Supporting Information

Nature of Transmission of Polar Substituent Effects in γ-Disposed Bicyclo[2.2.1]heptane (Norbornane) and Adamantane Ring Systems as Monitored by ¹⁹F NMR: A DFT- GIAO and – NBO Analysis

William Adcock*, Andrew Schamschurin, and Julian F. Taylor

School of Chemistry, Physics, and Earth Sciences, Flinders University, GPO Box 2100, Adelaide SA 5001, Australia

General Procedures. NMR spectra were recorded on a Gemini-300 spectrometer. The probe temperature of the instrument was 295 \pm 2 K. All ¹H and ¹³C nmr spectra were recorded in CDCl₃ as solvent at 300 and 75 MHz, respectively, with CHCl₃ (7.26ppm) for ¹H and CDCl₃ (77.0ppm) for ¹³C as the internal reference. The proton-decoupled ¹³C NMR spectra were obtained employing spectral widths of 18761.7 and 9718.2 Hz (64K/32K data points, digital resolution of 0.60 and 0.30 Hz, respectively. The ¹⁹F nmr spectra were obtained under proton-decoupled conditions at 282.328 MHz (64K/32K data points, spectral widths of 69,930.1 Hz and 19,569 Hz) on dilute solutions (ca. 1-2 mg of the compound or mixture and 1-2 mg 1, 1, 2, 2-tetrachloro-3,3, 4,4-tetrafluorocyclobutane(TCTFCB)as an internal reference) in CDCl₃ or cyclo-C₆H₁₂ (0.6-0.7 ml). The ¹¹⁹Sn NMR spectra were obtained under proton-decoupled conditions at 111.9 MHz with a digital resolution of 0.48Hz on dilute solutions $(Sn(CH_3)_4)$ as an internal reference) in CDCl₃. The GC-MS analyses were run on a Varian Saturn 4D instrument(column: 30m, 0.22mm, 0.25µm film thickness; 5% phenyl, 95% methylpolysiloxane(J&W DB-5ms)as stationary phase with helium(15psi)as the carrier gas. Analytical vapour-phase chromatographic analyses (VPC) were performed using a 15-m capillary column (RSL-300, 0.53-mm column). All the anhydrous solvents used in this study were dried by standard procedures. Diethylaminosulfurtrifluoride(DAST) was purchased from the Aldrich Chemical Company, Inc.

Syntheses. The syntheses of the precursor compounds (4, 5, 6, and 7, X=COOCH₃) for the preparation of the various mixtures of fluoro-norbornyl derivatives were relatively straightforward and are summarized in Schemes I – IV. The *exo/endo* ratio for the Diels-Alder mixture was $11-exo/11-endo = 25/75^1$. Epimerization of the mixture by heating at 120° C in the presence of sodium methoxide¹ (0.05 equivs) gave a mixture more biased in the *exo-*epimer(60/40). The mixture was separated by HPLC (silica gel column/2% ethyl acetate-hexane as the eluent) to provide the respective pure *exo-* and *endo-* epimers. The *exo-* and *endo-*norbornene esters (11-*exo* and 11-*endo*) were hydroborated/oxidized by standard procedures² to yield the *exo* alcohol mixtures¹ (Schemes I and IV). Jones oxidation³ of these alcohols gave the corresponding ketones which, on NaBH₄/CH₃OH reduction, provided the required *endo*

alcohols¹ except for 16-*exo*-OH which led to 19-*endo*-OH and the expected lactone(18) from the other *endo* alcohol(Scheme IV).

In initial trial fluorination experiments pure 2,6- exo, exo and -exo, endo ester alcohols(12exo-OH and 14-exo-OH, respectively; Scheme I), which were obtained from the aforementioned *exo*- alcohol mixtures (3:2) by literature procedures¹, were treated in a standard way with DAST and 2-chloro-1,2,2-trifluorotriethylamine($FAR = fluoroamine reagent)^4$. Both fluorinating methods gave similar product mixtures. In the case of 12-exo-OH five fluoronorbornyl derivatives were identified(4, X=COOCH₃(48%); 6, X=COOCH₃(14%); 7, $X=COOCH_3(14\%)$; endo-epimer of 1, $X=COOCH_3(18\%)$ plus unidentified residuals(6%)) in the product mixture. Since these fluorination procedures are known to involve cationic mediated pathways, fast 1,2-hydrogen shifts and Wagner- Meerwein rearrangements are clearly implicated. Modification of the use of FAR (FAR/KF/18-crown-6) as described by Hanreich' in the preparation of 6-exo-fluoro-2-exo-norbornyl acetate significantly increased the proportion of 4, X=COOCH₃ in the mixture. Similar fluorination trials on the 14-exo-OH isomer gave 5, X=COOCH₃ with formation of significant amounts of the 2,6-lactone,⁶ apparently formed by trapping of the cation as indicated in Scheme IV. The formation of this by-product was found to be minimized by use of an excess of the fluorinating agent (5 equiv of FAR).

Because the separation of the aforementioned mixtures posed a difficult and protracted exercise to obtain the desired fluoronorbornyl derivatives in a pure state and, moreover, because the fluoride mixtures could be unambiguously characterized by ¹³C and ¹⁹F NMR in conjunction with GC-MS and VPC analyses, we decided to obtain the ¹⁹F SCS of the various derivatives of 4 and 5 from mixtures rather then homogeneous compounds. Consequently, differently biased mixtures of 4, 5, 6, and 7(X=COOCH₃) (see Schemes I - III) were obtained by fluorination of appropriate mixtures of the exo- and endo-alcohols. The following procedures are typical : (a) Following the protocols of Hanreich⁵, FAR (16.4g, 15.5ml; 86 mmoles) was added to a solution of a mixture of 14-endo-OH and 15-endo-OH(8.8g, 51 mmoles; see Scheme I) in dry CH₂Cl₂(10ml) at 0^oC under N₂ and then allowed to stand for 30 min before being added dropwise with stirring to a refluxing mixture of dry KF(6g) and 18-crown-6(2g) in dry CH₂Cl₂(30ml) under N₂ which had been under reflux for 45 min under N₂. After reflux for ca. 20 hrs the reaction mixture was guenched with an ice-cold aqueous NaHCO₃ solution before being thoroughly extracted with diethyl ether. The combined extracts were dried (MgSO₄) and the ether removed under vacuum to yield a crude mixture. Removal of residual organics by flash chromatography (silica gel with 10% EtOAc/hexane as the eluent) followed by kugelrohr distillation (40^oC, 0.1 mm Hg) gave a mixture of 4, 6, and 7(X=COOCH₃)in the ratio of ca. 6:4:1. (b) A solution of the exo-hydroxy-esters (10g, 59 mmoles; 16-exo-OH/17-exo-OH) in dry CFCl₃/CH₂Cl₂(16ml/4ml)was added dropwise to neat FAR⁴(5 equiv.) with stirring maintained at 0° C under N₂. The mixture was then allowed to slowly warm to room temperature(ca. 5hrs) before being worked up as described above in (a) to provide a mixture of 5, 6 and 7(X=COOCH3) in the ratio of ca. 4:1:2. (c) A THF (2.5ml) solution of a mixture of the norbornene esters (11-exo/11-endo; 1.5g) was treated with pyridine/HF as described by Olah et

