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Abstract 
Quantitative Structure-Activity Relationship (QSAR) models were developed for blood-brain 
barrier and human serum albumin binding for a dataset of drugs where experimental values of 
both properties were available. All drugs were represented by chemical descriptors calculated 
from their constitutional, geometrical and topological structure, and quantum mechanical wave 
function. The obtained linear (multilinear regression) and nonlinear (artificial neural network) 
models link the drug structures to their reported properties. Also, based on the characterization of 
the descriptors we suggest additional criteria for the search of new active compounds. Each 
multilinear model was tested by leave-one-out and ABC methods. The latter method separates 
the all data points into three sets and predicts for each of them the property values. The former 
method is an iterative procedure which in each step it excludes one data point and predict its 
value based on the model rebuilt for the remaining data points. In addition, the predictive ability 
neural networks were assessed using the validation sets. All drug structures were investigated by 
conformational analysis in order to find the lowest energy conformers. 
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Introduction 
 
Precise pharmacokinetic, metabolic and toxicity information for a chemical compound is 
necessary for preclinical and clinical trials in drug discovery. To enhance the efficiency and cost-
effectiveness of the pharmaceutical industry, in recent years, numerous in vitro ADME-Tox 
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assays1-3  and in silico prediction methods4-5 have been developed, improved and integrated into 
early-stage pharmaceutical research and development. Since the experimental methods for 
determing and evaluating ADME-Tox properties are often time-consuming and expensive, in 
silico predictive models are becoming increasingly important tools as relatively cheap 
alternatives for initial screening. The computational modeling of lead molecules enables 
screening and elucidation of the chemical structures and prediction of their ADME-Tox 
activities. In recent years, two- and three-dimensional methodologies for the delineation between 
molecular structure and property activity have been developed. A fully automated two-
dimensional approach using the topological representation of the molecular structure is suitable 
for fast screening of virtual libraries.6-8 Since conformational analyses and computationally 
intensive semi-empirical and ab initio calculations are considerably more time consuming, the 
three-dimensional optimization has particularly succeeded for molecular docking approaches.9-10

 
Human serum albumin  
One of the main factors that influences the distribution, metabolism, pharmacological effect and 
elimination of a drug is its specific binding to human plasma proteins. The pharmacological 
activity of a drug, however, has been demonstrated to be related rather to unbound fraction of 
drug than total concentration.11 The binding constants of various drugs to plasma proteins range 
over five log-units. Under various physiological and pathological conditions the amount of 
plasma proteins in blood might be decreased and for strongly bound drugs there could be risk of 
enhanced activity and undesirable side effects.12-13 

Human serum albumin (HSA), a single monomeric polypeptide of 585 amino acidic 
residues, is the most abundant soluble protein in human serum, with a typical concentration of 
0.6 mM in the bloodstream14 contributing significantly to the colloidal oncotic pressure and 
antioxidative capacity of human serum.15,16 Furthermore, HSA has a remarkable ability to bind, 
non-covalently, a wide range of chemically diverse endogenous (fatty acids, metabolites) and 
exogenous ligands.17,18 HSA is composed of three homologous domains (I–III) each of which is 
divided into two subdomains (A and B).19 The crystallographic studies of HSA-exogenous ligand 
complexes have shown that drug-like compounds will mainly interact with one of two high 
affinity binding sites on the protein sub domains IIA and IIIA, known also as the warfarin 
(Sudlow`s site I) and indole-benzodiazepine (Sudlow’s site II) binding sites, respectively. They 
are similar in size and shape, possessing elongated hydrophobic pockets with cationic amino acid 
residues near their cavity entrances.20  

During the past decade, numerous QSAR models have been developed to understand the 
HSA binding mechanisms and determine the structural features of drug-like compounds. The 
employment of hologram 2D QSAR methods based on several combinations of distinct 
molecular fragments produced a statitiscally excellent QSAR model (R2=0.91, q2=0.72) for the 
large training set (250 compounds) and test set (62 compounds) of structurally and 
therapeutically diverse compounds.21 In addition, Gunturi et al.22 using the stochastic 
optimisation method based on the ant colony systems and multiple linear regression, obtained a 
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QSAR model with good predictive power (R2=0.80, q2=0.75) for 94 compounds. The analysis of 
selected descriptors indicated the dependence of HSA affinity on hydrophobic interactions, 
solubility, size and shape of drug-like compound.22 The preponderant contribution of 
hydrophobic regions of drugs to HSA binding is supported by QSAR models developed by 
Colmenarejo et al.23 and Estrada et al.24 for the same data set with significant correlation 
(R2=0.82 and R2=0.83, respectively). An electrotopological state QSAR model created by Hall et 
al.25 performed satisfactorily in predicting HSA binding ability (R2=0.77, q2=0.70) for a set of 94 
compounds demonstrating increased binding affinity due to the presence and electron 
accessibility of fluorine and chlorine atoms as well as aromatic, aliphatic methylene and hydroxy 
groups.25 Moreover, Deeb et al.26 and Votano et al.27 employed a principal component-artificial 
neural network (PC-ANN) method using topological descriptors and achieved QSAR models 
with good correlation (R2=0.85 for 56 compounds and R2=0.90 for 808 compounds, 
respectively). A significant linear correlation (R2=0.85, n=18) between plasma protein binding 
and hydrophobicity/lipophilicity (logD) for a series of acidic glycine antagonists 4-
hydroxyquinolones was determined.28 However, Kratochwil el al. using a structurally diverse set 
of molecules (n=76) demonstrated that the lipophilicity (logD) is rather poorly correlated (R=0.4 
for acids and R=0.3 for bases) correlated to HSA binding.29 

