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Abstract 
2,3-Diaryloxiranes represent challenging intermediates for both their preparation and synthetic 
elaboration. Provided their synthesis in enantiopure form, they can be considered as suitable 
starting material for the synthesis of functionalized 1,2-diarylethanols, which are easily found in 
chiral auxiliaries, ligands and organocatalysts. The most efficient asymmetric methods for their 
preparation and synthetic elaboration are herein described. Regio- and stereoselective ring 
opening reactions, as reduction, nucleophilic opening with halides and oxygen nucleophiles have 
allowed straightforward access to versatile chiral intermediates such as aniline alcohols, 
halohydrins and 1,3-dioxolanes, their transformation affords chiral bases and bi- or tridentate 
ligands to use in asymmetric synthesis. 
 
Keywords: Diaryloxiranes, asymmetric epoxidation, ring opening reaction, aniline alcohols, 
halohydrins, 1,3-dioxolanes 

 
 
 
Contents 
 
1. Synthesis of 2,3-Diaryloxiranes 
1.1 Epoxidation of stilbene type olefins 
1.1.1 Metal catalysed epoxidation 
1.1.2 Epoxidation by dioxiranes 
1.2 Epoxidation of carbonyl compounds 
1.2.1 Stoichiometric ylide-mediated epoxidation 
1.2.2 Catalytic ylide-mediated epoxidation 
2. Elaboration of 2,3-Diaryloxiranes 
2.1 Reductive ring opening 

mailto:paolo.lupattelli@unibas.it


Issue in Honor of Prof. Arlette Solladie-Cavallo                                                      ARKIVOC 2008 (viii) 150-182 

ISSN 1551-7012                                                       Page 151                                                       ©ARKAT USA, Inc. 

2.3 Nucleophilic ring opening by metal halides 
2.4 Ring opening by oxygen nucleophiles 
 
 
Introduction 
 
Epoxides are among the most intriguing and challenging moieties in organic synthesis because 
they are not only significant synthetic endpoints,1 but also highly useful synthetic intermediates. 
Due to their strain ring (having a thermodynamic driving force usually greater than 20 kcal/mol), 
they are considered "spring loaded" for nucleophilic ring opening reactions and among the best 
candidates for click chemistry.2 Utility and convenience of their use can be enhanced by the 
modulation of their reactivity with the help of Lewis acids coordinating the oxygen atom. Thus, 
ring-openings of epoxides have been applied in industrial scale for the synthesis of bulk 
chemicals, and in the synthesis of natural products and pharmaceuticals. A wide range of 
nucleophiles are described to react efficiently with epoxides and the regioselectivity of the 
opening is usually predicted by the different electrophilicity of the two oxiranyl carbons and/or 
the formation of chelates in presence of other coordinating moieties in the molecule. The high 
stereoselectivity in the opening reaction is mostly assured by the SN2 pathway and there is 
usually low, if any, epimerization at the electrophilic oxiranyl carbon. Such general 
stereospecificity highly encourages the use of enantiopure epoxides as key intermediates in 
asymmetric synthesis, since no loss of enantiomeric purity in the subsequent steps is generally 
reported. One of the major advantages of nucleophilic openings of three member rings is 
stereoelectronically disfavored competing elimination process.3 
 The importance of all these procedures lies not only in the synthesized product, but also in 
the availability of the starting materials. Usually, epoxides are easily prepared by oxidation 
process of the corresponding alkenes and many enantioselective versions of this reaction have 
been developed. 
 2,3-Diaryloxiranes can be considered non conventional epoxides in terms of their synthesis 
and, above all, their reactivity. The classical metal-catalyzed epoxidation of olefins and, in 
general, any oxidative procedure is usually slower in the case of stilbene compounds and high 
HOMO aromatic π-systems (as in polyphenolic stilbenes) are hardly preserved in presence of 
strong oxidants. Compared to alkyl ones, 2,3-diaryloxiranes usually show lower reactivity 
towards nucleophiles and they need some activation by Lewis acid. Due to the characteristic 
chemical behavior of benzyl type carbons in neutral or acidic medium they appear challenging 
substrates for the little reactivity differences of the two oxiranyl carbons and the possible side 
reactions such as eliminations or rearrangements. 
 This report deals with the most efficient methods of preparation and opening reactions of 
optically active 2,3-diaryloxiranes and their applications in the synthesis of key enantiopure 
intermediates. 
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1. Synthesis of 2,3-diaryloxiranes 
 
