 749, 694. MS: *m/z* (%) relative intensity 235 (M⁺, 8), 146 (6), 130 (33), 106 (100), 77 (36).

2-Methyl-1-phenyl-1,2,5,6-tetrahydropyridine (10b). Compound **6b** as a mixture of isomers (0.1015 g, 0.33 mmol) was employed to produce, after radial chromatography (100% hexanes), compound **10b** (0.0411 g, 72%; pale yellow oil). ¹H NMR (300 MHz, CDCl₃): δ 7.10 (br. t, J = 7.9 Hz, 2H, Ar*H*), 6.64 (br. t, J = 7.3 Hz, 1H, Ar*H*), 6.53 (d, J = 8.0 Hz, 2H, Ar*H*), 5.60–5.52 (m, 2H, *H*C=C*H*), 4.28–4.12 (m, 1H, NC*H*CH₃), 3.10 (t, J = 6.8 Hz, 2H, C*H*₂N), 2.34–2.19 (m, 2H, CHC*H*₂CH₂), 1.19 (d, J = 6.3 Hz, 3H, C*H*₃). ¹³C NMR (75 MHz, CDCl₃): δ 147.9 (C), 136.7 (CH), 129.2 (2 x CH), 127.3 (CH), 117.6 (CH), 113.1 (2 x CH), 68.6 (CH), 43.3 (CH₂), 31.9 (CH₂), 23.8 (CH₃). IR (neat) v_{max} /cm⁻¹: 1603, 1506, 1320, 750, 693. MS: *m/z* (% relative intensity): 173 (M⁺, 1), 106 (100), 79 (28), 77 (43). HRMS (ESI–TOF): *m/z* [M⁺] Calcd for C₁₂H₁₅N: 173.1204. Found: 173.1211.

Acknowledgements

Financial support from the Center for Innovation in Chemistry (PERCH–CIC), the Commission on Higher Education (CHE–RES–RG), Ministry of Education, and the Thailand Research Fund (to MP: BRG49800005) is gratefully acknowledged.

References

- 1. See, for example: *The Alkaloids: Chemistry and Biology,* Cordell, G. A., Ed.; Academic Press: San Diego, CA, 2000; Vol. 54, and others in this series.
- For recent reviews, see: (a) Lawrence, A. K.; Gademann, K. Synthesis 2008, 331. (b) Michael, J. P. Nat. Prod. Rep. 2008, 25, 139. (c) Felpin, F.-X.; Lebreton, J. Eur. J. Org. Chem. 2003, 3693. (d) Daly, J. W.; Spande, T. F.; Garraffo, H. M. J. Nat. Prod. 2005, 68, 1556.
- 3. Pohmakotr, M.; Seubsai, A.; Numeechai, P.; Tuchinda, P. Synthesis 2008, 1733.
- 4. Pohmakotr, M.; Numeechai, P.; Prateeptongkum, S. Tuchinda, P.; Reutrakul, V. Org. Biomol. Chem. 2002, 1, 3495.
- 5. Pohmakotr, M.; Prateeptongkum, S.; Chooprayoon, S.; Tuchinda, P.; Reutrakul, V. *Tetrahedron* **2008**, *64*, 2339.
- (a) Truce, W. E.; Perry, F. M. J. Org. Chem. 1965, 30, 1316. (b) Euerby, M. R.; Waigh, R. D. Synth. Commun. 1986, 16, 779. (c) Back, T. G.; Yang, K.; Krouse, H. R. J. Org. Chem. 1992, 57, 1986.
- 7. Takeda, T.; Saito, J.; Tsubouchi, A. Tetrahedron Lett. 2003, 44, 5571.
- 8. Sezen, B.; Sames, D. J. Am. Chem. Soc. 2005, 127, 5284.
- 9. Bunce, R. A.; Herron, D. M.; Lewis, J. R.; Kotturi, S. V. J. Heterocyclic Chem. 2003, 40, 113.
- 10. Srivastava, S. K.; Chauhan, P. M. S.; Bhaduri, A. P. Synth. Commun. 1999, 29, 2085.
- 11. Degrand, C.; Grosdemouge, C.; Compagnon, P.-L. Tetrahedron Lett. 1978, 33, 3023.
- 12. Barluenga, J.; Rodriguez, F.; Alvarez-Rodrigo, L.; Zapico, J. M.; Fananas, F. J. *Chem. Eur. J.* **2004**, *10*, 109.