# Synthesis, spectral and microbial studies of some novel quinoline derivatives *via* Vilsmeier–Haack reagent

V. K. Aghera, J. P. Patel, and P. H. Parsania\*

Department of Chemistry, Saurashtra University, Rajkot-360 005, India \*E-mail : phparsania22@rediffmail.com

#### Abstract

Novel symmetric double quinoline derivatives were synthesized using the Vilsmeier–Haack reagent and symmetric double acetamides of 1,1'-bis(*R*,4-aminophenyl)cyclohexane/methane. The structure of the intermediates (SDA-1 to SDA-3) and final products (SDQ-1 to SDQ-3) were supported by UV, FTIR, <sup>1</sup>H NMR, <sup>13</sup>C NMR and Mass spectroscopic measurements. Compounds SDA-1 to SDA-3 and SDQ-1 to SDQ-3 possess moderate to good antibacterial and antifungal activities.

Keywords: Vilsmeier-Haack reagent, quinoline derivatives, spectral analysis, biological activity

## Introduction

Quinolines and their derivatives are important constituents of several pharmacologically active synthetic compounds,<sup>1-3</sup> including biological activities such as DNA binding capability,<sup>4</sup> antitumor,<sup>5,6</sup> and DNA-intercalating carrier.<sup>7</sup> The development of general methods for the synthesis and biological evaluation of new agents retaining the 'core' quinoline moiety is the subject of considerable synthetic effort. Certain small heterocyclic molecules act as highly functional scaffolds and are known as pharmacophores of a number of biologically active and medicinally useful molecules.<sup>8</sup>

The Vilsmeier–Haack reagent is an efficient, economical and mild reagent for the formylation of reactive aromatic and heteroaromatic substrates.<sup>9-10</sup> The use of Vilsmeier–Haack reactions has led to novel and convenient routes for the synthesis of various heterocyclic compounds and its importance in various synthetic methodologies<sup>11-15</sup> including microwave chemistry<sup>16-20</sup> is remarkable and inspiring.

The classical Vilsmeier–Haack reaction involves electrophilic substitution of an activated aromatic ring with a halomethyleniminium salt to yield the corresponding iminium species. The present work deals with the synthesis of novel quinoline derivatives *via* the Vilsmeier–Haack reagent with the prospect of incorporating diverse bioactive heterocyclic nuclei, intact, for

evaluating antibacterial and antifungal significance and also as a reagent for effecting functional group interconversion.<sup>21-25</sup>

## **Results and Discussion**

The Vilsmeier–Haack reagent facilitated formylation of SDQ-1 to SDQ-3 using phosphorus oxychloride and dimethylformamide, at 85 °C for 9-13 h giving yields of 69% or better of novel quinoline derivatives. <sup>26,27</sup> Comparative analytical data of SDA-1 to SDA-3 and SDQ-1 to SDQ-3 are reported in Table 1. The products were purified through column using chloroform: methanol (90:10 v/v). The final purity of the compounds was checked by TLC using an appropriate solvent system.

#### Spectral analysis

UV spectra of SDA-1 to SDA-3 and SDQ-1 to SDQ-3 were scanned at room temperature using 1, 4-dioxane as a solvent. Wavelength of maximum absorption ( $\lambda_{max}$ ) of all the compounds are reported in Table 2 from which it is observed that a considerable change is observed in case of SDA-2 and SDQ-2 probably due to methyl substitution in the aromatic ring.

IR spectra of SDA-1 to SDA-3 and SDQ-1 to SDQ-3 were scanned over the frequency range of 4000-400 cm<sup>-1</sup>. The characteristic absorption frequencies are reported in Table 3.

The absorption bands due to C=O stretching, N-H stretching and bending vibration and C-N stretching of amide group of SDA-1 to SDA-3 are observed in the frequency range of 1667-1653, 3306-3295, 1537-1510 and 1319-1306 cm<sup>-1</sup>, respectively, while absorption bands due to C=O stretching of the CHO group, C=N and C-N stretching of quinoline ring and C-Cl stretching of SDQ-1 to SDQ-3 are observed in the frequency range of 1696-1694, 1580-1576, 1341-1335 and 753-716 cm<sup>-1</sup>, respectively. Thus, disappearance of absorption bands due to amide group and appearance of new bands due to quinoline ring confirmed cyclization reaction of SDA-1 to SDA-3.