1.1 Epoxidation of stilbenic olefins 
 
Since of the Sharpless epoxidation reaction of allylic alcohols many efforts have been done to 
discover a more general protocol which might be effective for the asymmetric epoxidation of 
unfunctionalized olefins. Chiral metal complexes were found firstly to effect highly 
enantioselective oxo-transfer to unfunctionalized olefins, as mimic the stereoselectivity found in 
biological systems.4 In the last decade chiral dioxiranes have been developed as effective 
epoxidation catalysts and have expanded the range of the substrate requirement in many cases.5 
 This paragraph presents an overview of the most efficient methods of epoxidation of stilbene 
olefins, and shows the scope, advantages and limitation of this approach. 
 
1.1.1 Metal catalysed epoxidations 
Oxo transfer from metal complexes results in a net two electron reduction at the metal center. 
Thus, iron, manganese, ruthenium and chromium have proven effective for catalytic epoxidation 
via oxo-transfer,6 and these metals are mostly coordinated by tetradentate porphyrin and salen 
ligands. The lack of stereospecificity in the epoxidation of certain olefins gives evidence for a 
stepwise oxo-transfer mechanism competing with the direct attack with concerted C-O bond 
formation. Alkyl-substituted olefins generally undergo stereospecific epoxidation, with cis-
olefins affording cis-epoxides exclusively. Acyclic olefins conjugated to aryl, vinyl, or alkynyl 
groups undergo nonstereospecific epoxidation, with cis-olefins affording mixtures of cis and 
trans epoxides. Non-polar radical intermediates are involved in the case of non-concerted 
epoxidation with Mn(salen) catalysts.7 Among these complexes, catalyst 1 (Figure 1) has been 
employed widely on both laboratory and industrial scale for the epoxidation of cis-disubstituted 
and trisubstituted olefins.8 trans-olefins remain particularly challenging substrates for 
asymmetric epoxidation with oxo-transfer catalyst. However, catalysts bearing stereogenic 
centers on the 3- and 3'-positions of the salen ligand, as in 2 and 3 have been examined, with a 
promising 61% ee in the epoxidation of trans-stilbene (by catalyst 2).9 
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 Excellent selectivity (>90% ee) has been obtained for aryl- or alkynyl-substituted terminal-, 
cis-disubstituted-, and trisubstituted olefins with the second generation catalysts (as 310), whereas 
trans-disubstituted olefins were epoxidized with low rates and low ees (<40%). 
 A more successful strategy for the enantioselective synthesis of trans-epoxides has been 
developed with the [Mn(salen)]-catalyzed epoxidation of cis-disubstituted olefins in the presence 
of alkaloid-derived phase transfer catalysts such as 5 (Scheme 1). In this case the reaction 
resulted in the formation of the trans epoxide as the major, and in some cases nearly exclusive, 
product.11 
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Scheme 1 
 
 Recently, three novel chiral binuclear Mn(III)-Schiff-base complexes have been synthesized 
and used in the asymmetric epoxidation of trans-stilbene. The best result was obtained using 6c 
and NaClO as terminal oxidant (43% yield, 40% ee).12 
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Figure 2 
 
 Even lower ees (3-12%) were obtained if using such dimeric complexes in the presence of 
pyridine N-oxide or Fujita's porous coordination polymer ({[Cd(4,4'-bpy)2(NO3)2}∞).13 

Analogous chromium-salen systems appear complementary to their manganese counterpart, 
since good enantioselectivity was obtained in the epoxidation of the "difficult" trans-
disubstituted olefins. Chromium oxo complexes as 8, derived from the parent salen complexes 7 
(Figure 3) are isolable and have been studied deeply in both stoichiometric and catalytic 
epoxidations. 
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Figure 3 
 