al⁷ for the treatment of norbornene. The mixture was then quenched by pouring into an ice-cold NaHCO₃ solution before being extracted with diethyl ether. The combined extracts were dried (MgSO₄) and the ether removed under vacuum to yield a crude mixture which, after kugelrohr distillation (70° C,1 mm Hg), gave a mixture of pure 4, 5, 6, and 7(X=COOCH₃)in the ratio of ca. 2: 0.2: 10: 5.

Most of the fluoride mixtures were obtained from these fluoro-ester mixtures by standard functionalization procedures from the appropriate precursor as indicated in Table 1. Additional mixtures of 6 and 7(X = CN and Br; 1:1 and 45:55, respectively) were obtained from the readily available Diels-Alder adducts by treatment with HF/pyridine⁷ (see Scheme V). The exo/endo ratios for the Diels-Alder mixtures were 20-*exo*/20- *endo* = $1:2^8$, and 21-exo/21-endo = $2:3^5$. The latter mixture was separated by HPLC (silica gel column/2% ethyl acetate-hexane as the eluent) to provide the respective pure *exo-* and *endo-* epimers. The remaining mixtures of 4, 5, 6, and 7(X = F, OCOCH3, OH, and OCH3) were derived from the appropriate norbornene precursors (22-*exo* and 22-*endo*) by reaction pathways as shown in Schemes VI and VII. The Diels-Alder mixture of 22-exo/22-endo (3:7)⁵ was separated by HPLC (silica gel column/2% ethyl acetate-hexane sthe eluent). A mixture heavily biased in the *exo*-epimer(22-exo/22-endo = 96/4)was obtained by heating norbornadiene with acetic acid³.

All the fluoride mixtures were unambiguously characterized by ¹³C and ¹⁹F NMR in conjunction with GC-MS and VPC analyses. The ¹³C NMR spectral assignments followed unequivocally from the characteristic ¹³C - ¹⁹F coupling constants in the norbornane skeletal framework⁷ as well as chemical shift additivity and APT technology. The observed and calculated ¹³C chemical shifts for the various derivatives of 4- 7 are listed in Tables 2-9 below. The chemical shifts and SCS employed in determining the calculated shifts of 4-7 are given in Tables 10 and 11. All spectra were obtained on the same instrument under identical conditions and were generally in accord with literature values. The *exo-* and *endo-*2-substituted (X)-norbornanes are all known compounds and were prepared by standard procedures.

Scheme 5

Х	Precursor	Synthetic Method
СООН	COOCH ₃	THF/H2O/H2SO4/ Δ^{a}
CONH ₂	СООН	CH ₂ Cl ₂ /SOCl ₂ /NH ₃ ^a
CN	CONH ₂	(CF ₃ CO) ₂ /dioxane/pyridine ^b
NH ₂	СООН	1. $CH_2Cl_2/SOCl_2$
		2. acetone/NaN ₃ /H ₂ O
		3. $CH_2Cl_2/CF_3COOH/\Delta^c$
		4. $CH_3OH/H_2O/K_2CO_3/N_2/\Delta^c$
NO ₂	NH ₂	$m\text{-}ClC_6H_4COOH/ClCH_2CH_2Cl/\Delta^d$
CH ₂ OH	СООН	$(C_2H_5)_2O/LiAlH_4/\Delta$
CH ₂ OTosyl	CH ₂ OH	p-CH ₃ C ₆ H ₄ SO ₂ Cl/pyridine
CH_2Br	CH ₂ OTosyl	$THF/LiBr/\Delta$
CH ₃	CH ₂ OTosyl	NaBH ₄ /HMPA
Cl	СООН	1. NHTP ^e /CH ₂ Cl ₂ /DCC ^f
		2. PTOC ester ^g /CF ₃ CCl ₃ /hv ^h
Br	СООН	1. NHTP ^e /CH ₂ Cl ₂ /DCC ^f
		2. PTOC ester ^g /CF ₃ CHClBr/hv ^h
Ι	СООН	1. NHTP ^e /CH ₂ Cl ₂ /DCC ^f
		2. PTOC ester ^g /CF ₃ CH ₂ I/hu ^h
Ι	СООН	$C_6H_6/Pb(OCOCH_3)_4/I_2/\Delta/h\upsilon^i$
Sn(CH ₃) ₃	Br	(CH ₃) ₃ SnLi/THF ^h

Table 1. Synthetic Methods for Mixtures of 4-7 from Mixtures of Fluoro-Carboxylic Esters 4-7, $X = COOCH_3$ (Schemes I, II, and III)

^aRef. 9. ^bRef. 10. ^cRef. 11. ^dRef. 12. ^eNHTP = N-hydroxy-2-thiopyridone. ^fDCC = N, N-dicyclohexylcarbodiimide. ^gBarton PTOC ester = O-acyl-N-hydroxy-2-thiopyridone. ^hRef. 13. i. Ref. 14.

