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Abstract 
The synthesis of morphine (1) and pancratistatin (2) have been the subject of intense effort by the 
synthetic community for many years.  Our focus on the total synthesis of these challenging 
targets resulted in several generations of approaches that combine enzymatic transformations 
with traditional synthetic protocols in order to provide for maximum efficiency and brevity in 
attaining the targets. 
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 Recombinant strains that express toluene dioxygenase (TDO) are used to provide the 
homochiral diene cis-diol derived from bromobenzene and containing the structural features of 
both ring C of morphine and ring C of pancratistatin. Bromocatechol, representing ring A of 
morphine, is also derived from bromobenzene by fermentation with E.coli JM109 that expresses 
TDO as well as catechol dehydrogenase.  In this fashion twelve of the carbons in morphine 
originate in the same starting material.  One approach is based on the Kazmaier-Claisen 

mailto:thudlicky@brocku.ca


Issue ICHC-20                                                                                                               ARKIVOC 2006 (vii) 276-291 

ISSN 1424-6376                                                         Page 277                                                                       ©ARKAT 

rearrangement of glycinate esters, the other on an intramolecular Heck reaction. The route to 
pancratistatin and to its unnatural analogs is based on the metal-mediated cyclotrimerization of 
acetylenic substrates of type 3.  The core of this Amaryllidaceae constituent has been attained in 
the initial stages of this project.  The details of the synthetic endeavours toward these and other 
heterocyclic targets will be disclosed with emphasis on practicality, brevity, and efficiency as 
guiding principles of enviromentally benign manufacturing of relevant compounds. 
 
Keywords: Morphine, pancratistatin, total synthesis of alkaloids, cyclotrimerization, enzymatic 
oxidation of aromatics, toluene dioxygenase 
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Introduction 
 
This lecture provides an overview of our long-term commitment toward practical and efficient 
syntheses of medicinally important compounds.  Morphine, (1), an alkaloid originating in opium, 
is used as an anesthetic and an analgesic to the extent of more than 80,000 tons in the U.S. alone. 
Although its supply from the natural sources may be limited by political instabilities in those 
regions that produce it, no large-scale synthesis of this important molecule has yet materialized 
despite over 20 total syntheses published.1-3 Pancratistatin, (2), is a constituent of the 
Amaryllidaceae groups and has a long history as an interesting synthetic target and because of its 
anti-cancer activity.4  Its bioavailability is poor, as is its solubility.  A serious effort has been 
under way by several groups to provide better analogs of this important compound. 
 From a synthetic perspective both morphine and pancratistatin present challenges in 
design. Our mission is to provide, through multi-generational iterations, a short, practical 
synthesis of each compound and, in the case of pancratistatin, search for a more soluble 
derivative that would retain its potent biological activity.  To achieve both briefly and practically 
we have turned to biocatalysis and its incorporation into traditional synthetic protocols in order 
to provide preparations that are efficient and environmentally benign.  The core technology 
employed in the design of synthesis for both targets is the enzymatic oxidation of aromatic 
compounds, discovered by Gibson almost 40 years ago, portrayed in Scheme 1.5   
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Scheme 1. Metabolism of aromatics by soil bacteria. 
 
 Gibson elucidated the degradation pathway by which soil bacteria utilize arenes as carbon 
and energy source, and he provided key recombinant organisms for the whole-cell fermentation 
production of diols such as 4.6 Toluene dioxygenase (TDO) is overexpressed in E. coli 
JM109(pDTG601) and provides, with good substrates such as bromobenzene, 20 g/L of the 
corresponding bromochiral diol 5. The second enzyme in the pathway, dihydrodiodehydrogenase 
(DHDH) is expressed by a similar organism, E coli JM109 (pDTG602) and leads directly to 
functionalized catechols such as 6.7 

 Hundreds of metabolites of aromatics are known and available in multigram quantities 
through whole-cell fermentation protocols.8  The application of these in asymmetric synthesis of 
complex molecules are numerous and have been reviewed on several occasions.9-11   
 Examples of the diversity of metabolites produced substrates that are tolerated and 
metabolized by TDO are shown in Figure 1.  Such diversity finds immediate application in the 
synthesis of complex molecules.  We have incorporated dihydroarene cis-diols into the design of 
many natural products, some of which are shown in Figure 2.  The utility of the enzymatic 
oxidation of aromatics in asymmetric synthesis is clearly well established and new applications 
continue to emerge.  Through directed evolution it is now possible to improve yields and expand 
substrate specificity of many enzymes, including arene dioxygenases, as has recently been 
demonstrated on the biocatalytic synthesis of strawberry furanone.12 
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Figure 1. Examples of some metabolites of arenes. 
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Figure 2. Examples of targets synthesized from arene-cis-diols. 
 