 These chiral chromium(V) catalysts have shown good enantioselectivity in the epoxidation of 
trans-disubstituted olefins, as in the case of trans-β-methylstyrene, in which the corresponding 
epoxide was obtained in 45% yield and in 92% ee, by use of stoichiometric quantity of 7 (X- = 
NO3

-, L = Ph3PO) and 1.2 equivalents of iodosyl benzene. Under catalytic conditions (10 mol% 
of 7) in the presence of PhIO, the epoxide was formed in higher yield (71%) but with a slightly 
lower ee (82%).14 
 Many others metals, ligands and terminal oxidants have been used to broaden the scope of 
the reaction, but examples of metal catalysed asymmetric epoxidation of stilbene type olefins are 
only occasionally described in the literature.15  Ruthenium catalysts based on pyridine-2,6-
bisoxazoline (pybox) ligands, as 9 (Scheme 2), have been used in combination with iodosyl 
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benzene, bisacetoxyiod benzene [PhI(OAc)2], or TBHP for the oxidation of trans  stilbene. In the 
best results, with PhI(OAc)2 as oxidant, trans-stilbene oxide was obtained in 80% yield and with 
63% ee.16 Such catalytic system was also reexamined, finding that asymmetric epoxidations 
could be performed even with 30% aqueous hydrogen peroxide. 
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Scheme 2 
 
 More than 30 different [Ru-(pybox)(pydic)] 10 and [Ru(pyboxazine)(pydic)] 11 complexes 
(Scheme 3) have been tested in the asymmetric epoxidation of styrene and trans-stilbene. 
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 The yields were from good to excellent in all cases and exploiting the broad coverage of 
substitution pattern of the ligands, both enantiomers of trans-stilbene oxide could be obtained, 
with ees ranging from 52% to 71%.17 More easily tunable N,N,N-pyridinebisimidazoline (pybim) 
ligands 12 (Figure 4) have also been synthesized and tested as ruthenium complexes, giving 
excellent yields and moderate to good enantioselectivities in the epoxidation of aromatic olefins 
(up to 71% ee for trans-stilbene oxide).18 
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1.1.2. Epoxidation by dioxiranes 
The oxidation of organic compounds with dioxirane reagents has emerged since late '80 as an 
important synthetic method. Currently, chiral dioxiranes, derived in situ from the oxidation of 
suitable chiral ketones by the triple salt oxone (2KHSO5·KHSO4·K2SO4), have emerged as some 
of the most effective organocatalysts in the asymmetric epoxidation of alkenes.19 Excellent 
enantioselectivity has been achieved with trisubstituted and trans-alkenes, while moderate to 
good selectivity has been achieved for other alkenes, thus making this method complementary to 
the metal catalyzed epoxidation. The discovery that ketones bearing electron-withdrawing 
groups such as halogen and OAc adjacent to the carbonyl showed higher activity in epoxidation 
reactions led to design C2-symmetric ketones as 13 which effected the catalytic epoxidation of 
unfunctionalized olefins with high level of enantioselectivity in the case of stilbene derivatives 
(Scheme 4).20 
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 The fructose-derived ketone 15 (Shi's ketone) was discovered to be particularly effective for 
the epoxidation of trans-olefins (Scheme 5). Trans-stilbene was epoxidized in 95% ee using 
stoichiometric amount of ketone.21 The method has been rendered catalytic (30% mol) upon the 
discovery that higher pH led to improved substrate conversion.22 
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 The discovery of the activating effect of a single fluorine atom adjacent to carbonyl in the 
dioxirane-mediated epoxidation of olefins has widened the choice of enantiopure ketone 
potential catalysts, which could be suitable dioxirane precursors. Thus, many structurally 
different chiral fluoroketones have been prepared and successfully tested to trans olefins. Fluoro 
tropanone ammonium triflate 16 slowly converted trans-stilbene to the corresponding (S,S)-
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epoxide in 79% yield and 58% ee, while C2 biphenyl cyclic fluoro ketone 17 gave (R.R)-epoxide 
in 46% yield and 94% ee (Figure 5).23 
 