X	C1	C2	C3	C4	C5	C6	C7	Others
Н	41.98	96.21	39.91	34.65	28.00	22.39	34.57	
	(19.5)	(181.5)	(19.6)		(1.2)	(10.5)		
NO_2	49.17	91.32	38.85	34.43	36.22	82.70	32.63	
	(24.4)	(186.4)	(20.6)			(12.6)		
CN	46.83	93.36	38.81	34.84	34.92	25.31	33.77	122.14
	(23.4)	(184.4)	(20.4)			(13.3)		(3.9)
СООН	46.13	94.88	39.14	34.67	32.43	40.18	33.12	181.11
	(22.2)	(183.5)	(20.6)			(10.5)		(4.4)
COOCH_3	46.25	94.85	39.17	34.61	32.94	40.06	33.45	175.26
	(21.8)	(183.8)	(20.2)			(10.4)		(4.6)
								51.9
CONH_2	46.81	95.17	39.29	34.61	33.25	40.89	33.14	177.1
	(21.4)	(183.8)	(20.0)			(9.4)		(3.5)
F	49.42	91.62	38.95	33.70	38.95	91.62	30.96	
	(21.8)	(183.0)	(19.0)		(19.0)	(183.0)		
		(16.0)	(1.5)		(1.5)	(16.0)		
Cl	52.30	93.06	38.87	35.25	42.37	55.59	32.01	
	(21.8)	(185.0)	(20.3)			(14.8)		
Br	52.69	93.05	38.78	35.73	42.54	45.27	32.31	
	(21.9)	(186.4)	(20.3)			(14.0)		
Ι	53.91	92.47	39.82	36.65	43.63	18.28	32.97	
	(21.6)	(187.0)	(20.2)			(12.9)		
NH_2	51.74	94.23	38.84	34.72	40.77	48.99	31.21	
	(19.9)	(181.5)	(20.0)			(12.1)		
OH	51.19	93.17	38.99	34.21	41.03	69.54	31.39	
	(19.9)	(181.5)	(20.1)			(14.3)		
OCH ₃	47.03	93.45	39.34	33.92	31.67	78.87	38.29	56.20
	(20.1)	(181.8)	(20.2)			(13.9)		
$OCOCH_3$	48.23	92.45	38.93	34.10	32.10	72.23	38.56	170.46
	(21.8)	(183.1)	(20.1)			(15.8)		21.10
CH ₃	48.90	95.99	40.38	35.47	38.11	29.42	31.54	21.20
	(18.4)	(180.8)	(19.8)		(0.9)	(9.7)		(2.8)
CH ₂ OH	44.19	95.83	39.50	34.70	32.51	38.08	31.84	65.85
	(19.4)	(182.6)	(20.0)			(9.1)		
$Sn(CH_3)_3^c$	44.84	97.07	39.56	35.55	32.51	17.87	34.64	-10.70 ^c
	(17.6)	(187.2)	(19.7)		(1.5)	(13.9)		

Table 2. Observed ¹³C chemical shifts of *exo*-6-substituted(X)-*exo*-2-fluorobicyclo- [2.2.1]heptanes (4)^{a,b}

 ${}^{a}J_{C-F}$ (Hz), in parenthesis. ${}^{b}{}^{13}C$ NMR (CDCl3, relative to Me4Si, δ) of 6-Fluoro-2-norbornanone: 58.55(21.7Hz, C1), 214.40(12.2Hz, C2), 44.76(C3), 34.65(C4), 38.86 (21.0Hz, C5), 90.89

(192.1Hz, C6), 35.19(C7). ^{c 119}Sn NMR(CDCl₃, relative to internal SnMe₄): δ 14.1ppm, J_{Sn-F} =57.2 Hz.

X	C1	C2	C3	C4	C5	C6	C7
NO ₂	49.20	92.66	38.12	34.21	35.09	80.62	30.93
CN	48.00	94.96	38.80	35.05	34.60	23.75	33.60
СООН	46.63	95.06	39.68	34.56	32.30	39.09	32.77
COOCH ₃	46.59	95.11	39.70	34.58	32.41	39.01	33.01
CONH_2	47.20	95.00	40.00	34.50	34.80	41.20	30.60
F^{C}	47.74	88.75	38.25	33.49	38.25	88.75	30.90
Cl	52.40	93.25	38.40	35.20	41.90	55.10	31.40
Br	52.30	94.14	38.45	35.74	42.26	46.76	31.85
Ι	53.74	95.06	38.80	36.40	43.30	22.00	32.40
NH_2	51.20	92.80	38.90	34.50	40.70	47.90	29.90
ОН	51.30	93.10	39.10	34.30	41.20	69.70	31.40
OCH ₃	45.60	91.10	38.75	33.75	33.00	76.90	35.60
OCOCH ₃	46.68	90.44	38.00	33.56	33.12	69.85	35.49
CH_3	49.20	95.60	40.50	35.90	38.45	29.45	31.25
CH ₂ OH	44.20	95.80	40.51	35.15	32.75	37.80	32.85
Sn(CH ₃) ₃	45.80	99.80	39.60	36.00	33.0	20.11	34.70

 Table 3. Calculated ¹³C chemical shifts of *exo*-6-substituted(X)-*exo*-2-fluoro-bicyclo[2.2.1]heptanes (4)

^aCalculated ¹³C NMR of 6-Fluoro-2-norbornanone: 58.10(C1), 213.80(C2), 44.70(C3), 34.80(C4), 39.00(C5), 90.90(C6), 35.00(C7).