 
Blood brain barrier 
The blood-brain barrier (BBB) is a complex membranous system of brain capillary endothelial 
cells, pericytes, astrocytes, and nerve endings that plays a central role in maintaining the 
homeostasis of the central nervous system by blocking the movement of all molecules except 
those relatively small molecules can cross cell membranes by means of lipid solubility (oxygen, 
carbon dioxide, ethanol, and steroid hormones) and those that are transported by specific 
transport systems (electrolytes, nucleosides, sugars and some amino acids). An additional 
cerebral protection from chemicals circulating in blood (endogenous toxins and various 
xenobiotics) is provided by the metabolic enzyme and active efflux transport systems (ATP 
binding cassette transporter super-family of proteins, organic anion transport proteins) in the 
membrane of the endothelial cells.30 

In drug discovery and development, understanding of the mechanisms of penetration of 
drugs and drug-like compounds through the BBB is crucial to design new potential candidates to 
act on the central nervous system (CNS) and to avoid undesirable side effects of compounds 
acting in peripheral tissue. 

In recent years, numerous in vivo, in vitro and in silico approaches have been applied to 
determine the penetration potential of drug candidates. For in vivo measurements imaging (MRI 
and PET),31,32 autoradiography,33 cerebrospinal fluid sampling34 and microdialysis35 techniques 
have been used. In vitro assessments have been carried out on isolated brain capillaries,36 bovine 
brain microvessel endothelial cells,37 Caco-2 cell monolayers,38 MDR-MDCK cell lines,39 
parallel artificial membrane permeability assay (PAMPA)40 and immobilized artificial 
membranes (IAMs).41  
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The blood-brain distribution is commonly expressed as the ratio of the steady state molar 
concentration of a compound in the brain and in the blood: 
BB=Cbrain/Cblood 

During the last decade, a large number of computational models for the prediction of logBB 
were developed by several research groups (see Table 1). 
 
Table 1. Summary of QSAR studies for the prediction of blood brain distribution  

Descriptors used  

No of 
compounds 

used in 
training set 

R2 s References 

R2, π2
H, α2

Hβ2
H  57 0.91 0.197 [42] 

E, S, A, B, VX, I1 148 0.745 0.343 [43] 
HBAo, HBD 45, 70 0.72, 0.76  [44] 
Nacc,Solv, log P, Apol 61 0.730 0.424 (rms) [45] 
TPSA 45, 57 0.78, 0.66  [46] 
SASA (Monte Carlo) 76 0.984 0.173 [47] 
GSolv (GB/SA) 55 0.722 0.37 [9] 
E-state (3) 102 0.66 0.45 [6] 
5 Structural descriptors (GA)* 59, 72 0.757,0.785 0.41, 0.358 [48] 
MI-QSAR (5) 56 0.845  [49] 
Structural descriptors (5) 48 0.837 0.26 [50] 
log P, PSA, TIs 58 0.81  [51] 
Atom type (3) 57 0.897 0.259 [52] 
TOPS-MODE (2) 114, 81 0.697, 0.740 0.422 [7] 
HAS (5) 47 0.781 0.375 [53] 
V, QH, QO,N(MRA) 56 0.817 0.330 [53] 
V, QH, QO,N(ANN) 56  0.236 (rmse) [54] 
C log P, TPSA 150 0.69  [55] 
E-state index, AlogP98, van der 
Waals surface area, Kappa shape 
index 

88 0.746 0.392 [56] 

* Genetic algorithm 
 

A less commonly used alternative to describe the brain permeation is the determination of the 
permeability-surface area coefficient (expressed as logPS), which reflects the free extracellular 
concentration of a chemical compound.57 Recently, a QSAR model of logPS with significant 
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prediction ability (R2 = 0.87, s = 0.52) for 30 neutral compounds was developed.58 The 
comparison of mathematical equations for logPS and logBB revealed that the factors that 
determine logPS are also those that determine logBB.59 Thus, the analysis of QSAR models 
indicates that lipophilicity and polar surface area are the most important molecular determinants 
of BBB permeation. Moreover, BBB permeation of passively diffusing drugs might be optimal 
when logP values are in the range of 1.5-2.760. Additionally, for the successful design of a CNS 
drug, neutral or basic compounds (pKa=7.5-10.5) with relatively low molecular weight (<450) 
and small polar surface area (60-70Å2), low number of hydrogen bond donors (<3) and acceptors 
(<7), as well as reduced molecular flexibility (number of rotatable bonds: <8) tend to be 
particularly suitable.60 

The goal of the current study is to develop QSAR models for two biological properties based 
on a common chemical data set of drugs. The different models are interpreted in terms of 
descriptors involved and statistical parameters. Two approaches were taken in order to achieve 
this goal, namely, the development of multilinear mathematical equations and creation and 
training of artificial neural networks. Before QSAR development, all drugs were subjected to 
conformational search in order to find the optimum low energy structures.  
 
 
Data Set 
 
Blood-brain barrier partitioning (logBB) 
The partitioning of a compound across the blood-brain barrier is experimentally measured as the 
ratio of the concentration of the compound in the brain, Cbrain, to that in the blood, Cblood: BB = 
Cbrain /Cblood. The data set investigated contains 60 compounds (mainly drugs) with their 
corresponding BB values, directly measured6 that were converted to the logarithm scale for 
analysis (see Table2). 
 