 
1. Results and Discussion 
 
To approach the synthesis of highly oxygenated targets such as pancratistatin and morphine, we 
designed a general strategy based on the recognition of common elements shared by the 
structures.  Figure 3 shows morphine, pancratistatin, and narciclasine rendered as biphenyl core 
structures that have been oxygenated.  One strategy that relies on aromatic dioxygenases starts  
with biphenyl and its oxygenation with an organism that expresses both TDO and DHDH, 
yielding directly a catechol.  Exposure of such catechol to the clone expressing TDO provides 
the homochiral diol 7, a core common to the targets.  It is known that as the oxygen content of 
aromatic compounds increases the TDO processing to diols diminishes and the yields of diols of 
type 7 with two or more alkoxy groups would not be expected to be high.  Therefore, a 
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convergent strategy has been implemented in which bromobenzene provides the starting carbon 
content for both bromocatechol 6 when subjected to the pDTG602 strain and diol 5 from 
fermentation with the pDTG601 strain.  Simple procedures based on Suzuki coupling then 
provide 7, which contains the oxygenation pattern of rings A and C of morphine.  With the 
fundamentals of the general design is place we can turn to an overview of the total syntheses for 
both targets. 
 

O
N

OH

OH

NH

O
O

OH

OH
OH

OH

O

OH

NH

O

OH
OH

OH

O

OH O

OH

OH

OH

OH
Br

OH

OH

Br

morphine pancratistatin narciclasine

(RO)x

602

601

602

6017  
 

Figure 3. General strategy toward oxygenated alkaloids. 
 
1.1 Pancratistatin and 7-deoxypancratistatin 
In 1995 we published the first enantioselective synthesis13 of this compound, previously prepared 
in racemic form by Danishefsky.14  The diol derived from bromobenzene was converted to 
aziridine 8 and combined with the functionalized benzamide 10 to yield, in four steps, the core of 
the target with four of its six centers correctly installed, Scheme 2. 
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Scheme 2. First enantioselective total synthesis of pancratistatin. 
 
 As we described in our 1995 communication, we did not anticipate the problems 
encountered upon attempts to provide the phenanthridone core directly from 9 by transamidation.  
The benzamide 9 existed as a mixture of atropisomers that were found to equilibrate toward the 
one in which the dimethylamide and tosylamide were 180˚ apart thus precluding cyclization.  To 
circumvent this problem six steps were required to manipulate the functionality to the stage of 
ester 13, which, upon deprotection cyclized to the amide and yielded pancratistatin in a total of 
13 steps.  In order to solve the problems encountered with robust amides, we changed the 
strategy of phenanthridone synthesis to cyclization of the isocyanate, as reported by Banwell.15  
Thus 7-deoxypancratistatin was prepared from N-carbomethoxyaziridine14 via the in situ 
generated isocyanate which smoothly cyclized to phenanthridone 17, Scheme 3.16,17 
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Scheme 3. 2nd-5th generation synthesis: 7-deoxypancratistatin 
 
 These improvements furnished the pancratistantin core in 8-9 steps and showed promise 
toward larger-scale preparations of these important compounds.  Several other approaches have 
been developed; these have been reviewed recently.4 

 Two new strategies are currently being pursued. One approach involves the intramolecular 
opening of aziridine 20 derived from controlled opening of the epoxide in 19 with aluminum 
complex of piperonylacetylene as shown in Scheme 4.  Cyclization, catalyzed by silica gel in 
solid phase, proceeds smoothly to 21, which is subjected to oxidative cleavage to dialdehyde 22.  
We anticipate that recyclization and conversion of 23 to 7-deoxypancratistatin will be 
accomplished soon. 
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Reagents and Conditions:  i) n-BuLi, Me2AlCl, Toluene, -78 °C; ii) Ac2O, Pyridine, DMAP;  
iii) H2 Lindlar catalyst, MeOH, 40 psi; iv) Silica gel, heat. 

 
Scheme 4. Intramolecular aziridine opening approach to 7-deoxypancratistatin. 
 