<sup>1</sup>H NMR chemical shifts (ppm), coupling constants (*J*) and types of protons of SDA-1 to SDA-3 and SDQ-1 to SDQ-3 are reported in Table 4 along with predicted chemical shift values. <sup>1</sup>HNMR spectra of SDA-III and SDQ-III were not measured. The peak due to residual CHCl<sub>3</sub> is observed at about 7.26 ppm either as a separate peak or overlapped with aromatic proton signals. <sup>13</sup>C NMR chemical shifts (ppm) and types of carbon atoms of SDA-1 to SDA-3 and SDQ-1 to SDQ-3 are reported in Table 5. The molecular ion peaks were low in abundance. Important fragments ions of SDA-1 to SDA-3 are recorded in Table 6.

|                                                                              |                 | МЕ                       |         | Ma       |              | TLC data     |                  | Time | Viald   |
|------------------------------------------------------------------------------|-----------------|--------------------------|---------|----------|--------------|--------------|------------------|------|---------|
| Code                                                                         | R               | NI.F.                    | M.W.    | M.p<br>℃ | Color        | Solvent      | $R_{\mathrm{f}}$ | h h  | 1 leiu, |
|                                                                              |                 |                          |         | C        |              | system       | value            | 11   | /0      |
| SDA 1                                                                        | ч               | $C_{22}H_{26}N_2O_2$     | 350     | 116      | Off          | CF : MeOH    | 0.74             | 25   | 78 5    |
| SDA-1                                                                        | 11              |                          | 550     | 110      | white        | (90:10 v/v)  | 0.74             | 2.5  | /0.5    |
|                                                                              |                 | $C_{24}H_{30}N_2O_2$     |         |          | Off          | CE · MeOH    |                  |      |         |
| SDA-2                                                                        | $CH_3$          |                          | 378     | 240      | white        | (90.10  v/v) | 0.68             | 2.0  | 81.4    |
|                                                                              |                 |                          |         |          | , inte       | (30.10 1/1)  |                  |      |         |
| SDA-3                                                                        | Н               | $C_{17}H_{18}N_2O_2$     | 282     | 131      | Off          | Hex.:EA      | 0.70             | 3.0  | 84.8    |
| ~~~~~                                                                        |                 |                          |         |          | white        | (70:30 v/v)  |                  | 210  | 00      |
| SDO-1                                                                        | Н               | $C_{26}H_{20}N_2O_2Cl_2$ | 463     | 170      | Yellow       | CF : MeOH    | 0.65             | 10.5 | 71.4    |
|                                                                              |                 |                          |         |          |              | (90:10 v/v)  |                  |      |         |
|                                                                              | CU              | $C_{28}H_{24}N_2O_2CI_2$ | 40.1    | 010      | X7 11        | CF : MeOH    | 0.50             | 10.5 | (0.0    |
| SDQ-2                                                                        | CH <sub>3</sub> |                          | 491     | 213      | Yellow       | (90:10 v/v)  | 0.58             | 12.5 | 68.8    |
|                                                                              |                 |                          |         |          |              |              |                  |      |         |
| SDQ-3                                                                        | Н               | $C_{23}H_{16}N_2O_2CI_2$ | 422     | 154      | Orange       | Hex.:EA      | 0.63             | 9.5  | 74.2    |
|                                                                              |                 |                          |         |          |              | (70.30  V/V) |                  |      |         |
| CF: Cł                                                                       | nloroform       | n, MeOH: Me              | thanol, | EA: I    | Ethyl acetat | e, Hex. : He | exane            |      |         |
|                                                                              |                 |                          |         | _        |              |              |                  |      |         |
| Table 2. UV spectral data (1,4-dioxane) of SDA-1 to SDA-3 and SDQ-1 to SDQ-3 |                 |                          |         |          |              |              |                  |      |         |
| Cod                                                                          | le              | SDA-1 SDA-               | 2 S     | DA-3     | SDQ-1        | SDQ-2        | SD               | Q-3  |         |
|                                                                              |                 |                          |         |          |              |              |                  |      |         |
|                                                                              |                 |                          |         |          |              | 263.8        |                  |      |         |
| λη                                                                           | m               | 253.4 246.2              | 2 2     | 255.2    | 253.2        | 205.8        | 25               | 6.0  |         |
| $\lambda_{max}$ , nr                                                         | 111             | 221.0 220.6              | 5       | 221.2    | 299.4        | 254.5        |                  | 2.5  |         |