Binding Affinity to Human Serum Albumin (logHSA) 
Serum protein binding is usually given as the percentage of a drug bound to plasma proteins at 
clinically achievable concentrations. These values are usually obtained using in vitro 
measurements at several concentrations, resulting in a calculated mean value. An alternative 
method, designed for more rapid screening, involves the use of immobilized HSA as the 
stationary phase in an HPLC (High-Performance Affinity Chromatography) procedure. In the 
present study, we use albumin binding affinity values assayed by HPLC by Colmenarejo et al.23 
were used. The dataset was optimized to maximize the diversity in both structure and 
physicochemical properties and it contains binding affinity constants k (HSA) for 85 diverse 
drugs collected in Table 2. The affinity binding constant k was computed from retention time (t) 
as follows: k = (t - to)/to, where to is the time for passage of a nonretained material. 
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Table 2. Experimental (obsd) and predicted (calcd) LogBB and logHSA of all drugs 

No. 
CAS 

number 
Compoundb

logBB 

obsd 

log BB 

clacd 

BMLR 

logBB 

calcd 

ANN 

logHSA 

obsd 

 logHSA 

calcd 

BMLR 

logHSA 

calcd 

ANN 

1 37517-30-9 Acebutolol   -0.21 -0.036 -0.174 

2 103-90-2 Acetaminophen -0.31 -0.01 -0.093 -0.81 -0.756 -0.724 

3 87848-99-5 Acrivastine   -0.02 0.323 0.596 

4 18559-94-9 Albuterol -1.03 -0.586 -0.602a    

5 28981-97-7 Alprazolam 0.04 0.389 0.244a    

6 13655-52-2 Alprenolol   0.04 0.266 0.055 

7 58-15-1 Aminopyrine 0 -0.136 0.327    

8 50-48-6 Amitriptyline 0.89 0.926 1.02    

9 57-43-2 Amobarbital 0.04 0.067 -0.263    

10 26787-78-0 Amoxicillin   -1.21 -0.915 -0.751 

11 60-80-0 Antipyrine -0.1 0.091 -0.235 -0.69 -0.172 -0.576 

12 50-78-2 Aspirin -0.5 -0.884 -0.763a -1.39 -1.061 -0.71a 

13 29122-68-7 Atenolol -0.87 -0.441 -0.444 -0.48 -0.433 -0.347 

14 51-55-8 Atropine -0.06 0.289 -0.138    

15 25614-03-3 Bromocriptine -1.1 -0.94 -0.563    

16 10457-90-6 Bromperidol 1.38 1.134 1.075    

17 28395-03-1 Bumetanide   -0.03 0.054 -0.217 

18 58-08-2 Caffeine -0.06 0.092 -0.0505 -0.92 -0.881 -0.818 

19 298-46-4 Carbamazepine -0.14 -0.091 -0.107 -0.1 0.065 -0.128 

20 36507-30-9 

Carbamazepine 

epoxide -0.35 -0.346 -0.399    

21 154-93-8 Carmustine -0.52 -0.415 -0.223    

22 55268-75-2 Cefuroxime   -1.33 -1.253 -1.031 

23 64544-07-6 Cefuroxime axetil   -0.56 -0.836 -0.85 

24 15686-71-2 Cephalexin   -1.11 -0.48 -1.491 

25 56-75-7 Chloramphenicol   -0.46 -0.859 -0.495a 

26 50-53-3 Chlorpromazine 1.06 1.021 1.101 1.1 0.677 0.821 

27 94-20-2 Chlorpropamide   -0.44 -0.295 -0.185 

28 51481-61-9 Cimetidine -1.42 -0.748 -1.142 -0.44 -0.32 -0.432 

29 85721-33-1 Ciprofloxacin   0.14 -0.092 -0.086 

30 22316-47-8 Clobazam 0.35 0.249 0.51    

31 637-07-0 Clofibrate    0.27 0.215 0.111 

32 4205-90-7 Clonidine    -0.13 -0.153 0.116 

33 23593-75-1 Clotrimazole   1.34 0.914 1.261 

34 76-57-3 Codeine 0.55 0.165 0.100a    
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Table 2. Continued 

