Supplementary Information

Carbocations from Dibenz[a,j]anthracene and Dibenz[a,h]anthracene, their Methylated Derivatives, and Oxidized Metabolites; A Stable Ion and DFT Study.

Takao Okazaki^a, Joong-Hyun Chun, and Kenneth K. Laali*

Department of Chemistry, Kent State University, Kent, OH 44242, USA ^{a)} Present address: Department of Chemistry for Materials, Mie University, Tsu 514-8507 Japan

Table of Contents

Chart S1. ¹H and ¹³C NMR assignments for dibenz[a,j] anthracenes 1, 2, and 3. S3

Chart S2. NICS(1)_{zz} above/below molecules (Δ NICS(1)_{zz}) by B3LYP/6-311+G(d,p)//B3LYP/6-31G(d) for dibenz[a,j]anthracenes and their Carbocations. S4

Chart S3. NICS(1)_{zz} above/below molecules (Δ NICS(1)_{zz}) by B3LYP/6-311+G(d,p)//B3LYP/6-31G(d) for dibenz[*a*,*h*]anthracenes and their Carbocations. **S6**

Table S1. Energy (E), Zero Point Energy (ZPE), Gibbs Free Energy (G), and Relative Gibbs FreeEnergy (ΔG) of the Optimized Structures for Neutral Compounds and their Derived Carbocationsby B3LYP/6-31G(d)S7

Table S2. Angle between rings (°) from Optimized Geometries by B3LYP/6-31G(d)**S9**

Table S3. Angle between Rings (°) of 7,14-Dimethyldibenz[a_ij]anthracene 3 by X-ray Analysisand B3LYP/6-31G(d) CalculationsS11

Table S4. Energy (E), Zero Point Energy (ZPE), Gibbs Free Energy (G), and Relative Gibbs FreeEnergy (ΔG) of the Optimized Structures for Diol-epoxides (DEs), their Bay-region Carbocationsand Quenching, by B3LYP/6-31G(d)S12

Figure S1. ¹H NMR spectrum for carbocations $1aH^+$ and $1bH^+$ derived from dibenz[*a,j*]anthracene 1 in CF₃SO₃H/SO₂ClF at -50 °C. **S16**

Figure S2. ¹H NMR spectrum for carbocation $2\mathbf{aH}^+$ derived from 7-methyldibenz[*a*,*j*]anthracene **2** in CF₃SO₃H/SO₂ClF at -50 °C. **S17**

Figure S3. 1 H NMR spectrum for carbocation $3aH^{+}$ derived from 7,12-dimethyldibenz[$a_{,j}$]anthracene 3 inFSO_3H/SO_2CIF at -60 $^{\circ}$ C.S18

Figure S4. 13 C NMR spectrum for carbocation $3aH^+$ derived from 7,12-dimethyldibenz[a,j]anthracene 3 inFSO_3H/SO_2ClF at -60 °C.S19

Chart S1. ¹H and ¹³C NMR assignments for dibenz[a,j]anthracenes 1, 2, and 3 (a and b denote interchangeable assignments).

Chart S2. NICS(1)zz above/below molecules (Δ NICS(1)zz) by B3LYP/6-311+G(d,p)//B3LYP/6-31G(d) for dibenz[a,j]anthracenes and their Carbocations.

Chart S2 (continued).

Chart S3. NICS(1)_{zz} above/below molecules (Δ NICS(1)_{zz}) by B3LYP/6-311+G(d,p)//B3LYP/6-31G(d) for dibenz[*a*,*h*]anthracenes and their Carbocations.

Table S1. Energy (E), Zero Point Energy (ZPE), Gibbs Free Energy (G), and Relative Gibbs Free Energy (Δ G) of the Optimized Structures for the DBAs and their Protonated Carbocations by B3LYP/6-31G(d).