**Table 1.** Analytical data of SDA-1 to SDA-3 and SDQ-1 to SDQ-3

| Table 3. Characteristic IR abso | rption frequencies | of SDA-1 to SDA-  | 3 and SDO-1 to SDO-3 |
|---------------------------------|--------------------|-------------------|----------------------|
|                                 |                    | 01 0211 1 00 0211 |                      |

|       | IR abs      | orption Fi  | requencie    | s, cm <sup>-1</sup> | _     | IR absorption Frequencies, cm <sup>-1</sup> |             |             |              |  |
|-------|-------------|-------------|--------------|---------------------|-------|---------------------------------------------|-------------|-------------|--------------|--|
| Code  | N-H<br>str. | C=O<br>str. | N-H<br>ipd   | C-N<br>str.         | Code  | C=O<br>(CHO)<br>str.                        | C=N<br>str. | C-N<br>str. | C-Cl<br>str. |  |
| SDA-1 | 3304        | 1663        | 1533<br>1510 | 1318                | SDQ-1 | 1695                                        | 1575        | 1334        | 752          |  |
| SDA-2 | 3294        | 1666        | 1518         | 1305                | SDQ-2 | 1695                                        | 1579        | 1340        | 715          |  |
| SDA-3 | 3306        | 1653        | 1537<br>1514 | 1317                | SDQ-3 | 1693                                        | 1577        | 1334        | 735          |  |

221.2

| Code                 | Structure                | Chemical shifts, oppm {predicted values}                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|----------------------|--------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                      |                          | 1.47-1.52 [d, 6H, $\beta + \gamma$ –CH <sub>2</sub> –], 2.02 [s, 6H, -CH <sub>3</sub> ],<br>2.21 [s, 4H, $\alpha$ , -CH <sub>2</sub> -], 7.14-7.16 [d, 4H, Ar-H(a),                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| SDA-1                |                          | $J_{ab}=8.7$ ], 7.44-7.46 [d, 4H, Ar-H(b), $J_{ba}=8.7$ ], 9.41 [s, 2H_NH]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| (d <sub>6</sub> -    |                          | 211, -1111]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| DMSO)                | $\beta$                  | $\{1.44 \ [6H, \beta + \gamma - CH_2 - ], 2.02 \ [6H, -CH_3 + 4H, \alpha, - CH_3 + 4H, \alpha]\}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                      | 7                        | CH <sub>2</sub> -], 7.11 [4H, Ar-H(a)], 7.56 [4H, Ar-H(b)], 8.0 [2H, -NH]}                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                      |                          | 1.47-1.53 [d, 6H, $\beta + \gamma$ –CH <sub>2</sub> –], 2.10-2.22 [m, 16H,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                      |                          | $\alpha$ ,-CH <sub>2</sub> - + Ar-CH <sub>3</sub> + -CH <sub>3</sub> ], 7.04 [s, 2H, -NH] 7.09-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| SDA-2                |                          | $f_{111}$ [m, 4H, AI-H(a+0) $J_{ab}=1.0$ , $J_{ba}=7.0$ ], 7.34-7.30<br>[d 2H Ar-H(c) $J_{ab}=8.4$ ]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| (CDCl <sub>3</sub> ) |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                      | β                        | {1.44[6H, $\beta + \gamma$ –CH <sub>2</sub> –], 2.02 [6H, -CH <sub>3</sub> +4H, $\alpha$ , -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                      | γ                        | CH <sub>2</sub> -], 2.35 [6H, Ar-CH <sub>3</sub> ], 6.91 [2H, Ar-H(a)], 6.92                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                      | н ь н                    | [2H, Ar-H(b), 7.44 [2H, Ar-H(c)], 8.0 [2H, -NH]}                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| SDA-3                |                          | $\{2.02 \text{ [on, -Ch_3], 5.81 [2n, -Ch_2-], 7.04 [4n, Ai-H(a)], 7.52 [4H, Ar-H(b)] 8.0 [2H, -NH] \}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                      | Ö<br>H <sub>2</sub> ÖÖ   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                      |                          | 1.66-1.67 [d, 6H, $\beta$ + $\gamma$ ,-CH <sub>2</sub> -], 2.52 [s, 4H, $\alpha$ -CH <sub>2</sub> -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                      |                          | ], 7.78-7.79 [d-d, 2H, Ar-H(b) $J_{ba}=8.9$ , $J_{bc}=2$ ], 7.88-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| SDO-1                |                          | $1.91$ [d, 2f, AI-f(a) $J_{ab}$ =0.0)], $8.09-8.09$ [d, 2f, AI-<br>H(c) $I_{ab}$ =1.6] $8.79$ [s 2H Ar-H(d)] 10.49 [s 2H Ar-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| (d <sub>6</sub> -    | онс сно                  | CHO]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| DMSO)                | β                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                      | γ                        | {1.44 [6H, $\beta + \gamma$ , -CH <sub>2</sub> -], 2.02 [4H, $\alpha$ -CH <sub>2</sub> -], 7.47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                      |                          | [4H, Ar-H(b)=Ar-H(c)], 7.99 [2H, Ar-H(a)] 8.68 [2 |
|                      |                          | AF-H(d)], 9.01 [2H, AF-CHO]}<br>1 57 1 66 [d 6H $\beta + \alpha$ CH 1 2 17 2 71 [m 10H $\alpha$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                      |                          | $-CH_{2} + -CH_{3}$ ] 7.16 [s. 2H Ar-H(a)] 7.58 [s. 2H Ar-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| SDQ-2                |                          | H(b)], 8.70 [s, 2H, Ar-H(c)], 10.54 [s, 2H, Ar-CHO]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| (CDCl <sub>3</sub> ) | OHC- CHO                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                      | $\bigvee_{\gamma} \beta$ | {1.44 [0H, $\beta + \gamma$ , -CH <sub>2</sub> -], 2.02 [4H, $\alpha$ -CH <sub>2</sub> -], 2.35<br>[6H Ar CH <sub>2</sub> ] 7.25 [2H Ar H( $\alpha$ )] 7.21 [2H Ar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                      | ,                        | H(b)], 8.65 [2H, Ar-H(c)], 9.61 [2H, Ar-CHO]}                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