X	C1	C2	C3	C4	C5	C6	C7	Others
NO ₂	47.61	90.90	39.13	35.68	35.60	83.31	32.56	
	(24.1)	(182.0)	(20.1)			(9.7)		
CN	44.80	91.8	39.59	35.41	34.24	24.76	35.22	120.98
	(23.3)	(182.6)	(20.3)			(9.7)		
СООН	45.66	93.09	39.64	35.85	30.70	41.28	36.50	180.80
	(22.1)	(180.0)	(19.6)			(10.2)		
COOCH ₃	45.72	93.05	39.62	35.86	30.81	41.29	36.47	174.30
	(21.6)	(180.8)	(19.5)	(0.5)	(1.1)	(9.7)		51.70
CONH_2	46.33	93.03	39.67	35.97	30.45	42.38	37.01	175.10
	(21.2)	(179.0)	(19.4)			(10.1)		
F	47.47	90.76	39.72	35.48	36.26	91.95	33.91	
	(21.5)	(178.0)	(20.2)		(21.7)	(184.0)	(3.9)	
	(16.0)	(14.0)				(10.0)		
Cl	48.97	92.15	42.00	36.78	39.85	55.59	34.58	
	(22.5)	(179.1)	(20.7)			(14.8)		
Br	49.44	93.94	39.71	35.75	40.25	46.45	34.90	
	(16.2)	(179.8)	(20.0)			(13.7)		
Ι	49.23	94.45	39.97	35.39	41.87	21.31	33.87	
	(22.8)	(183.7)	(20.1)			(16.6)		
NH_2	48.55	92.46	40.41	36.43	38.45	49.68	35.46	
	(19.2)	(176.5)	(19.4)			(10.5)		
OH	48.66	92.03	40.27	37.05	37.33	69.81	34.53	
	(19.7)	(176.2)	(19.7)			(10.7)		
OCH_3	45.62	91.81	40.28	35.62	34.14	79.13	35.89	57.19
	(20.0)	(176.8)	(19.6)			(10.1)		
OCOCH_3	46.32	91.25	39.90	35.47	35.95	72.10	34.10	170.30
	(21.1)	(178.4)	(18.1)			(10.0)		21.00
CH ₃	47.42	93.13	40.69	36.86	40.51	30.62	36.70	17.01
	(18.6)	(176.9)	(19.4)	(3.9)		(10.7)		
CH ₂ OH	42.39	95.62	40.28	34.19	31.39	36.67	38.30	66.35
	(19.7)	(176.8)	(20.0)			(10.9)		
$Sn(CH_3)_3^c$	46.13	92.81	40.35	35.02	31.79	20.56	36.87	-10.30
	(19.6)	(184.0)	(19.5)			(13.5)		[243.0]
						[376.0]		[233.0]
						[359.0]		[55.4]

 Table 4. Observed ¹³C chemical shifts of *endo*-6-substituted(X)-exo-2-fluoro-bicyclo[2.2.1]heptanes (5)^{a,b}

^aJ_{C-F} (Hz), in parenthesis. ^bJ_{C-Sn}(Hz), in brackets. ^{c 119}Sn NMR(CDCl₃,relative to internal SnMe₄): δ 2.42ppm, J_{Sn-F} = 0.0 Hz.

X	C1	C2	C3	C4	C5	C6	C7
NO ₂	48.52	89.48	38.42	35.24	37.07	80.07	29.52
CN	45.88	91.66	39.62	35.55	33.84	22.85	34.93
СООН	46.22	91.30	39.30	35.60	28.93	38.67	36.48
COOCH_3	46.10	91.31	39.26	35.51	30.14	38.53	36.35
CONH_2	46.67	90.83	39.46	35.58	29.72	41.48	36.79
F	47.70	89.80	39.15	35.35	36.15	90.35	30.75
Cl	50.00	89.20	40.21	36.30	39.50	54.65	34.53
Br	50.78	91.06	39.82	35.75	39.94	46.35	34.03
Ι	50.48	95.01	39.87	35.89	42.60	25.07	32.40
NH ₂	49.10	86.40	40.70	36.10	37.80	45.90	35.60
OH	48.80	86.85	40.50	36.25	37.85	65.15	34.05
OCH ₃	44.80	86.15	40.80	35.50	34.15	73.75	33.35
OCOCH ₃	45.98	87.50	39.71	35.25	35.35	68.30	33.25
CH ₃	47.80	88.90	40.80	36.70	39.00	27.25	35.20
CH ₂ OH	44.20	91.70	39.70	35.50	32.30	35.50	37.30
Sn(CH ₃) ₃	46.20	96.50	40.30	35.25	31.86	21.10	36.80

 Table 5. Calculated ¹³C chemical shifts of *endo*-6-substituted(X)-*exo*-2-fluoro-bicyclo[2.2.1]heptanes (5)

X	C1	C2	C3	C4	C5	C6	C7	Others
NO ₂	41.48	93.65	36.59	42.08	86.34	29.57	31.96	
	(21.3)	(184.5)	(18.2)			(10.6)		
CN	41.57	93.76	38.73	40.23	29.81	28.98	33.56	122.76
	(21.2)	(184.8)	(20.6)		(1.7)	(11.0)		
СООН	41.80	95.08	39.60	39.53	45.05	26.69	32.60	180.30
	(19.6)	(183.00)	(21.0)			(11.70)		
COOCH ₃	41.85	95.12	40.22	39.83	44.98	26.79	32.59	175.60
	(20.5)	(182.48)	(20.8)		(1.6)	(11.0)		51.80
CONH ₂	41.74	95.27	39.98	40.25	45.95	26.77	32.56	177.50
	(20.5)	(182.4)	(20.6)			(11.1)		
F	40.59	94.11	32.83	40.59	94.11	32.83	30.79	
	(21.2)	(182.8)	(16.4)	(21.2)	(182.8)	(16.4)		
Cl	41.96	94.13	37.04	44.54	60.23	36.10	31.45	
	(20.7)	(183.5)	(21.2)		(2.9)	(10.6)		
Br	42.58	94.18	37.85	45.01	51.11	36.29	31.92	
	(20.6)	(183.8)	(21.4)		(1.5)	(10.5)		
Ι	42.34	93.49	38.62	46.52	26.45	38.62	32.89	
	(20.6)	(182.6)	(20.7)		(2.3)	(10.7)		
NH ₂	41.74	95.18	37.11	43.65	53.43	34.61	30.52	
	(20.2)	(181.9)	(20.5)			(9.7)		
OH	39.85	94.94	34.80	42.71	73.13	34.70	30.61	
	(18.2)	(181.6)	(21.2)		(2.1)	(11.1)		
OCH ₃	40.88	95.11	34.89	38.39	82.41	32.00	42.49	56.10
	(20.2)	(182.5)	(21.0)		(2.9)	(11.3)		
OCOCH ₃	41.05	94.37	34.69	39.92	75.64	32.30	39.70	170.60
	(20.6)	(182.5)	(19.7)		(2.5)	(11.0)		21.10
CH ₃	42.68	96.04	39.21	41.48	34.95	32.18	31.00	21.90
	(19.8)	(181.5)	(19.8)		(0.95)	(11.1)		(1.5)
CH ₂ OH	42.36	95.61	39.50	36.70	43.40	26.77	31.32	65.60
	(20.0)	(182.4)	(19.9)			(11.3)		
Sn(CH ₃) ₃ ^d	43.05	96.27	44.16	38.72	25.91	27.20	34.78	-10.70
	(19.6)	(181.4)	(18.9)	[7.1]		(10.1)		[298.0,
								312]