35 16110-51-3 Cromolyn    -1.07 -0.707 -0.836 

36 50-47-5 Desipramine 1.2 0.962 0.728 0.61 0.565 0.648 

37 439-14-5 Diazepam 0.52 0.46 0.478    

38 2095-95-6 Didesipramine 1.06 0.826 0.450a    

39 71-63-6 Digitoxin    0.13 0.392 0.479 

40 548-73-2 Droperidol   0.43 0.678 0.508 

41 50-28-2 Estradiol    0.68 0.159 0.233 

42 33419-42-0 Etoposide    -0.49 -0.587 -0.389 

43 2022-85-7 Flucytosine   -1.11 -0.729 -1.063 

44 1622-62-4 Flunitrazepam 0.06 -0.237 -0.188    

45 69-23-8 Fluphenazine 1.51 1.312 1.127    

46 54-31-9 Furosemide   -0.13 -0.32 -0.333 

47 10238-21-8 Glyburide    0.68 0.727 0.563 

48 52-86-8 Haloperidol 1.34 1.062 1.052    

49 56-29-1 Hexobarbital 0.1 -0.068 -0.192    

50 58-93-5 Hydrochlorothiazide   -0.42 -0.456 -0.571 

51 50-23-7 Hydrocortisone   -0.4 -0.086 -0.39 

52 68-88-2 Hydroxyzine 0.39 0.595 0.243    

53 15687-27-1 Ibuprofen -0.18 -0.737 -0.465a    

54 50-49-7 Imipramine 1.07 1.06 0.922 0.75 0.682 0.763 

55 53-86-1 Indomethacin -1.26 -0.322 -1.022 0.47 0.374 0.34 

56 84625-61-6 Itraconazole   1.04 1.411 1.379 

57 65277-42-1 Ketoconazole   0.84 0.806 0.954 

58 22071-15-4 Ketoprofen   0.03 -0.034 -0.103 

59 36894-69-6 Labetalol    0.14 0.019 0.002a 

60 84057-84-1 Lamotrigine   -0.13 -0.173 -0.128 

61 59-92-7 Levodopa -0.77 -1.091 -0.749    

62 77-07-6 Levorphanol 0 0.179 0.139    

63 137-58-6 Lidocaine    -0.23 0.079 -0.101 

64 91-84-9 Mepyramine 0.49 0.11 0.466    

65 5588-33-0 Mesoridazine -0.36 -0.022 -0.485    

66 59-05-2 Methotrexate -1.52 -1.887 -1.702a -0.77 -0.61 -0.419 

67 83-43-2 Methylprednisolone   -0.22 -0.082 -0.099 

68 37350-58-6 Metoprolol   -0.29 -0.205 -0.08 

69 10118-90-8 Minocycline   0.21 -0.272 0.238 

70 57-27-2 Morphine -0.16 -0.26 -0.228    

71 42200-33-9 Nadolol    -0.4 -0.434 -0.422 

72 22204-53-1 Naproxen    0.25 -0.037 -0.161 

73 22316-55-8 N-Desmethylclobazam 0.36 0.412 0.521a    
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74 

129618-40-

2 Nevirapine 0 -0.212 -0.099    

75 1088-11-5 Nordazepam 0.5 0.503 0.473    

76 70458-96-7 Norfloxacin   0.14 -0.283 0.16 

77 303-81-1 Novobiocin   0.35 0.167 0.105 

78 82419-36-1 Ofloxacin    0.14 -0.126 -0.101 

79 99614-02-5 Ondansetron      0.37 0.424 0.347 

80 604-75-1 Oxazepam 0.61 -0.004 0.043    

81 6452-71-7 Oxprenolol   -0.15 0.063 -0.1 

82 87-08-1 Penicillin V   -0.69 -0.568 -0.48 

83 76-74-4 Pentobarbital 0.12 0.034 0.278    

84 77-10-1 Phencyclidine 0.68 0.92 1.33    

85 50-33-9 Phenylbutazone -0.52 -0.128 -0.428 0.19 0.298 0.222 

86 57-41-0 Phenytoin -0.04 0.14 -0.075 0 -0.268 -0.121 

87 57-47-6 Physostigmine 0.08 0.19 0.016    

88 13523-86-9 Pindolol    -0.13 -0.136 -0.071 

89 19216-56-9 Prazosin    0.06 -0.182 -0.027 

90 50-24-8 Prednisolone   -0.4 -0.092 -0.404 

91 125-33-7 Primidone -0.07 -0.46 -0.188a    

92 59-46-1 Procaine    -0.19 -0.019 -0.165 

93 57-83-0 Progesterone   0.59 0.319 0.449a 

94 58-40-2 Promazine 1.23 0.692 1.28 0.92 0.526 0.848 

95 525-66-6 Propranolol 0.64 0.233 0.624 0.28 0.397 0.135 

96 51-52-5 Propylthiouracil   -0.75 -0.675 -0.783 

97 56-54-2 Quinidine -0.46 -0.246 -0.228 0.44 0.569 0.452 

98 130-95-0 Quinine    0.49 0.562 0.491 

99 66357-35-5 Ranitidine    -0.1 -0.409 -0.321 

100 69-72-7 Salicylic acid -1.1 -0.669 -0.589 -0.66 -0.878 -0.858 

101 487-54-7 Salicylurate -0.44 -0.586 -0.503    

102 51-34-3 Scopolamine   -0.34 -0.247 -0.072a 

103 3930-20-9 Sotalol    -0.44 -0.121 -0.339 

104 599-79-1 Sulfasalazine   0.56 -0.009 0.28 

105 14759-06-9 Sulforidazine 0.18 -0.218 0.339    

106 

103628-46-

2 Sumatriptan   -0.05 -0.229 0.002a 

107 321-64-2 Tacrine -0.13 0.232 -0.308    

108 63590-64-7 Terazosin    -0.16 -0.285 -0.039a 

109 91161-71-6 Terbinafine   1.17 1.248 0.947 

110 58-22-0 Testosterone   0.74 0.276 0.296 
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111 94-24-6 Tetracaine   0.32 0.174 0.097a 

112 60-54-8 Tetracycline   -0.08 -0.526 -0.075 

113 83-67-0 Theobromine -0.28 -0.035 -0.703    

114 58-55-9 Theophylline -0.29 -0.091 -0.438    

115 76-75-5 Thiopental -0.14 -0.539 -0.081    

116 26839-75-8 Timolol    -0.33 -0.557 -0.411 

117 1156-19-0 Tolazamide   -0.42 -0.473 -0.185 

118 64-77-7 Tolbutamide   -0.22 -0.316 -0.353 

119 28911-01-5 Triazolam 0.74 0.726 0.685    

120 117-89-5 Trifluoperazine 1.44 1.728 1.605a    

121 146-54-3 Triflupromazine   1.05 1.016 0.567a 

122 738-70-5 Trimethoprim   -0.26 -0.245 -0.348 

123 73-22-3 Tryptophan   -0.78 -0.659 -0.377a 

124 52-53-9 Verapamil -0.7 -0.638 -0.15 0.52 0.721 0.823 

125 81-81-2 Warfarin    -0.04 0.557 -0.055 

126 30516-87-1 Zidovudine   -1.02 -0.864 -1.175 

a drugs used for validation set of the ANN,  b-all smile strings for the compounds are available in 
supplementary material SM2 
 
 
Methodology 
 
Structure optimizations and descriptor calculations 
In the current study, QSAR (Quantitative Structure-Activity Relationship) models are presented 
for log BB and log HSA involving theoretical descriptors, which were calculated solely from 
molecular (drug) structure using the QSARModel program.61 These descriptors can be classified 
as: (i) constitutional, (ii) geometrical, (iii) topological, (iv) charge-related, (v) quantum chemical,  
and (vi) thermodynamic.62 The total number of descriptors for each property ranged between 600 
and 900 per compound. 