**Table 4.** <sup>1</sup>H NMR chemical shift (ppm) and coupling constant data of SDA-1 to SDA-3 andSDQ-1 to SDQ-3

## Table 4. Continued

|       |                                                | {3.81 [2H, -CH <sub>2</sub> -], 7.47 [4H, Ar-H(b)=Ar-H(c)], 7.99 |
|-------|------------------------------------------------|------------------------------------------------------------------|
| SDQ-3 |                                                | [2H, Ar-H(a)], 8.68 [2H, Ar-H(d)], 9.61 [2H, Ar-                 |
|       | $CHC' \rightarrow CC' \rightarrow CHO H_2 c d$ | CHO]}                                                            |

## Table 5. <sup>13</sup>C NMR chemical shifts of SDA-1 to SDA-3 and SDQ-1 to SDQ-3

| Code                                                    | Structure                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Chemical shift, ppm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|---------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| SDA-1<br>(d <sub>6</sub> -DMSO<br>& CDCl <sub>3</sub> ) | H<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 22.4 (C <sub>1</sub> ), 23.7 (C <sub>2</sub> ), 25.8 (C <sub>3</sub> ), 36.4 (C <sub>4</sub> ),<br>40.7 (C <sub>5</sub> ), 119.0 (C <sub>6</sub> ), 126.7 (C <sub>7</sub> ), 136.1<br>(C <sub>8</sub> ), 143.1 (C <sub>9</sub> ), 168.2 (C <sub>10</sub> )<br>$\{22.9 (C_1), 22.8 (C_2), 28.6 (C_3), 39.7 (C_4), 39.7 (C_5), 122.1 (C_6), 128.5 (C_7), 136.0 (C8), 141.7 (C9), 168.9 (C10)\}$                                                                                                                                                                                                                                                                                                           |
| SDA-2<br>(CDCl <sub>3</sub> )                           | $\begin{array}{c c} & H \\ & & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & & \\ & & \\ & & \\ & & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & &$ | 18.2 (C <sub>1</sub> ), 22.8 (C <sub>2</sub> ), 23.8 (C <sub>3</sub> ), 26.3 (C <sub>4</sub> ),<br>36.9 (C <sub>5</sub> ), 45.3 (C <sub>6</sub> ), 123.9 (C <sub>7</sub> ), 125.1 (C <sub>8</sub> ),<br>129.1 (C <sub>9</sub> ), 130.1 (C <sub>10</sub> ), 132.9 (C <sub>11</sub> ), 145.7<br>(C <sub>12</sub> ), 169.0 (C <sub>13</sub> )<br>$\{15.5 (C_1), 22.9 (C_2), 22.8 (C_3), 28.6 (C_4),$<br>39.7 (C <sub>5</sub> ), 40.3 (C <sub>6</sub> ), 122.0 (C <sub>7</sub> ), 125.5 (C <sub>8</sub> ),<br>130.3 (C <sub>9</sub> ), 134.8 (C <sub>10</sub> ), 134.9 (C <sub>11</sub> ), 141.6<br>(C <sub>12</sub> ), 168.9 (C <sub>13</sub> )\}                                                          |