Table 6. Observed ¹³C chemical shifts of *exo*-5-substituted(X)-*exo*-2-fluorobicyclo- [2.2.1]heptanes (6)^{a-c}

^aJ_{C-F} (Hz), in parenthesis. ^bJ_{C-Sn}(Hz), in parenthesis. ^{c 13}C NMR(CDCl3, relative to Me4Si, δ) of 5-Fluoro-2-norbornanone: 48.25(C1), 215.05(C2), 38.06(12.4Hz, C3), 41.33(21.7Hz,C4), 93.43(184.3Hz, C5), 33.76(21.8Hz, C6), 33.77(C7). ^{d 119}Sn NMR (CDCl₃, relative to internal SnMe₄): δ 7.21ppm, J_{Sn-F}=20.8 Hz.

X	C1	C2	C3	C4	C5	C6	C7
NO ₂	41.30	94.37	36.83	42.06	86.21	29.50	31.92
CN	42.20	95.01	38.50	40.00	29.30	29.05	33.70
СООН	41.71	95.93	38.82	39.50	44.68	26.70	32.76
COOCH ₃	41.71	95.95	38.86	39.47	44.61	26.82	33.01
CONH_2	41.70	96.20	38.90	40.00	44.70	29.15	30.60
F	40.82	94.51	32.61	40.82	94.51	32.61	30.92
Cl	42.30	94.60	36.99	44.55	60.50	36.30	31.40
Br	42.87	94.70	37.89	45.17	52.35	36.67	31.85
Ι	43.70	95.20	38.70	46.50	28.30	38.00	32.40
NH ₂	41.90	94.70	37.00	43.80	53.60	35.00	29.90
ОН	41.20	94.90	34.90	42.70	73.10	34.80	30.60
OCH ₃	40.85	95.00	34.84	38.45	82.55	27.35	35.60
OCOCH ₃	40.68	94.26	34.20	39.60	75.45	27.53	35.49
CH ₃	43.00	96.70	39.30	42.05	35.05	32.85	31.25
CH ₂ OH	42.30	96.90	39.60	37.15	43.45	27.15	32.85
Sn(CH ₃) ₃	43.10	95.80	43.50	38.60	25.70	27.40	34.70

 Table 7. Calculated ¹³C chemical shifts of *exo*-5-substituted(X)-*exo*-2-fluoro-bicyclo[2.2.1]heptanes (6)

^aCalculated ¹³C NMR of 5-Fluoro-2-norbornanone: 47.95(C1), 214.34(C2), 37.25(C3), 40.78(C4), 93.46(C5), 33.82(C6), 33.43(C7).

X	C1	C2	C3	C4	C5	C6	C7	Others
NO ₂	42.32	93.57	33.61	41.44	85.23	29.56	32.56	
	(21.1)	(184.2)	(21.5)			(11.1)		
CN	41.99	94.04	35.49	38.64	28.82	28.50	38.75	121.80
	(21.2)	(184.4)	(21.2)			(10.3)		
СООН	42.63	95.03	35.16	39.00	44.12	25.40	36.50	180.80
	(20.0)	(183.2)	(20.3)			(10.5)		
COOCH ₃	42.61	94.82	35.14	38.94	44.05	25.54	36.37	174.57
	(20.2)	(182.8)	(20.4)		(1.2)	(9.8)		51.66
CONH_2	42.66	95.17	34.74	39.13	44.80	25.10	36.91	177.30
	(20.1)	(182.0)	(20.4)			(10.5)		
F	40.59	94.29	-	39.61	-	-	32.76	
	(21.2)	(183.7)		(17.4)			(4.8)	
	(1.6)							
Cl	41.95	94.60	33.00	42.81	60.10	34.34	34.20	
	(20.7)	(179.10)	(20.5)			(10.6)		
Br	42.60	94.49	35.04	42.49	51.20	34.92	33.95	
	(20.0)	(183.40)	(20.7)			(10.2)		
Ι	41.12	97.53	39.19	43.50	31.12	36.28	33.41	
	(20.5)	(180.60)	(21.1)			(9.9)		
NH_2	43.00	93.26	31.04	41.40	50.80	33.22	35.28	
	(20.3)	(175.60)	(19.7)			(10.4)		
OH	42.77	95.46	30.77	40.95	70.55	32.32	33.42	
	(20.4)	(180.5)	(19.9)			(10.2)		
OCH ₃	42.17	95.37	30.88	37.67	79.77	30.73	33.41	56.10
	(20.3)	(182.10)	(19.9)			(10.5)		
$OCOCH_3$	42.11	94.72	31.76	38.69	73.40	30.57	33.14	170.60
	(20.6)	(183.2)	(20.5)			(10.2)		20.94
CH ₃	43.36	96.04	32.65	40.29	32.44	31.49	36.46	16.90
	(19.4)	(181.5)	(19.6)			(10.1)		
CH ₂ OH	42.02	95.83	33.08	38.53	40.81	26.81	38.18	64.10
	(20.1)	(182.8)	(19.9)			(11.3)		
$Sn(CH_3)_3^c$	42.38	96.13	40.04	39.02	26.15	26.55	36.87	-10.40
	(19.2)	(182.7)	(19.9)		(1.2)	(10.1)		[326]
								[316]

 Table 8. Observed ¹³C chemical shifts of *endo*-5-substituted(X)-*exo*-2-fluoro-bicyclo[2.2.1]heptanes (7)^{a,b}

^aJ_{C-F} (Hz), in parenthesis. ^bJ_{C-Sn}(Hz), in parenthesis ^{c119}Sn NMR (CDCl₃,relative to internal SnMe₄): δ -1.06 ppm, J_{Sn-F} = 0.00Hz.