N+

O

CH3H3C

F

-OTf Me

Me
O

F

F

16 17  
 
Figure 5 
 
 Armstrong has studied different chiral fluorinated bicyclo[3.2.1]octan-3-ones, as 18 and 19 
(Figure 6), which gave high yields and good enantioselectivities.24 α-fluorotropinone 18 has 
been also supported on silica materials and its activity appeared comparable to that of 
homogenous counterpart,25 while 2,2- and 2,4-disubstituted derivatives of 8-
oxabicyclo[3.2.1]octan-3-one 18 afford the epoxide in lower yield.26 
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 Solladié-Cavallo's studies on α-fluorocyclohexanones derived from chiral pool have 
introduced efficient and easy-to-make enantiopure fluoroketones, which worked well in catalytic 
amounts and gave among the highest enantioselectivities in the epoxidation of trans-olefins. C8-
substituted ketones 20-23 (Figure 7) provided enantioselectivity ranging between 82 and 90%,27 
while unsubstituted ketone 24 gave only 60% ee in the case of trans-stilbene epoxidation.28 
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1.2 Epoxidation of carbonyl compounds 
 
There are two general approaches to the direct asymmetric epoxidation of carbonyl compounds: 
ylide-mediated epoxidation and α-halo enolate epoxidation (Darzens reaction). While the latter 
has been successfully used for the synthesis of epoxy esters, the first has shown particularly 
useful for the preparetion of 2,3-diaryloxiranes (Scheme 6). 
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1.2.1 Stoichiometric ylide-mediated epoxidation 
Solladié-Cavallo's group has successfully used Eliel's oxathiane 25 (derived from pulegone in 
three steps) in asymmetric epoxidation (Scheme 7).29 
 

O S

(R,R,R)

O S+ -OTf

(R,R,R,SS)

25 26

BnOH, Tf2O
or

BnBr, AgOTf

1) NaH 2) ArCHO
or

1) EtP2 2) ArCHO

-40 or -78°C

O

Ph H

ArH
+ 25 (80%)

52-82% yield
>95% ee

 
 
Scheme 7 
 
 This sulfide was initially benzylated to form a single diastereoisomer of the sulfonium salt 
26. The corresponding ylide was formed by the aid of sodium hydride and the epoxidation was 
carried out at low temperature to afford trans-diaryl epoxides 27 with good stereoselctivity and 
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high enantioselectivity with recovery of the chiral sulfide 25. The use of a phosphazene base 
(EtP2) resulted in rapid ylide formation and allowed the preparation of aryl-vinyl epoxides30 and 
heteroaromatic aryl-epoxides31 in good chemical yield and high stereo- and enantioselectivity. 
Such procedure has been used for the synthesis of different substituted trans-2,3-diaryloxiranes 
(vide infra), proving its high versatility. 
 The Aggarwal group has used chiral sulfide 28, derived from camphorsulfonyl chloride, in 
asymmetric epoxidation. Once preformed the salt 29 from either the bromide or the alcohol, the 
ylide was prepared using different bases in presence of a range of carbonyl compounds. The 
method proved effective for the synthesis of aryl-aryl, aryl-heteroaryl, aryl-alkyl, and aryl-vinyl 
epoxides32 (Scheme 8). 
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Scheme 8 
 
1.2.2. Catalytic ylide-mediated epoxidation 
Many efforts have been made to render the ylide-mediated epoxidation catalytic. Aggarwal has 
developed an efficient catalytic cycle, in which the sulfur ylide is generated through the reaction 
between chiral sulfide 28 and a metallocarbene. The metallocarbene is generated by the 
decomposition of a diazo compound 32, which can in turn be generated in situ from the 
tosylhydrazone salt 31 by warming in the presence of phase transfer catalyst. The tosylhydrazone 
salt can also be generated in situ from the corresponding aldehyde 30 and tosylhydrazine in 
presence of base (Scheme 9). 
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Scheme 9 
 