Structures	Symmetry	y E, hartree	ZPE, hartree	G, hartree	ΔG , kcal/mol ^a
E A 1	C ₁	-846.826251	0.288555	-846.579650	(0)
H H Ial	\mathbf{I}^+ \mathbf{C}_1	-847.1860834	0.300648	-846.927737	-218.4
1bl	\mathbf{H}^+ \mathbf{C}_1	-847.1878926	0.300410	-846.930577	-220.2
	C_1	-886.1362597	0.316559	-885.864564	(0)
	\mathbf{I}^+ \mathbf{C}_1	-886.5015434	0.328667	-886.218374	-222.0
	\mathbf{H}^+ \mathbf{C}_1	-886.5008274	0.329291	-886.215800	-220.4
	C ₁	-925.4268624	0.345485	-925.126957	(0)
	C ₁	-925.813171	0.357662	-925.501159	-234.8
CH ₃ () () () () () () () () () () () () ()	\mathbf{H}^+ \mathbf{C}_1	-925.7992484	0.357720	-925.486601	-225.7

^a Gibbs free energies relative to those of the corresponding neutral PAHs.

Structures	Symmetry	E, hartree	ZPE, hartree	G, hartree	$\Delta G, kcal/mol^{\underline{a}}$	
E CH ₃ A A D C B 4	C_1	-886.1183201	0.317504	-885.843481	(0)	
H CH ₃ 4bl	\mathbf{H}^+ \mathbf{C}_1	-886.4971396	0.329585	-886.210965	-230.6	
CH3 H H 4aF	\mathbf{H}^+ \mathbf{C}_1	-886.4862237	0.328962	-886.200952		-224.3
9	C ₁	-846.8266086	0.288517	-846.580094	(0)	
н н 9Н	+ C ₁	-847.1874248	0.300520	-846.929677	-219.4	
11 ČH ₃	C ₁	-886.127868	0.317176	-885.853734	(0)	
н. н. () () () () () () () () () ()	$\mathbf{H}^+ \mathbf{C}_1$	-886.4950068	0.328970	-886.209731	-223.4	
11bH	t ⁺ C ₁	-886.4994067	0.329476	-886.213679	-225.9	
CH3 CH3 CH3 CH3	C ₁	-925.4296662	0.345714	-925.127940	(0)	
	\mathbf{I}^+ \mathbf{C}_1	-925.8073439	0.357799	-925.494377	-229.9	

^a Gibbs free energies relative to those of the corresponding neutral PAHs.

Structures	AB	AC	AD	AE	BC	BD	BE	CD	CE	DE
E A A D C B 1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	0.3	1.2	2.0	1.8	1.2	2.2	2.1	1.5	1.6	0.4
	0.7	3.1	5.7	5.4	3.1	6.0	5.7	3.2	3.2	0.7
	0.8	5.8	9.1	8.9	5.5	9.2	9.1	5.5	5.8	0.8
CH ₃ H ^W H ^W H	9.3	16.3	10.9	5.1	7.5	6.2	10.9	7.5	16.3	7.5
	0.2	7.8	14.7	14.7	7.7	14.6	14.7	7.7	7.8	0.2
	5.8	9.3	11.8	10.2	5.5	10.4	11.8	5.5	9.3	5.8

Table S2. Angle between rings (°) from Optimized Geometries by B3LYP/6-31G(d)

Structures	AB	AC	AD	AE	BC	BD	BE	CD	CE	DE	
E CH ₃ A 4	8.3	13.5	8.8	2.5	5.3	3.1	8.8	5.3	13.5	8.3	
	0.9	6.6	9.5	9.7	5.8	9.2	9.5	5.8	6.6	0.9	
CH ₃ the second secon	6.6	11.3	7.1	2.6	9.8	2.3	7.1	4.8	11.3	8.6	
A D C B 9	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
н н Ф 9Н ⁺	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
A A A A A A A A A A A A A A	0.8	3.3	11.3	20.6	2.8	10.5	19.8	8.5	17.8	9.4	
H H (+) (+) (+) (+) (+) (+) (+) (+)	0.8	4.9	11.6	19.5	5.2	12.2	20.2	9.4	17.5	8.1	
	0.7	6.4	9.7	9.9	6.1	9.7	10.1	5.8	6.7	1.1	