X	C1	C2	C3	C4	C5	C6	C7
NO ₂	42.37	94.67	33.22	41.37	85.76	31.48	29.48
CN	38.75	28.44	28.24	42.68	95.86	35.42	34.95
СООН	42.72	95.54	35.06	39.10	44.26	24.34	36.48
COOCH ₃	42.63	95.51	35.10	38.98	44.12	24.55	36.35
CONH_2	42.71	95.71	34.59	39.54	45.06	24.14	36.81
F	42.20	95.25	33.80	40.70	95.80	30.80	31.70
Cl	43.50	96.46	32.90	42.80	60.20	34.00	34.50
Br	43.88	96.06	34.82	42.65	51.94	34.35	34.03
Ι	42.67	96.12	38.76	43.36	31.64	36.00	32.40
NH ₂	43.50	96.50	30.60	41.70	51.70	32.10	35.60
ОН	42.40	94.90	30.40	40.60	70.30	32.50	33.00
OCH ₃	42.70	97.05	29.90	37.65	79.35	28.55	33.35
OCOCH ₃	42.40	95.90	31,20	38.85	74.00	29.75	33.25
CH ₃	43.88	97.06	32.60	40.75	32.85	33.35	35.10
CH ₂ OH	43.40	96.70	33.10	37.05	41.10	26.70	37.30
Sn(CH ₃) ₃	42.30	96.60	40.20	39.10	26.70	26.30	36.80

 Table 9. Calculated ¹³C chemical shifts of *endo*-5-substituted(X)-*exo*-2-fluoro-bicyclo[2.2.1]heptanes (7)

X	C1	C2	C3	C4	C5	C6	C7	Others
H ^b	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
NO_2	7.11	58.24	7.12	-1.05	-1.82	-3.54	-2.71	
CN	5.91	1.35	6.65	0.11	-1.15	-1.25	-1.02	123.00
СООН	4.56	16.69	4.30	-0.36	-0.29	-1.15	-1.89	183.00
COOCH_3	4.52	16.62	4.43	-0.36	-0.27	-1.10	-1.94	51.60
								0.00
CONH ₂	5.07	17.73	6.79	-0.40	0.00	-1.07	-4.05	178.00
F^{C}	5.68	66.46	10.16	-1.74	-1.75	-7.36	-3.85	
	(19.5)	(181.5)	(19.6)			(10.5)		
Cl	9.70	32.69	13.89	0.20	-1.56	-2.94	-3.28	
Br	10.23	24.36	14.28	0.80	-1.52	-2.08	-2.80	
Ι	11.75	0.58	15.54	1.68	-0.93	-1.24	-2.02	
NH_2	8.71	25.65	12.75	0.01	-0.85	-2.75	-4.12	
OH	8.11	44.65	12.65	-0.59	-0.95	-4.85	-3.82	
OCH ₃	3.54	54.51	15.01	-1.22	-1.20	-5.14	0.93	55.90
OCOCH ₃	4.65	47.46	5.13	-1.39	-1.94	-5.76	0.83	21.40
CH ₃	7.11	7.05	10.45	0.91	0.55	-0.65	-3.42	22.30
CH ₂ OH	2.21	15.45	14.75	0.21	0.55	-0.35	-3.02	66.40
Sn(CH ₃) ₃ ^d	3.75	-2.25	15.09	1.06	-0.30	4.17	0.08	-10.85
	(9.8)	(407.4)	(23.4)	(12.7)		(67.4)		(306.3)

Table 10. Observed ¹³C Substituent Chemical Shifts(SCS) of *exo-*2-Substituted (X) Norbornanes^a

^aDefined as the difference (in ppm) between the ¹³C chemical shift of the substituted compound and that of the parent compound(X=H). A positive and negative sign denotes deshielding(downfield shift) and shielding (upfield shift), respectively. Solvent, CDCl₃. 2-Norbornanone, ¹³C SCS: 13.01(C1), 186.35(C2), 14.85(C3), -1.29(C4), -2.75(C5), -6.15(C6), -1.25(C7). b. X=H, ¹³C NMR(CDCl3, relative to Me4Si) δ 36.39(C1,4), 29.75(C2, 3, 5, and 6), 38.43(C7). c. J_{C-F} (Hz), in parenthesis. d. J_{C-Sn}(Hz), in parenthesis.

X	C1	C2	C3	C4	C5	C6	C7	Others
Н	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
NO_2	6.45	57.69	9.05	0.30	-1.53	-6.73	-5.20	
CN	3.81	0.45	5.85	0.61	-0.35	-4.55	0.28	123.00
СООН	4.15	16.27	1.94	0.65	-0.69	-4.91	1.82	183.00
COOCH ₃	4.03	16.13	2.16	-0.03	-0.70	-4.86	1.76	52.00
CONH ₂	4.60	17.08	1.74	0.64	-0.50	-5.38	2.14	
F	5.67	67.95	8.15	0.41	-0.85	-6.40	-3.92	
	(16.3)	(185.0)	(22.0)			(12.0)	(4.0)	
Cl	7.91	32.25	11.55	1.41	0.25	-7.05	-0.12	
Br	7.62	23.95	11.95	0.81	-0.15	-5.15	-0.62	
Ι	8.42	2.67	13.61	0.61	-0.08	-1.19	-2.08	
NH_2	7.21	23.65	10.81	1.71	0.95	-9.15	0.69	
OH	6.10	43.18	9.61	0.87	0.01	-9.81	-0.85	
OCH ₃	2.71	51.35	6.15	0.61	0.85	-10.05	-1.32	56.00
OCOCH ₃	3.91	45.95	7.35	0.31	-0.25	-8.75	-1.42	21.00
CH ₃	5.40	4.39	10.62	1.36	0.54	-7.63	0.10	22.00
CH ₂ OH	2.11	13.15	4.35	0.81	0.55	-6.85	1.58	66.00
Sn(CH ₃) ₃	4.19	-1.26	3.93	0.28	0.40	0.31	2.08	-10.20
	(10.0)	(432.0)		(23.4)		(36.0)	(56.6)	(306.3)

Table 11. Oberved ¹³C Substituent Chemical Shifts (SCS) of *endo*-2-Substituted (X) Norbornanes^a

^aSee footnotes a-d of Table 1.