| SDA-3                                                   | H $C$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $\{17.6 (C_1), 41.3 (C_2), 120.9 (C_3), 128.6 (C_4), 138.3 (C_5), 138.6 (C_6), 168.2 (C_7)\}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| SDQ-1<br>(CDCl <sub>3</sub> )                           | $\begin{array}{c} CI \\ OHC \\ OHC \\ \end{array} \\ \begin{array}{c} N \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 22.7 (C <sub>1</sub> ), 26.0 (C <sub>2</sub> ), 36.8 (C <sub>3</sub> ), 46.8 (C <sub>4</sub> ),<br>126.5 (C <sub>5</sub> ), 126.5 (C <sub>6</sub> ), 127.0 (C <sub>7</sub> ), 128.8<br>(C <sub>8</sub> ), 133.8 (C <sub>9</sub> ), 140.3 (C <sub>10</sub> ), 147.5 (C <sub>11</sub> ),<br>148.2 (C <sub>12</sub> ), 150.1 (C <sub>13</sub> ), 189.1 (C <sub>14</sub> )<br>$\{22.8 (C_1), 28.6 (C_2), 39.7 (C_3), 40.5 (C_4),$<br>126.3 (C <sub>5</sub> ), 126.8 (C <sub>6</sub> ), 128.2 (C <sub>7</sub> ), 128.9<br>(C <sub>8</sub> ), 135.4 (C <sub>9</sub> ), 136.7 (C <sub>10</sub> ), 142.9 (C <sub>11</sub> ),<br>144.2 (C <sub>12</sub> ), 147.6 (C <sub>13</sub> ), 191.0 (C <sub>14</sub> ) \} |

| SDQ-2<br>(d <sub>6</sub> -DMSO<br>& CDCl <sub>3</sub> ) | CI $10$ $9$ $14$ $N$ $13$ $CI$ $10$ $9$ $14$ $N$ $13$ $CI$ $11$ $3$ $CI$ $11$ $3$ $11$ $3$ $11$ $11$ $3$ $11$ $11$                                                                                                             | 17.5 (C <sub>1</sub> ), 22.2 (C <sub>2</sub> ), 25.5 (C <sub>3</sub> ), 36.1 (C <sub>4</sub> ),<br>45.9 (C <sub>5</sub> ), 124.5 (C <sub>6</sub> ), 125.6 (C <sub>7</sub> ), 126.0<br>(C <sub>8</sub> ), 133.3 (C <sub>9+10</sub> ), 136.3 (C <sub>11</sub> ), 140.2<br>(C <sub>12</sub> ), 146.9 (C <sub>13</sub> ), 147.9 (C <sub>14</sub> ), 188.8 (C <sub>15</sub> )<br>$\{ 20.2 (C_1), 22.8 (C_2), 28.6 (C_3), 39.7 (C_4),$<br>41.1 (C <sub>5</sub> ), 126.4 (C <sub>6</sub> ), 125.6 (C <sub>7</sub> ), 128.7<br>(C <sub>8</sub> ), 134.9 (C <sub>9</sub> ), 135.8 (C <sub>10</sub> ), 137.3 (C <sub>11</sub> ),<br>143.2 (C <sub>12</sub> ), 147.1 (C <sub>13</sub> ), 152.1 (C <sub>14</sub> ), 191.0<br>(C <sub>15</sub> ) $\}$ |
|---------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| SDQ-3                                                   | $\begin{array}{c} CI \\ OHC \end{array} \xrightarrow{N} \\ 1H_2 \end{array} \xrightarrow{6} \\ 1H_2 \end{array} \xrightarrow{7} \\ 4 \\ 8 \\ 11 \\ 1H_2 \\ 4 \\ 11 \\ 11 \\ 10 \\ CI \\ C$ | $ \{ 42.1 \ (C_1), \ 127.0 \ (C_2), \ 127.9 \ (C_3), \ 128.4 \\ (C_4), \ 129.3 \ (C_5), \ 135.2 \ (C_6), \ 136.7 \ (C_7), \\ 142.8 \ (C_8), \ 145.4 \ (C_9), \ 151.0 \ (C_{10}), \ 190 \\ (C_{11}) \} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |

 Table 6. Important mass fragments of SDA-1 to SDA-3

| Code  | m/e                                                                         |
|-------|-----------------------------------------------------------------------------|
| SDA-1 | 351, 350, 349, 308, 307, 281, 265, 223, 195, 172, 148, 130, 106, 93, 77, 43 |
| SDA-2 | 379, 378, 363, 336, 335, 309, 293, 223, 186, 144, 130, 120, 106, 91, 77, 43 |
| SDA-3 | 283, 282, 240, 239, 198, 197, 182, 181, 180, 106, 93, 77, 43                |

#### Antimicrobial activity

The zones of inhibition (mm) at various dilutions for standard drugs and samples after correction due to solvent are reported in Table 7 from which it is observed that as compared to standard drugs, the compounds possess moderate to good antibacterial activity and antifungal activity. It is interesting to note that methyl substitution and a methylene bridge caused reduction in the biological activity especially antifungal activity. SDQ-1 to SDQ-3 are some what more biologically active than SDA-1 to SDA-3.

|       | Bacteria |      |      |      |           |      |      |         |      | Fungi |      |      |  |
|-------|----------|------|------|------|-----------|------|------|---------|------|-------|------|------|--|
| Code  | E. coli  |      |      |      | S. aureus |      |      | A.niger |      |       |      |      |  |
|       | 0.1%     | 0.2% | 0.3% | 0.4% | 0.1%      | 0.2% | 0.3% | 0.4%    | 0.1% | 0.2%  | 0.3% | 0.4% |  |
| SDA-1 | 3        | 5    | 6    | 11   | 4         | 7    | 12   | 18      | 5    | 9     | 13   | 22   |  |
| SDA-2 | 2        | 2    | 5    | 10   | 2         | 6    | 10   | 15      | 2    | 5     | 9    | 15   |  |
| SDA-3 | 2        | 2    | 4    | 9    | 3         | 5    | 7    | 13      | 2    | 4     | 8    | 9    |  |
| SDQ-1 | 4        | 6    | 7    | 14   | 5         | 9    | 14   | 21      | 7    | 10    | 14   | 23   |  |
| SDQ-2 | 3        | 4    | 7    | 12   | 4         | 7    | 11   | 19      | 5    | 7     | 10   | 13   |  |
| SDQ-3 | 2        | 3    | 6    | 10   | 3         | 6    | 9    | 17      | 4    | 6     | 10   | 12   |  |
| C1    | 4        | 7    | 9    | 15   | 6         | 10   | 15   | 22      |      |       |      |      |  |
| C2    | 2        | 5    | 7    | 13   | 3         | 8    | 12   | 20      |      |       |      |      |  |
| C3    |          |      |      |      |           |      |      |         | 8    | 12    | 19   | 25   |  |
| C4    |          |      |      |      |           |      |      |         | 7    | 10    | 18   | 24   |  |

Table 7. Biological activity of standard drugs and SDA-1 to SDA-3 and SDQ-1 to SDQ-3

C1: Ciprofloxacine

C2: Cephalexin

C3: Gentamicine

C4: Griseofulvin

## Conclusions

Symmetric diamines were cyclized via Vilsmeier–Haack reagent to give corresponding derivatives. The structures of the starting and end materials were supported by spectroscopic techniques. They possess moderate to good antibacterial and antifungal activities. Methyl side substituents or a methylene bridge caused lowering in the said activities.