A conformational search was also performed using the MacroModel software package.63 For 
the calculations, MMFF94s - a static variant of Merck Molecular Force Field 94 (MMFF94) was 
used.64 For energy minimization the Polak-Ribiere Conjugate Gradient (PRCG) method with a 
gradient 0.05 kcal/Å as a stopping criterion was used. Furthermore, for the conformational 
search, the Monte Carlo Multiple Minimum (MCMM) method was used where 100 steps per 
rotatable bond and up to 15000 steps per compound were defined.65 Conformers with the 
minimum potential energy were utilized as the MOPAC 6 input structures.66 Within quantum-
mechanical, semi-empirical calculations, the AM167 parameterization was used with the gradient 
norm setting of 0.01 kcal/Å. 
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For reasons of comparison and completeness, optimization of the structures without prior 
conformational search was also performed. However, the models derived from these drug 
structures did not lead to significant QSAR equations and hence these results are not presented. 
 
QSAR modeling 
(a) Linear approach (BMLR). The Best Multilinear Regression method68 (BMLR) was used to 
find the best correlation models from selected non-collinear descriptors. BMLR selects the best 
two-parameter regression equations, the best three-parameter regression equations, etc. on the 
basis of the highest R2 and F values in the step-wise regression procedure. The result obtained by 
BMLR is the “best” linear representation of the property in the given descriptors pool. 

 
(b)Nonlinear approach (ANN). An artificial neural network is a biologically inspired computer 
algorithm designed to treat the data in a manner emulating the learning pattern in the brain.  The 
computer - based network accepts a set of input values, transforms these, and generates an 
associated set of output values.69 Through an iterative “learning” process, the network refines the 
information derived from the input values (descriptors) in order to reproduce an associated set of 
property values (experimental logBB, logHSA). Once a network has been trained to recognize 
the underlying theme for a given set of input/target pairs, it may be used to predict an output 
value corresponding to a new group of input values. 

In this case, the signal emerging from the output neuron represents the current calculated log 
BB or log HSA value. When this value is compared to the desired (experimental target) property, 
a measure of the network error can be calculated. The root-mean squared error (RMS) was used 
to quantify the effectiveness of the network. The data are repeatedly passed through the network, 
with the overall error successively decreasing as the network adjusts the weights and biases to 
reflect the structure – logBB or structure-log HAS relationship. 

A backpropagation network was used along with the delta rule for optimization of the 
weights.9 In Figure 1 a typical structure of a fully connected neural network is shown with 
neurons that accept inputs Ii. All Ii form the total input for a neuron, Net, weighed by the 
connection weights w. Each neuron calculates a single output, Out, using Net transformed by a 
sigmoidal function. On the basis of the steepest descent method, this technique optimizes the 
connection weights by proceeding in the direction that most reduces the error of the estimate. In 
the training process the weights w are iteratively adjusted by an appropriate amount ∆w, which is 
proportional to the network error with respect to each weight.  
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Figure 1. Fully connected three-layer neural network. 
 

A neural network is trained, i.e. the neural network learns from a predefined group of 
compounds known as the training set. One potential problem associated with the use of a 
network technique is that it may overtrain i.e. derive a relationship which is too specialized. This 
problem is averted by delegating a portion of the compounds to serve as “a validation set”. 
Because this set of compounds has no direct influence on the actual learning process, it can be 
used to monitor the predictive capability of the network at regular intervals during a training run. 
By tracking the validation set error, the optimal set of weights (and biases) to be used as the final 
predictive model can then be identified.  

In order to find the most important descriptors as inputs to the net, a sensitivity analysis was 
performed on a preselected descriptor space, based on the lowest (RMS). This space was formed 
after applying the following criteria for reduction of the total descriptor space: i) all descriptors 
with variance less than 10-4 were excluded, ii) descriptors which do not correlate with the 
property more than r2=0.2 were excluded and iii) by chemical inspection of certain irrelevant 
descriptors (for instance, descriptors related to the internal entropy and enthalpy are less likely to 
be connected to the investigated property). 

An important stage of the modeling process is to define the proper architecture of the ANN 
models. Several different architectures of ANN models were built for each property in this work. 
In the search for optimal ANN architecture the lowest possible number of neurons was sought, in 
order to follow the common principle of generality of the ANN prediction. In addition, the RMS 
for each different architecture was monitored (regarding the hidden units in the hidden layer) so 
that to select the one with the lowest RMS. The number of layers was chosen to be three-fold 
based on the basis of common practice for QSAR ANN modeling70 and by taking into account 
the number of data points so as to reduce the possibility of overfitting during the training stage. 
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ABC validation of the MLR models 
To validate the multilinear models, the data was sorted in ascending order according to the 
experimental values, three subsets (A, B, C) were then formed: the 1st, 4th, 7th, etc. data points 
comprise the first subset (A), the 2nd, 5th, 8th, etc. comprise the second subset (B), and the 3rd, 6th, 
9th, etc. comprise the third subset (C). The three training sets were prepared as the combinations 
of any two subsets (A and B), (A and C), and (B and C), respectively. The tested MLR model 
was then rebuilt for each of the training sets with the same descriptors but optimized coefficients, 
and used to predict the property values of the respective C, B and A subsets. The prediction was 
assessed based on the R2 between the predicted and experimental property values.71 

In addition to the ABC validation, the standard leave-one-out (LOO) cross-validation (R2
cv) 

for all developed models was used. 
 