H31.97487-0.393920.05002NO231.97346-0.384060.0488CN31.97379-0.385190.0476NC31.9738-0.385780.04874CF331.97405-0.387240.04818COOH31.97431-0.389540.04928F31.97397-0.388870.05138Cl31.97397-0.388870.05027HO31.97447-0.392070.05026O-31.97898-0.432740.07538NH231.97474-0.39320.05055NH-31.9751-0.394610.05061Li31.97644-0.405950.05696H41.97953-0.4130.03818NO241.97866-0.403420.03434CN41.97866-0.403220.03492
NO2 3 1.97346 -0.38406 0.0488 CN 3 1.97379 -0.38519 0.0476 NC 3 1.9738 -0.38578 0.04874 CF3 3 1.97405 -0.38724 0.04818 COOH 3 1.97405 -0.38724 0.04928 F 3 1.97397 -0.38887 0.05138 Cl 3 1.97389 -0.38772 0.05027 HO 3 1.97447 -0.39207 0.05236 O- 3 1.97474 -0.3932 0.05055 NH2 3 1.97474 -0.3932 0.05055 NH- 3 1.97494 -0.39434 0.05058 Si(CH3)3 3 1.9751 -0.39461 0.05061 Li 3 1.9753 -0.413 0.03818 NO2 4 1.97836 -0.40325 0.03434 CN 4 1.97866 -0.40342 0.03453 NC 4 1.97866 -0.40322 0.03453 NC 4
CN31.97379-0.385190.0476NC31.9738-0.385780.04874CF331.97405-0.387240.04818COOH31.97431-0.389540.04928F31.97397-0.388870.05138Cl31.97389-0.387720.05027HO31.97447-0.392070.05236O-31.97898-0.432740.07538NH231.97474-0.39320.05055NH-31.97856-0.426820.06331CH331.9751-0.394610.05061Li31.97644-0.405950.05696H41.97953-0.4130.03818NO241.97836-0.401920.03434CN41.97866-0.403320.03392NC41.97866-0.403320.03392
NC 3 1.9738 -0.38578 0.04874 CF3 3 1.97405 -0.38724 0.04818 COOH 3 1.97405 -0.38724 0.04928 F 3 1.97397 -0.38887 0.05138 Cl 3 1.97389 -0.38772 0.05027 HO 3 1.97447 -0.39207 0.05236 O- 3 1.97898 -0.43274 0.07538 NH2 3 1.97474 -0.3932 0.05055 NH- 3 1.97856 -0.42682 0.06331 CH3 3 1.9751 -0.39461 0.05061 Li 3 1.97644 -0.40595 0.05696 H 4 1.97836 -0.40192 0.03434 CN 4 1.97845 -0.40342 0.03453 NO2 4 1.97866 -0.40322 0.03392 NC 4 1.97866 -0.40322 0.03453
CF331.97405-0.387240.04818COOH31.97431-0.389540.04928F31.97397-0.388870.05138Cl31.97389-0.387720.05027HO31.97447-0.392070.05236O-31.97898-0.432740.07538NH231.97474-0.39320.05055NH-31.97856-0.426820.06331CH331.9751-0.394610.05061Li31.97644-0.405950.05696H41.97953-0.4130.03818NO241.97836-0.403420.03453NC41.97866-0.403220.03392
COOH31.97431-0.389540.04928F31.97397-0.388870.05138Cl31.97389-0.387720.05027HO31.97447-0.392070.05236O-31.97898-0.432740.07538NH231.97474-0.39320.05055NH-31.97856-0.426820.06331CH331.97494-0.394340.05058Si(CH3)331.9751-0.394610.05061Li31.97644-0.405950.05696H41.97953-0.4130.03818NO241.97836-0.403420.03434CN41.97866-0.403220.03392NC41.97866-0.403320.03392
F31.97397-0.388870.05138Cl31.97389-0.387720.05027HO31.97447-0.392070.05236O-31.97898-0.432740.07538NH231.97474-0.39320.05055NH-31.97856-0.426820.06331CH331.9751-0.394340.05058Si(CH3)331.9751-0.394610.05061Li31.97644-0.405950.05696H41.97953-0.4130.03818NO241.97836-0.401920.03434CN41.97866-0.403320.03392NC41.97866-0.403320.03392
Cl31.97389-0.387720.05027HO31.97447-0.392070.05236O-31.97898-0.432740.07538NH231.97474-0.39320.05055NH-31.97856-0.426820.06331CH331.97494-0.394340.05058Si(CH3)331.9751-0.394610.05061Li31.97644-0.405950.05696H41.97953-0.4130.03818NO241.97836-0.401920.03434CN41.97866-0.403320.03392
HO31.97447-0.392070.05236O-31.97898-0.432740.07538NH231.97474-0.39320.05055NH-31.97856-0.426820.06331CH331.97494-0.394340.05058Si(CH3)331.9751-0.394610.05061Li31.97644-0.405950.05696H41.97953-0.4130.03818NO241.97836-0.401920.03434CN41.97866-0.403220.03392NC41.97866-0.403220.03392
O-31.97898-0.432740.07538NH231.97474-0.39320.05055NH-31.97856-0.426820.06331CH331.97494-0.394340.05058Si(CH3)331.9751-0.394610.05061Li31.97644-0.405950.05696H41.97953-0.4130.03818NO241.97836-0.401920.03434CN41.97866-0.403420.03453NC41.97866-0.403220.03392
NH2 3 1.97474 -0.3932 0.05055 NH- 3 1.97856 -0.42682 0.06331 CH3 3 1.97494 -0.39434 0.05058 Si(CH3)3 3 1.9751 -0.39461 0.05061 Li 3 1.97644 -0.40595 0.05696 H 4 1.97953 -0.413 0.03818 NO2 4 1.97836 -0.40192 0.03434 CN 4 1.97866 -0.40342 0.03453 NC 4 1.97866 -0.40332 0.03392
NH-31.97856-0.426820.06331CH331.97494-0.394340.05058Si(CH3)331.9751-0.394610.05061Li31.97644-0.405950.05696H41.97953-0.4130.03818NO241.97836-0.401920.03434CN41.97845-0.403420.03453NC41.97866-0.403320.03392
CH331.97494-0.394340.05058Si(CH3)331.9751-0.394610.05061Li31.97644-0.405950.05696H41.97953-0.4130.03818NO241.97836-0.401920.03434CN41.97845-0.403420.03453NC41.97866-0.403320.03392
Si(CH3)331.9751-0.394610.05061Li31.97644-0.405950.05696H41.97953-0.4130.03818NO241.97836-0.401920.03434CN41.97845-0.403420.03453NC41.97866-0.403320.03392
Li 3 1.97644 -0.40595 0.05696 H 4 1.97953 -0.413 0.03818 NO2 4 1.97836 -0.40192 0.03434 CN 4 1.97845 -0.40342 0.03453 NC 4 1.97866 -0.40332 0.03392
H41.97953-0.4130.03818NO241.97836-0.401920.03434CN41.97845-0.403420.03453NC41.97866-0.403320.03392
NO2 4 1.97836 -0.40192 0.03434 CN 4 1.97845 -0.40342 0.03453 NC 4 1.97866 -0.40332 0.03392
CN 4 1.97845 -0.40342 0.03453 NC 4 1.97866 -0.40332 0.03392
NC 4 1.97866 -0.40332 0.03392
CF3 4 1 97854 -0 40531 0 03539
COOH 4 197894 -0.40779 0.03601
F = 4 = 1.97918 - 0.40559 = 0.03452
$C1 \qquad 4 \qquad 1.9788 -0.4049 \qquad 0.03457$
HO 4 $1.97939 - 0.40858 = 0.03482$
Ω - 4 198304 -0.44617 0.05593
NH2 4 19794 -0.41058 0.03607
NH- 4 198282 -0.44686 0.06125
CH3 4 1 97949 -0 41283 0 03769
Si(CH3)3 4 197924 -0.41394 0.04123
Li 4 198053 -0.42926 0.05589
H 5 $1.97953 - 0.413 = 0.03818$
HO 5 $1.98926 - 0.41375 - 0.03504$
Ω_{-} 5 198367 -0.4507 0.05155
NH2 5 1.97993 -0.41164 0.03702
NH- 5 19837 -0.45037 0.0508
H 8 $1.98693 - 0.40997 - 0.5007$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
NH2 8 1 07763 0 4071 0 05321
NH 8 108040 043048 007300
$\begin{array}{cccccccccccccccccccccccccccccccccccc$