Table S3. Angle between Rings (°) of 7,14-Dimethyldibenz[a_j]anthracene **3** by X-ray Analysis and via B3LYP/6-31G(d) Calculations

Method	AB	AC	AD	AE	BC	BD	BE	CD	CE	DE	
X-ray ^a	5.2	8.5	11.6	5.3	13.2	16.1	9.2	3.4	4.4	6.9	
B3LYP/6-31G(d)	16.3	10.9	5.1	7.5	6.2	10.9	7.5	16.3	7.5	9.3	

^a Carrell, C. J.; Carrell, H. L.; Glusker, J. P.; Abu-Shaqara, E.; Cortez, C.; Harvey, R. G. *Carcinogenesis* **1994**, *15*, 2931.

Table S4. Energy (E), Zero Point Energy (ZPE), Gibbs Free Energy (G), and Relative Gibbs Free Energy (Δ G) of the Optimized Structures for Diol-epoxides (DEs), their Bay-region Carbocations and Quenching, by B3LYP/6-31G(d)

Structures	Symmetry	E, hartree	ZPE, hartree	e G, hartree	ΔG , kcal/mol ^a
	5 C ₁ -1	073.6263036	0.325280	-1073.346930	(0)
Ф Ф С С С С С С С С С С С С С	+ C ₁ -1	074.0079233	0.336892	-1073.718086	-232.9
	a C ₁ -1	189.3823009	0.381755	-1189.050361	(0)
н ₃ со, он ,	b C ₁ -1	189.3786045	0.381093	-1189.047941	1.5
CH3	6 C ₁ -1	112.9368286	0.353355	-1112.632101	(0)
OH OH (H ₃)	5 ⁺ C ₁ -1	113.3215975	0.365068	-1113.005524	-234.3
H ₃ CO H ₃ CO H ₃ OH	5 a C ₁ -1	228. 692682	0.409827	-1228.335572	(0)
H ₃ CO., ₁₁ , H ₃ CO., ₁₁ , H ₃ OH	бь С ₁ -1	228.6891034	0.409188	-1228.333033	1.6

^a Gibbs free energies for bay-region carbocations relative to epoxides.

Table S4 (continued).

Structures	Symmetr	y E, hartree	ZPE, hartre	e G, hartree	<u>ΔG, kcal/mol^a</u>
	C_1	-1112.9197449	0.354045	-1112.612390	(0)
	+ C ₁	-1113.30 65581	0.365816	-1112.988410	-236.0
Н ₃ СО СН ₃ ОН (), OH 78	a C ₁	-1228.66889	0.410330	-1228.308611	(0)
н ₃ со, ОН СН ₃ ОН СН ₃ ОН СН ₃ ОН СН ₃ ОН СН ₃ ОН	b C ₁	-1228.6675398	0.409851	-1228.308368	0.2
CH3 CH3 CH3	8 C ₁	-1152.2288762	0.382173	-1151.895690	(0)
	8 ⁺ C ₁	-1152.6187755	0.393941	-1152.274443	-237.7
H ₃ CO CH ₃ CH ₃ CH ₃ CH ₃ CH ₃ CH ₃ CH ₃ CH ₃ CH	8a C ₁	-1267.9778575	0.438431	-1267.591857	(0)
H ₃ CO. CH ₃ CH ₃ CH ₂ OH	8 b C ₁	-1267.9767372	0.437978	-1267.591742	0.1
он С С С С С С С С С С С С С С С С С С С	C_1	-1073.6267107	0.325247	-1073.347476	(0)
	0 ⁺ C ₁	-1074.0101389	0.337032	-1073.720065	-233.8

^a Gibbs free energies for bay-region carbocations relative to epoxides.