## **Experimental Section**

**General Procedures.** Solvents and chemicals used in the present investigation were of LR grade and used either as such or purified by fractional distillation. Symmetric diamines (I) were synthesized and recrystallized according to our recent work.<sup>28</sup> Melting points were determined in open capillary tubes and were uncorrected. Purity of the compounds was checked by TLC and column by using chloroform: methanol (90:10 v/v) system. IR spectra (KBr pellets) were scanned on a Shimadzu FTIR- 8400 spectrophotometer. The NMR spectra were scanned on a Brucker FTNMR (Avance II 400 MHz) spectrophotometer by using d<sub>6</sub>-DMSO (SDA-1 and SDQ-1) or CDCl<sub>3</sub> (SDA-2 and SDQ-2) as a solvent and TMS as an internal standard. <sup>13</sup>CNMR spectra were scanned in the mixture of  $d_6$ -DMSO+ CDCl<sub>3</sub> (SDA-1 and SDQ-2) or CDCl<sub>3</sub> (SDA-2 and SDQ-1). Mass spectra were measured on a Shimadzu GC-MS-QP 2010 by using E.I. (0.7 kV) detector. The ion source temperature was at 220 °C and interface temperature was 240 °C.

#### Antimicrobial activity

Antibacterial and antifungal activities of the compounds were assessed by in vitro growth inhibitory activity against Escherichia coli, Staphylococcus aureus and Aspergillus niger by using the disc diffusion method.<sup>29,30</sup> The bacteria were cultured in nutrient agar medium and used as inoculum for this study. Bacterial cells were swabbed on to nutrient agar medium [prepared from NaCl (5.0 g), peptone (5.0 g), beef extract powder (3.0 g), yeast extract powder (3.0 g), Agar (20.0 g) in 100 ml distilled water;  $pH = 7.5 \pm 0.2$  in petri plates. The fungi was cultured in potato dextrose agar medium (prepared from potato 150 g; dextrose 5 g and agar 2 g in 200 ml distilled water) was poured in sterilized petriplates and allowed to solidify. The plates were inoculated with a spore suspension of A. *niger* ( $10^6$  spores/ml of medium). The compounds to be tested were dissolved in DMF to final concentrations (weight/volume) of 0.1%, 0.2% 0.3% and 0.4% and soaked in filter paper (Whatman No 4) discs of 6 mm diameter and 1 mm thickness. The discs were placed on the already bacterial and fungal seeded plates and incubated at  $35 \pm 2$  °C for 24 h and  $28 \pm 2$  °C for 4 days, respectively. Ciprofloxacine and Cephalexin were used as standard antibacterial drugs, while Gentamicine and Griseofulvin were used as standard antifungal drugs. The inhibition zones were measured after subtracting inhibition due to solvent used.

#### Synthesis of symmetric double acetamides (SDA-1 to SDQ-3)

Acetic anhydride (0.02 mol) was added dropwise to a 250 ml round bottomed flask containing 0.01 mol diamine (I) in 20 ml ethanol and 0.1 ml concentrated sulfuric acid and the mixture refluxed for 2-3 h. The progress of the reaction was monitored by TLC. The solvent was distilled off and product was isolated from water, filtered, washed well with distilled water and dried at 50 °C. SDA-1 to SDA-3 were recrystallized at least three times from an appropriate solvent system. Analytical data for SDA-1 to SDA-3 are reported in Table 1.



#### Synthesis of quinoline derivatives *via* Vilsmeier–Haack reagent

In order to synthesize quinoline derivatives (III), Vilsmeier–Haack reagent (0.05 mol) was prepared by reacting 32.5 ml phosphorus oxychloride and 9.2 ml dimethylformamide at 0-5 °C.<sup>27</sup> Thus, 0.05 mol Vilsmeier–Haack reagent and 0.025 mol corresponding SDA-1 to SDA-3 were reacted with stirring at 85 °C for 9-13 h. The progress of the reaction was monitored by TLC. The product was isolated from chilled water, filtered, washed well with water and dried at 50 °C. SDQ-1 to SDQ-3 were recrystallized at least three times from ethyl acetate. Analytical data for SDQ-1 to SDQ-3 are reported in Table 2.



### Acknowledgements

The authors are thankful to the Director SAIF, Punjab University, Chandigarh for NMR analysis, UGC [Grant No UGC (SAP)/540/6/DRS/ 2004, 1-4-2004] and DST (Grant No. FIST-SR/FIST/CSI-072/2004, 18-8-2004) for financial support.