 Table 12. Some NBO calculated molecular parameters for systems 3-5 and 8-10

0-	10	1.98285	-0.44944	0.05155	
NH2	10	1.97929	-0.41211	0.03767	
NH-	10	1.98286	-0.44913	0.04987	

 ${}^{a}n_{F}$ = average occupation numbers of the fluorine lone pairs. ${}^{b}Q_{n}$ = fluorine natural charge. ${}^{c}\sigma_{CF}*$ = occupancy of the C-F antibonding orbital.

References

- 1. Fischer, W.; Grob, C.A.; von Sprecher, G. Helv. Chim. Acta. 1980, 63, 806.
- 2. Brown, H.C. Hydroboration; Benjamin, W.A.: New York, 1962.
- 3. Fieser, L.F.; Fieser, M.A. "Reagents for Organic Synthesis or Fieser and Fieser's Reagents for Organic Synthesis" Coll. 1969, Vol 1, 142.
- (a) Yarovenko, N.N.; Raksha,M.A. Russian J. Gen. Chem. 1959, 29, 2125. (b) Hudlicky, M. Chemistry of Organic Fluorine Compounds. 2nd (Revised) Edition, Ellis Horwood Limited: Sussex, 1976. See p. 678.
- Hanreich, R. *Ph.D. Dissertation*, Institute of Organic Chemistry, University of Basel, Basel, 1981.
- 6. (a) Fischer, W.; Grob, C.A.; Hanreich, R.; von Sprecher, G.; Waldner, A. *Helv. Chim. Acta.* 1981, *64*, 2298. (b)Grob, C.A. Gunther, B.; Hanreich, R. *Helv. Chim. Acta.* 1981, *64*, 2312. (c) Wilcox, C.F., Jr.; Tuszynski, W.J. *Tetrahedron Lett.* 1982, *23*, 3119.
- (a) Olah, G.A.; Nojima, M.; Kerekes, I. Synthesis 1973, 786. (b) Olah, G. A.; Welch, J. T.; Vankar, Y. D.; Nojima, M.; Kerekes, I.; Olah, J. A. J. Org. Chem. 1979, 44, 3872.
- 8. Fermann, M.; Herpers, E.; Kirmse, W.; Neubauer, R.; Remets, F.J.; Siegfried, R.; Wonner, A.; Zellner, U. Chem. Ber. 1989, 122, 975.
- (a) Adcock, W.; Binmore, G. T.; Krstic, A. R.; Walton, J. C.; Wilkie, J. J. Am. Chem. Soc. 1995, 117, 2758. (b) Adcock, W.; Krstic, Magn. Reson. Chem. 2000, 38, 115.
- 10. Campagna, F.; Carotti, A.; Casini, G. Tetrahedron Lett. 1977, 21, 1813.
- 11. Pfister, J. R.; Wymann, W. E. Synthesis 1983, 38.
- 12. Applequist, D. E.; Renken, T. L.; Wheeler, J.W. J. Org. Chem. 1982, 47, 4985.
- 13. Adcock, W.; Clark, C. I. J. Org. Chem. 1993, 58, 7341.
- 14. Moriaty, R. M.; Khosrowshahi, J. S. J. Am. Chem. Soc. 1989, 111, 8943.