 This process enables the coupling of two different aldehydes to produce trans-epoxides in 
high enantio- and diastereoselectivity. A range of aldehydes have been used in this process with 
phenyl tosylhydrazone salt and good selectivity was observed with aromatic and heteroaromatic 
aldehydes.33 Pyridyl aldehydes proved to be incompatible with this process, presumably due to 
the presence of a nucleophilic nitrogen atom, which can compete with the sulfide for the 
metallocarbene to form a pyridinium ylide. Sulfide loadings as low as 5 mol % could be used in 
many cases. Benzaldehyde was also treated with a range of tosylhydrazone salts and the scope of 
the process has been extensively mapped out, enabling the optimum disconnection for 
epoxidation to be chosen. 
 
 
2. Elaboration of 2,3-diaryloxiranes 
 
Among the various methods for the preparation of a single enantiomer, asymmetric catalysis 
represents the most attractive method from the atom-economy point of view. Chiral ligands play 
a fundamental role in the complex phenomenon of asymmetric catalysis. Among the possible key 
intermediates for the synthesis of functionalized alcohols, epoxides are considered the most 
versatile and convenient, due to their well known enantioselective preparation methods and 
regioselective ring opening and subsequent protections.34 In recent years, our research group has 
started a study on regio- and stereoselective ring opening reactions on 2,3-diaryloxiranes, with 
the aim to afford, in a simple and immediate way, functionalized 1,2-diarylethanols, which are 
found in chiral auxiliaries, ligands and stationary phases for chiral HPLC. Moreover, the 
contemporary presence of two aromatic rings promotes non covalent π−π interactions, which are 
more and more studied because they are involved in a wide variety of chemical and biological 
processes.35 Despite the high chemical versatility of such epoxides, literature data on their use 
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are few, probably due to the difficulty of obtaining efficient regioselective ring openings on 
epoxide benzylic carbons which have very similar reactivity. Our study allowed to individuate 
original and efficient synthetic procedures of regio- and stereoselective ring opening reactions on 
such substrates, obtaining new enantiopure aniline aminoalcohols and benzoxazines, 1,2-
diarylbromo alcohols and acetonides. 
 
2.1 Reductive ring opening 
 
The reductive ring-opening of epoxides to the corresponding alcohols has become a powerful 
tool in organic synthesis, due to the rapid development of efficient and practical methods for 
their preparation, both in racemic and in enantiopure form. Metal hydrides36 or dissolving metals 
are frequently employed for this purpose, although the large quantity of metal sludge are often 
produced.37 The need of a practical version of this reaction with low environmental impact has 
generated interest in heterogeneous catalytic systems. In particular, various catalysts based on 
Ni, Pd and Pt has been developed in order to increase the chemo- and regioselectivity of such 
reactions, even with enantiopure epoxides.38 Different hydrogen sources, such as HCOONH4,39 
and catalysts, such as Pd/C ethylendiamine complexes,40 have been used to improve selectivity 
and to prevent further hydrogenolysis of the alcoholic C-O bond. Nevertheless, the solvolysis 
with methanol remains a problem, particularly with benzylic epoxides. Recently, Pd 
nanoparticles, microencapsulated in polyurea, have been described to be very efficient in the 
reductive ring-opening of different benzyl and alkyl epoxides.41 Moreover, a magnetically 
separable palladium catalyst has been synthesized and described to be active and selective for 
hydrogenolysis of different epoxides.42 Titanocene(III) chloride has been claimed to be one of 
the best reagent reported carrying out the reductive epoxide opening.43 The β-titanoxy radicals 
have been reduced efficiently by different hydrogen atom donors and the regioselectivity towards 
the less-substituted alcohol has been reported to be high.44 
 Chiral pyridyl alcohols have numerous applications, as ligands in asymmetric metal 
catalysis,45 as resolving agents46 or as starting materials for the preparation of more advanced 
chiral ligands.47 As one of the first applications of the asymmetric synthesis of diaromatic 
epoxides, with high stereo- and enantioselectivity, Solladié-Cavallo described the reductive ring 
opening of 2-pyridyl epoxide 33a and 2-furyl epoxide 34 (Scheme 10). Asymmetric synthesis of 
the epoxides was successfully performed by using the pure benzylsulfonium salt derived from 
Eliel's oxathiane, the corresponding commercial 2-pyridyl- and 2-furylaldehyde and the 
phosphazene base EtP2.31 
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Scheme 10 
 