 
Results and Discussion 
 
The BMLR algorithm was used to generate several multilinear equations for each property with 
the number of descriptors between 2 and 7. The final equations were selected by taking into 
account several factors in order to obtain significant models: (i) the number of descriptors in the 
models should follow the basic “rule of thumb” i.e. not less than five data points per descriptor 
and (ii) relevance of the descriptors toward the nature of the phenomenon under investigation 
and (iii) statistical feasibility of each additional descriptor (in terms of ∆R2, ∆F and t-test value).  
 
BMLR model for logBB 
The MLR model obtained for logBB is presented as Eq.1 together with its statistical parameters 
and descriptors. This is the best equation found for the current data which had a significant 
quality of fit in terms of R2 = 0.81.  
 
logBB = -(5.272±1.064)– (29.85±2.853)*D1+(0.341±0.0611)*D2– (9.676±1.505 )*D3– (0.560 
±0.105)*D4-(0.010±0.002)*D5+(0.268±0.066)*D6      (1) 
N = 60, k = 6, R2 = 0.810, Rcv

2 = 0.748, F = 37.69, s2 = 0.112; 
 
The notations along Eq. 1 are as follows: N is the number of data points; k is the number of 
descriptors; R2 is the squared correlation coefficient; R2

cv is the squared cross-validated 
correlation coefficient (LOO); F is the Fisher’s criterion; and s2 is the squared standard error. 
Also, the standard errors of the regression coefficients are also indicated in the equation. 

The experimental and predicted values of logBB together with their prediction bands at 95% 
confidence level (denoted as dashed lines) are shown in Figure 2.  The numerical values of these 
data are shown in Table 2. As can be noted from Figure 2, there are two outliers according to 
these bands i.e. Methotrexate (underestimated) and Indomethacin (overestimated). 
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Figure 2. Experimental and predicted logBB values based on equation 1. 
 

Equation (1) possesses six descriptors (D1-D6) that are listed in Table 3. According to the t-
statistics of the descriptors, the most significant of them is D1 - HA dependent HDCA-2 (AM1) 
(all). It is related to the hydrogen donor ability of the drug and the respective partial charge on 
the hydrogen surface area. The definition of this descriptor takes into account as many polar 
hydrogen atoms as there are possible hydrogen bond acceptors (N, O, S, P, F, Cl, Br and I atoms). 
Increasing the values of this variable leads to decreased logBB values.  Alone, this descriptor 
correlates with the experimental logBB with R2 = 0.37. Its maximum and minimum values are 
0.0984 and 0.00291, respectively. Hydrogen bonding was reported11 to be one of the most 
important factors for the blood-brain barrier penetration. 
 
Table 3. Descriptors involved in BMLR models (1) and (2) 

Desc ID Descriptor namea

D1 HA dependent HDCA-2 (AM1) (all) 
D2 Number of halogenated groups 
D3 Maximum net atomic charge (Zefirov) for N atoms 
D4 HOMO-1 energy (AM1) 
D5 WFOSA Atomic charge (AM1) weighted FOSA 
D6 Number of amino groups 
D7 Number of C atoms 
D8 Partial Surface Area of O atoms 
D9 Charged (Zefirov) Surface Area of H atoms 
D10 Difference (Pos - Neg) in Charged Part of Partial Charged Surface Area (AM1)
D11 Minimum net atomic charge (Zefirov) for any atom type 
a-descriptor values are available in supplementary material SM1 
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Further, the next pair of descriptors D3 and D6 reflects the influence of the presence of N 
atoms in the drug molecules on logBB. Almost all compounds (except 3 compounds) of the 
current data set for the log BB include N atoms; hence the related descriptors appear in the 
QSAR model. The maximum net atomic charge for N atoms (D3) is the second statistically most 
significant descriptor according to the descriptor t-value. Its value range is within the interval 
[0.00915, -0.125]. As can be seen from this range, the sign of this descriptor value changes 
depending on drugs compound. The number of amino groups D6 varies from 0 to 3. 

The next group of descriptors D2, D4 and D5 (with numerical ranges [0,3], [-11.46, -8.77], 
[0, 100.6]) is connected to the short–range and hydrophobic interactions of the drug molecules 
while penetrating the blood brain barrier. It is known that halogenated compounds are more 
lipophilic and poorly soluble in water, which leads to favorable penetration of the drug through 
the barrier. This fact is reflected by the positive sign of the coefficient of D2 in Eq. 1. D4 
describes the availability/reactivity of electron pairs (as H-bond acceptors); D5 is a measure of 
the polarity of the hydrophobic part of the solvent accessible surface area, as it is weighted by the 
partial charges of the hydrogen and sp3 hybridized carbon atoms.   

In addition to the “rule of five”, we recommend when searching (screening) for drugs with 
high logBB to combine the following characteristics based on the above descriptors: i) hydrogen-
donor ability D1<0.002 ii) D2=2, two halogenated benzene groups (preferably with attached F) 
connected together with a nonrotatable bridge, iii) D6 >3, three tertiary amino groups located 
spatially as close as possible and iv) maximum net charge on N atoms, D3 < -0.1. 