Structures	Symmetry	E, hartree	ZPE, hartree	e G, hartree	$\Delta G, kcal/mol^{\underline{a}}$
н ₃ со ОН и он 10)a C ₁ -	1189.3827531	0.381725	-1189.050950	(0)
н ₃ со, ОН и. он 10)b C ₁ -	1189.3776089	0.381400	-1189.046614	2.7
он 12	2 C ₁ -	1112.9288375	0.353907	-1112.621952	(0)
€ ОН ОН ОН ОН ОН	2 ⁺ C ₁ -	1113.3147837	0.365587	-1112.997179	-235.5
0H H3C0 H3C0 H3C0 H OH	2 a C ₁ -	1228.6845447	0.410458	-1228.324903	(0)
H ₃ CO.,, ОН (,,,) ОН (,,,) ОН (,,,) ОН (,,,) ОН (,,,) ОН (,,,,) ОН (,,,,) ОН (,,,,,) ОН (,,,,,) ОН (,,,,,) ОН (,,,,,) ОН (,,,,,) ОН (,,,,,) ОН (,,,,,) ОН (,,,,,) ОН (,,,,,,) ОН (,,,,,,,) ОН (,,,,,,) ОН (,,,,,,,) ОН (,,,,,,) ОН (,,,,,,)) ОН (,,,,,,) ОН (,,,,,,)) ОН (,,,,,,)) ОН (,,,,,,)) ОН (,,,,,,)) ОН (,,,,,,,)) ОН (,,,,,,)) ОН (,,,,,)) ОН (,,,,,,)) ОН (,,,,,)) О	2 b C ₁ -	1228.680705	0.409953	-1228.321869	1.9
СН3 ОН 12	3 C ₁ -	1112.9290445	0.353851	-1112.622164	(0)
сн₃ ⊕ ОН ОН 13	3 ⁺ C ₁ -	1113.3189847	0.365612	-1113.001388	-238.0

^{a)}Gibbs free energies for bay-region carbocations relative to epoxides.

Structures	Symmetr	y E, hartree	ZPE, hartree	G, hartree	<u>ΔG, kcal/mol^a</u>
н ₃ со ОН СН3 ОН (он 1	3a C ₁	-1228.6778643	0.410346	-1228.318824	(0)
Н ₃ СО, ОН СН3 () ОН () ОНО () ОН () ОН (3b C ₁	-1228.6757757	0.410322	-1228.316331	1.6
СН3 ОН СН3 ОН СН3 ОН СН3	5 C ₁	-1152.2278743	0.382315	-1151.893455	(0)
СН ₃ ФН ОН ОН ОН ОН ОН ОН ОН ОН ОН	5 ⁺ C ₁	-1152.6235248	0.394041	-1152.278537	-241.6
Н ₃ СО СН3 СН3 СН3 СН3	5a C ₁	-1267.9808545	0.438586	-1267.594807	(0)
Н ₃ CO, ОН СН3 СН3 СН3 СН3	5b C ₁	-1267.9783169	0.437969	-1267.592805	1.3

^{a)} Gibbs free energies for bay-region carbocations relative to epoxides.

Figure S1. ¹H NMR spectrum for carbocations $1aH^+$ and $1bH^+$ derived from dibenz[*a*,*j*]anthracene 1 in CF₃SO₃H/SO₂ClF at -50 °C.

Figure S2. ¹H NMR spectrum for carbocation $2\mathbf{aH}^+$ derived from 7-methyldibenz[*a*,*j*]anthracene 2 in CF₃SO₃H/SO₂ClF at -50 °C.

Figure S3. ¹H NMR spectrum for carbocation **3aH**⁺ derived from 7,12-dimethyldibenz[$a_{,j}$]anthracene **3** in FSO₃H/SO₂ClF at -60 °C.

Figure S4. ¹³C NMR spectrum for carbocation $3aH^+$ derived from 7,12-dimethyldibenz[a_ij]anthracene 3 in FSO₃H/SO₂ClF at -60 °C.