## References

- 1. El-Subbagh H. I.; Abu-Zaid S. M.; Mahran M. A.; Badria F. A.; Alofaid A. M. J. Med. Chem. 2000, 43, 2915.
- 2. Watson A. A.; Fleet G. W. J.; Asano N.; Molyneux R. J.; Nugh R. J. *Phytochemistry* **2001**, *56*, 265.
- 3. Jerom B. R.; Spencer K. H. Eur. Pat. Appl. 1988, 277794.
- 4. Atwell G. J.; Baguley B. C.; Denny W. A. J. Med. Chem. 1989, 32, 396.
- Kuo S. C.; Lee H. Z.; Juang J. P.; Lin Y. T.; Wu T. S.; Chang J. J.; Lednicer D.; Paull K. D.; Lin C. M.; Hamel E.; Lee K. H. *J. Med. Chem.* **1993**, *36*, 1146.
- Xia Y.; Yang Z. Y.; Xia P.; Bastow K. F.; Tachibana Y.; Kuo S. C.; Hamel E.; Hackl T.; Lee K. H. J. Med. Chem. 1998, 41, 1155.
- 7. Chen Y. L.; Chen I. L.; Tzeng C. C.; Wang T. C. Helv. Chim. Acta 2000, 83, 989.

- Silverman R. B. "Organic Chemistry of Drug Design and Drug Action" Academic Press, San Diego, 1992; Thompson L. A.; Ellman J. A. Chem. Rev. 1996, 96, 555. Robert G. F. J. Comb. Chem. 2000, 2, 195.
- 9. Meth-Cohn O.; Bramha Narine A. Tetrahedron Lett. 1978, 23, 2045.
- 10. Bell H. L.; McGuire M.; Freeman G. A. J. Heterocycl. Chem. 1983, 20, 41.
- 11. Venugopal M.; Perumal P. T. Synth. Commun. 1991, 21, 515.
- 12. Adams D. R.; Dominguez J. N.; Perez J. A. Tetrahedron Lett. 1983, 24, 517.
- 13. Dinakaran K.; Perumal P. T. Ind. J. Chem. 2000, 39B, 135.
- 14. Parameswara Reddy M.; Krishna Rao G. S. J. Org. Chem. 1981, 46, 5371.
- 15. Katritzky A. R.; Charles M.; Marson M. J. Am. Chem. Soc. 1983, 105, 3279.
- 16. Horvath A.; Hermecz I.; Podanyi B.; Meszaros Z. J. Heterocycl. Chem. 1985, 22, 593.
- 17. Nohara A.; Umetani T.; Sanno Y. Tetrahedron 1974, 30, 3553.
- 18. Ali Tasneem, M. M.; Rajanna K. C.; Sai Prakash P. K. Synlet 2001, 2, 251.
- 19. Vattoly J.; Majo V. J.; Perumal, P. T. J. Org. Chem. 1998, 63, 7136.
- 20. Akila, S.; Majo, V. J.; Balasubramanian, K. Ind. J. Chem. 2002, 41B, 647.
- 21. Nandhakumar, R.; Suresh T.; Mohan P. S. Spectrosc. Lett. 2002, 5, 741.
- 22. Nandhakumar, R.; Suresh, T.; Dhanabal, T.; Mohan, P. S. Ind. J. Chem. 2004, 43B, 846.
- 23. Dhanabal, T.; Suresh, T.; Mohan, P. S. Ind. J. Chem. 2006, 45B, 523.
- 24. Dhanabal, T.; Suresh, T.; Mohan, P. S. Spectrosc. Lett. 2006, 39, 117.
- 25. Nandhakumar, R.; Suresh, T.; Dhanabal, T.; Mohan, P. S. Ind. J. Chem, 2007, 46B, 995.
- 26. Reynolds, G.A.; Hauser, C.R. Org. Synth., Coll. Vol. 3, Horning, E. C. Ed. New York, 1955, p 593.
- 27. Li, J. Name reactions in heterocyclic chemistry. John Wiley & Sons: New York, 2005; p. 445.
- 28. Gangani, B. J.; Parsania P. H. Spectrosc. Lett. 2007, 40, 97.
- 29. Nandhakumar R.; Vishwanathan H.; Suresh T.; Mohan P.S. Fitoterapia 2002, 73, 734.
- 30. Karvembu, R.; Natarajan, K. Polyhedron 2002, 21, 219.