Regarding the domain of the applicability of Eq. 1, it can be defined based on the ranges of 
the independent and dependent variables. Since the data set used to build Eq. 1 is diverse, we 
suggest that for reliable prediction of logBB for novel drugs candidates, the descriptor values of 
these should be within the range [Dimin – f.|Dimin|, Dimax + f.|Dimax|], where the “applicability” 
coefficient f = 0.3 and i=1-6.  The value of the latter coefficient was determined empirically by 
taking into account the overall predictive ability of Eq. 1 for the current number of datapoints 
and its physico-chemical reasoning. Note that the domain of applicability for (1) is not the same 
as statistical applicability defined by the standard deviation at certain confidence level. It 
involves a wider chemical space composed from the current drug set plus the external drugs set. 
Furthermore, the predictions of logBB that lead to deviations from the interval [logBBobsd

min – 
f.|logBBobsd

max - logBBobsd
min|, logBBobsd

max + f.|logBBobsd
max - logBBobsd

min|] should be carefully 
analyzed and if necessary discarded. It is worth mentioning that the above minimum and 
maximum values for Di and logBB(observed) concern the current data set.  

In principle applicability domain of a model is defined only by the descriptors in the 
equations. However, because of the significant diversity of the BB set we have also included 
LogBB (obsd) limits in order to be sure for the correctness of external predictions. In our case, 
the whole applicability domain consists of a cube in 7-dimensional space spanned over six 
descriptors plus the property. To give a sense of the applicability (domain) bounds, Figure 3 
presents the scatter plot between the predicted by Eq. 1 LogBB (open blue circles) and the 
descriptor values of D1. In Figure 3, it is shown the two-dimensional rectangular which defines 
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the upper and lower bounds according to the limits ([-2.429, 2.419; 0.00204, 0.128]) described in 
the above paragraph with coefficient of applicability 0.3. As can be seen from Figure 3, all 
predicted LogBB are within the 2-dimensional rectangular of the domain of applicability. 
However, for external predictions, points outside this rectangular must be analyzed. 

 

 
 
Figure 3. Applicability domain of equation 1 according to D1 descriptor and the augmented 
LogBB(obsd) bounds. 

 
BMLR model for logHSA 
The second BMLR model concerned a data set of 85 drugs with experimental logHSA values. 
The best MLR model obtained for logHSA was a 5-descriptor equation as expressed by Eq. 2. 
The experimental and predicted logHSA values for this model are collected in Table 2. The 
graphical presentation of the correlation between these values is shown in Figure 4 together with 
the prediction bands at the 95% confidence level. The statistical criteria for Eq. 2 indicate good 
correlation bearing in mind the diversity of the drugs as well as the number of data points. 
 
logHSA = – (0.515±0.173) + (0.097±0.008)*D7 – (6.093±0.586)*D8 – (0.117±0.015)*D9 – 
(9.016±1.355)*D10 – (6.349±1.402)*D11  (2) 
N = 85, k = 5, R2 = 0.812, R2

cv = 0.785, F = 68.06, s2 = 0.072 
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Figure 4. Experimental and predicted logHSA values based on Eq. 2. 
 

The two statistically most significant descriptors according to t-values in Eq. 2 are D9 and 
D10. These two molecular features are related to the charged surface area and the total difference 
between the charged positive and negative charged surface areas suggesting their importance for 
the HSA binding phenomenon. In addition, D9 (|tD9|>|tD10|) is related to the hydrogen atoms 
which indicates that the hydrogen-bonding capacity of the drugs plays an important role for in 
HSA binding. In this regard, it is worth mentioning that D8 – Partial surface area of O atoms 
appears also in Eq.2. The remaining two descriptors D11 and D7 characterize the molecule as a 
whole. However, the latter descriptor is related to the total weight of the compound and 
hydrophobicity. According to its sign, it suggests that the logHSA would increase with the 
increase of D7 for the current set used. 

Similarly to Eq.1, the domain of applicability can be defined for Eq. 2. The descriptor ranges 
for D7-D11 are [4, 41], [0, 0.352], [5.582, 24.48], [-0.195, 0.065] and [-0.188, -0.099], 
respectively. The same analyses for Eq. 1 hold for Eq. 2. However, Eq. 2 is based on a larger 
number of data points and hence the applicability coefficient for the prediction of novel 
compounds can be slightly extended i.e. f = 0.4. 

Since the research  involving HSA goes in both directions i.e. seeking for drugs with highly 
binding affinity and compounds with low binding affinity, we therefore could choose to search 
for active compounds with high logHSA satisfying the following simultaneous constrains of the 
descriptors: i) D9>13, ii) compounds with more separated positive minus negative charged 
surface i.e. D10>0.02, iii) number of C atoms D7>22, iv) compounds with lower O surface, 
D8<0.1. 

It is important to note that for both models the constraints defined for search of active 
compounds must be within the limits of the minimum and maximum descriptor values defined 
by the applicability coefficient f. For example, for Eq. 2 and D7 is said to be searched for active 
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compounds with D7>22 that implies the search to be carried out within the range of D7  [22, 
D7max + f.D7max]. In addition, it should be taken into account the optimum (for large logHSA, 
logBB) between the groups of descriptors, which lead to positive and negative contributions in 
equations 1 and 2. 
 
ABC validation for MLR models of logBB and logHSA 
One of the main goals of this study was also to develop as general as possible MLR models in 
order to cover a larger chemical space of applicability.  Therefore, for the sake of generality, we 
did not use the division of data into training and external test sets. Instead of direct external 
validation, a type of leave-many-out validation, i.e. the ABC validation (see Methodology) was 
employed to “mimic” external validation. The efficiency of QSAR models to predict the scales 
of log BB and logHSA was assessed by the squared correlation coefficients R2

(Pred) between 
experimental and predicted data for test sets (A, B or C).  The results from the ABC validation 
are presented in Table 4. The overall assessment of the predictions for both models (1) and (2) is 
significant as can be noted by the closeness between the average R2, R2 (Fit) and R2

(Pred) values.  
 
Table 4. Statistical characteristics for ABC validation of the multilinear models 1 and 2. 