 These first results have stimulated the interest in searching a general regioselective reductive 
opening method for nonsymmetrical substituted 2,3-diaryloxiranes. A series of ortho and para 
monosubstituted trans 2,3-diaryloxiranes 33 have been prepared in racemic form (scheme 11) 
and tested with various reductive agents. 
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Scheme 11 

 
 Although catalytic hydrogenation over Pd/C is one of the most simple and clean reduction 
procedure, in terms of reagents and subsequent work up, it is only occasionally described to be 
efficient on epoxides.48 Moreover, no systematic study on 2,3-diaryloxiranes are known so far. 
Thus, the epoxides of type 33 were reacted with H2 at 1 atm in presence of catalytic amount of 
Pd/C 10% in the appropriate solvent. The most significant results are collected in Table 1.49 
 



Issue in Honor of Prof. Arlette Solladie-Cavallo                                                      ARKIVOC 2008 (viii) 150-182 

ISSN 1551-7012                                                       Page 164                                                       ©ARKAT USA, Inc. 

Table 1. Catalytic hydrogenation of trans non symmetrical 2,3-substituted oxiranes 

Ar
R

O

33

H2, Pd/C

solvent, r.t. Ar
R

35

OH

+
Ar

R

36
OH

Ar
R

37

+

 
 

Entrya Epox. Ar R Solv.b Time (h) 35c (%) 36c (%) 37 (%) 
1 33a 2-pyridyl Ph A 2 90 - - 
2 33b 4-pyridyl Ph A 2 90 - - 
3 33c 4-OCH3Ph Ph B 7 80 12 - 
4 33d 2-CF3Ph Ph B 2 70d - - 
5 33d 2-CF3Ph Ph A 3 60 - 40 
6 33e 4-CF3Ph Ph B 2 60 - 40 
7 33e 4-CF3Ph Ph A 3 50 - 50 
8 33f 4-FPh Ph A 3 70c - - 
9 33ge Ph CH3 A 2 - 95 - 

aAll reactions were performed using Pd,C(10%)/substrate = 20mg/mmol. The conversions were 
all higher than 99% and were determined by 1H NMR of the crude product. bA = CH3OH; B = 
EtOAc, 1% AcOH c Isolated yield. dNo isolable product was obtained from the rest of the crude. 
eEpoxide 33g was prepared by oxidation of commercial trans β-methyl-styrene with m-CPBA. 
 
 All reactions were completely regioselective, producing only one of the two possible 
regioisomers, with chemical yields from good to excellent. Such regioselectivity appeared 
puzzling, being irrespective to the substituent electronic properties. 
 In fact, from all the oxiranes with either a strong electron-withdrawing group (33a, 33b, 33d 
and 33e) or an electron-releasing group (33c) on one phenyl ring, the regioisomer of type 35 was 
isolated as the major product in the reaction mixture. Even with the weak electron-releasing p-
fluoro substituent, the same behavior was confirmed (entry 8). These results were quite 
surprising, if we consider the classical mechanism of hydrogenolysis, with benzyl type radicals 
as key intermediates. In fact none of the results seemed to suggest the formation of a regular S-
type benzyl radical,50 which should be the substituted one in all cases affording the opposite 
regioisomer. 
 The next step of our study was to test reductive ring opening of diaryl epoxides by hydrides, 
in order to induce a change of regioselectivity. Among various hydrides which are efficient in the 
reductive opening of epoxides, LiAlH4 is the most common,51 and the milder borohydrides often 
require the presence of a Lewis acid, which activates the epoxide toward nucleophilic attack. 
Indeed, NaBH4/ZrCl4,