 The silica-gel-mediated opening of aziridine 20 deserves brief mention.  We found that 
aziridines and epoxides are opened by a variety of nucleophiles in solid phase and moderate 
temperatures. The synthesis of the indole mimic of pancratistatin, shown in Scheme 5, was 
accomplished by the condensation of indole derivative 25 with tosylaziridine 24 at 70˚C when 
both reagents were adsorbed on flash silica surface and heated.  Indole 26 was isolated in 68% 
yield and converted in a brief sequence to the indole mimic 30, which was found to have mild 
antitumor activity against several cell lines. 
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Scheme 5. Synthesis of indole mimic of pancratistatin. 
 
 During the synthesis of 30, silica-catalyzed deprotection of acetoniles and BOC groups in 
water was also observed.19  The preparation of 30 represents to date the most efficient method of 
synthesis for pancratistatin-like compounds containing the amininositol moiety.  Nevertheless 
pancratistatin despite its potency, is not an ideal medicinal agent because of the poor 
bioavailability.  In collaboration with Professor Pettit's group at Arizona State University we 
have embarked on a program to synthesize diverse unnatural derivatives of 2 and test all the 
compounds against common mammalian cell lines in search for an active agent with improved 
solubility.  Many unnatural derivatives have been tested20 and in order to increase the proof of 
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compounds we designed a library-type approach via cyclotrimerization of acetylenes as shown in 
Figure 4. 
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Figure 4. Seventh generation design for pancratistatin. A library approach? 
 
 Such strategy allows, in principle, the synthesis of carbocyclic and heterocyclic variants of 
2 with structural and functional charges in the aromatic core, a region of the molecule that has 
not yet been investigated in serious SAR studies.  The preparations of scaffolds for cyclization is 
shown in Scheme 6. 
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Scheme 6. Synthesis of scaffolds for cyclotrimerization. 
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 Preliminary experiments in cyclotrimerizations of scaffolds 31 and 32 provided the core of 
pancratistatin substituted with trimethylsilyl groups and further functionalization to the fully 
oxygenated natural products is in progress. 
Morphine.  Several approaches to this alkaloid have been pursued in the groups over the last 15 
years and have been published21-26 and reviewed.1-3  In 1997 we reported an approach to 
morphine based on the recognition that the biphenyl-like compound 33 could be derived from the 
aminoacid 34 by combination of Suzuki coupling and Kazmaier-Claisen rearrangement of 
glycinate enter 36 to acid 35 as shown in Scheme 7. 
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Scheme 7. Kazmaier-Claisen approach to morphine. 
 
 Preliminary results of the successful synthesis of axial acid 34 have been reported.27  
Second generation improvements yielded a medium-scale synthesis (~100 g) of intermediate 37 
with correct stereochemistry at C-9 and C-14, Scheme 8. 
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Scheme 8. Second generation synthesis. 
 
 The glycinate 40 provides a 40:60 mixture of diastereomeric acids, which can be 
epimerized upon conversion to their esters to 42, presumably because of a hydrogen-bonded 
species 44 in which the ester occupies an axial position in major product 41 and is therefore 
subject to equilibation to the more stable equatorial configuration found in 42.  Experiments are 
underway to perform intramolecular radical cyclizations from a free phenol derived from 37 in 
order to establish the C-13 quaternary center and eventually close the phenanthrene core by 
Friedel-Crafts acylation. 
 Another approach to morphine has been designed based on the intramolecular heck 
cyclization,  β-bromoethylbenzene 45 is converted to the corresponding arene cis-diol and 
transformed to isoquinoline derivative 46 as shown in Scheme 9.  Generation of epoxide 47 and 
its opening to 48 provides the key precursor for the intramolecular Heck cyclization to 49 in 
which all stereogenic centers of morphine except C-9 have been established.  The oxidation state 
in 49 is that of neopine-type alkaloids and will provide codeinone upon C-10/C-11 closure and 
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oxidation of C-6 alcohol followed by isomerization of the olefin.  Compounds of the type 49 
have been previously converted to morphinans in the ent series and therefore adequate precedent 
exists for the completion of the total synthesis by this route. 
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Scheme 9. Intramolecular Heck cyclization approach to morphine. 
 
 
2. Conclusions 
 
We have demonstrated that incorporation of biocatalysis into traditional synthetic protocols 
greatly increases the brevity synthesis of medicinally important agents.  Furthermore, 
mutigenerational approaches to the targets discussed in this lecture frequently yield shorter and 
more efficient routes.  Further progress will be reported in due course. 
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