TRAININ
SET 

N R2 (Fit) R2cv (Fit)
TEST 
SET

N R2
(Pred)

BMLR model for logBB 
A+B 40 0.826 0.734 C 20 0.766 
A+C 40 0.836 0.749 B 20 0.737 
B+C 40 0.806 0.694 A 20 0.798 
Average   0.823 0.726    0.767 

BMLR model for logHSA 
A+B 57 0.808 0.765 C 28 0.802 
A+C 57 0.829 0.789 A 28 0.761 
B+C 56 0.810 0.769 B 29 0.803 
Average   0.816 0.774   0.788 

N – number of compounds used in the validation models 
R2

(Fit) – squared correlation coefficient of the multilinear equation for the binary sets used as 
training sets (A+B, A+C or B+C) 
R2

cv(Fit) – cross-validated squared correlation coefficient of the multilinear equations for the 
binary sets (leave-one-out approach) 
R2

(Pred) – squared correlation coefficient for the regression between the predicted values (from the 
models of the binary sets) for the test sets and the respective experimental values 

 
The prediction ability of Eq. 1 according to leave-one-out cross-validated R2

cv (LOO) = 
0.748 is significantly high. However, a significant difference (∆R2 = 0.061) between R2

cv to R2 
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may suggest that Eq. 1 is sensitive toward the exclusion of certain drug(s) during the LOO 
procedure. A possible reason is that the set is quite diverse and thus the exclusion of certain data 
points influences the prediction by the model. However, the quality of the average predictions 
increases when the model is examined using the more robust ABC validation (see Table 4). 
 
Neural network model for logBB 
Before the neural network treatment was started, the experimental logarithmic values and 
descriptor values were both normalized to a range 0-0.9 for internal consistency. Then the 
significant descriptors were selected by reducing the initial descriptor pool as described in the 
Methodology part. For each property, the available experimental data were divided into training 
and test sets. To preserve the generality of the network models, all test sets consisted of not more 
than ten data points. Further, sensitivity analyses were performed on the reduced descriptor space 
by constructing 1-1-1 neural networks and then the descriptors that produced the lowest RMS 
error were selected. Several neural network models with different architecture were investigated 
for each property. 

The best model found for logBB had an architecture of 4-3-1. The input descriptors of this 
model are: Number of halogen groups, SQRT (HA dependent HDCA-2 ), Maximum net atomic 
charge for N atoms and Maximum electrophilic reactivity index (AM1) for H atoms. As can be 
noted from Table 3, there is, quite similarity between the nature of the descriptors for the BMLR 
and ANN models. Hence, similar physico-chemical analysis holds for the ANN descriptors. Also, 
the HA dependent HDCA-2 descriptor appeared as square root function indicating the nonlinear 
relation with the property. 

The statistical parameters in terms of R2 for this model resulted in R2
train =0.85 and R2

val = 
0.87 (RMS 0.26 and 0.32, respectively). The graphical presentation of these correlations between 
the experimental and predicted for both training and validation sets are shown in Figure 5. The 
numerical values for this ANN model are included in Table 2. 
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Figure 5. Experimental and predicted logBB values based on 4-3-1 ANN model (Training set 50 
and validation set 10 data points). 

 
Neural network model for logHSA 
The next ANN model developed for the logHSA had the architecture 4-3-1 while the input 
neurons consisted of the following descriptors: HASA-2/SQRT(TMSA) (AM1), Number of C 
atoms, Number of O atoms, Lowest e-e repulsion (1-center) (AM1) for Cl atoms. This model was 
trained up to 411 iterations and the results from the predictions for both, training and test sets are 
shown in Figure 6 and Table 2. The statistical parameters in terms of R2 for this model resulted in 
R2

train =0.88 and R2
val = 0.922 and the achieved RMS error 0.20 and 0.32 for the training and 

validation sets, respectively. 
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Figure 6. Experimental and predicted logHSA values based on 4-3-1 ANN model (Training set 
75 and validation set 10 data points). 

 
As can be noted most descriptors for this ANN model have similar chemical content as in the 

case of the linear model (C, O and Cl atoms). Also, HASA-2/SQRT(TMSA) is related to 
hydrogen-bonding acceptor charged surface area. However, the incorporation of nonlinear 
transformation by ANN gives a significant improvement of the QSAR model.  

Generally, the applicability domains of both ANN models for logHSA and logBB are difficult 
to define compared to the BMLR models. However, because of the similar nature of the 
descriptors the same limits for the BMLR models can be also applied for these ANN models with 
the respective applicability coefficients.  

As was shown in Figure 3, similar domain presentation can be done for both ANN models. 
However, because of the better predictivity of the ANN models their coefficient of applicability 
can be extended to 0.4-0.5. 
 
 
Conclusions 
 
The overlapping chemical data set of 126 drugs allows development of QSAR correlations for 
two biological properties i.e. blood-brain barrier and human serum albumin binding with their 
theoretical descriptors.  The results obtained indicate that both the multilinear regression and 
ANN models exhibit reasonable prediction capabilities. While the linear models were developed 
mainly for the purpose of structure-activity interpretation, the ANN models were primarily 
developed for predictions and classification. It is worth noting that the drug structures obtained 
by conformational search resulting in energy minimized conformers significantly improved both 
the BMLR and ANN models. 
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The applicability domains were defined for both BMLR and ANN models for searching of 
active compounds with predetermined property values, Therefore, the models reported should 
enable prediction and screening for analogous drugs for their blood-brain barrier penetration and 
human serum albumin binding. 
 
 
Supplementary Information Available 
 
SM1 – Descriptor values available for all models. SM2 – smile strings available for all 
compounds in Table 2. 
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