52
 or Zn(BH4)2/SiO2

53 systems are described to be efficient and, recently, 
NaCNBH3 in presence of ZnI2 was found to produce regioselective ring opening of benzylic 
epoxides.54 NaBH4/Pd system proved to be highly dependent upon reaction conditions, ranging 
between a simple source of hydrogen (like in the catalytic hydrogenation) and a more "hydridic" 
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reagent in selective nitro group reactions.55 This suggested to test it with diarylepoxides, looking 
for a complementary method with respect to catalytic hydrogenation. Thus, the epoxides 33 were 
treated with NaBH4/Pd and the most significant results are collected in Table 2. 
 
Table 2. Reduction of epoxides by NaBH4/Pd system 

R
O

33Y

NaBH4/Pd

H2O/MeOH
r.t.

R

35Y

OH

+
R

36Y

OH

 
 

Entrya Epox. Ar R Time (h) 35b(%) 36b(%) 
1 33a 2-pyridyl Ph 4 - 80 
2 33b 4-pyridyl Ph 4 - 75 
3 33c 4-OCH3Ph Ph 12 70c - 
4 33d 2-CF3Ph Ph 2 90 - 
5 33e 4-CF3Ph Ph 3 65c - 
6 33g Ph CH3 12 - 90 

aAll the reactions were performed at r.t., with NaBH4/substrate = 7.5/1.0, Pd/C(10%)/substrate = 
10 mg/mmol. The conversions were all higher than 99% and were determined by 1H NMR of the 
crude product. bIsolated yield. cNo isolable product was obtained from the rest of the crude. 

 The regioselectivity was highly affected by substituents electronic properties, combined with 
the unique characteristic of the reagent. Indeed, ortho and para substituted substrates gave the 
same regioisomer, in similar chemical yield. In substrates with the strong electron withdrawing 
group CF3 (entry 4 and 5), only the regioisomer 35 were detected in the reaction mixture, the 
attack of the hydrogen being exclusively on the β-carbon with respect to the substituted phenyl 
ring. These results account for an electron deficient acyclic intermediate, which was already 
postulated for opening reaction with LiBr/Amb. 15 system (vide infra).56 On the other hand, this 
mechanism can hardly explain the results for epoxides 33a-33c, in which the regioselectivity 
observed is opposite to that expected for an acyclic intermediate. In the case of pyridyl epoxides 
33a and 33b (bearing electron withdrawing groups), only the alcohols of type 36 (α-opening) 
were isolated (entries 1 and 2); on the other hand, in presence of OCH3 substituent  on one 
phenyl ring, only regioisomer 35 (β-opening) was obtained (entry 3). These results indicate more 
likely the activated epoxide as reactive species, in which the electrophilicity of the two oxiranyl 
carbons rules the reactivity. 
 Beyond mechanistic considerations, the method appears of synthetic value for the direct 
access to substituted alcohols of type 35a and 36a (Figure 8), which can be envisaged as ligands 
in asymmetric synthesis. 
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35a

N

OH

N OH

36a  
 

Figure 8 
 
 The application of the described methodologies led to the preparation of new aniline-
containing aminoalcohols in enantiopure form, as intermediates for the synthesis of chiral 
ligands and bases. 
 (R,R)-2-Nitrophenyl epoxide 38 was therefore prepared in 67% isolated yield and >99% ee 
(determined by HPLC) from the pure (R,R,R,SS)-(-)-sulfonium salt 26, commercial 2-
nitrobenzaldehyde and the phosphazene base EtP2 (scheme 12). Since no examples were 
described on reduction of nitroaryl group in presence of epoxide, different reagents were tested, 
such as LiAlH4, or milder systems as FeCl3·6H2O/H2NNMe2, H2/NiB2, Sm/I2, without success. 
Catalytic hydrogenation over Pd/C led quantitatively to 86/13 mixture of the aminoalcohols (S)-
39 and (S)-40, obtained in 80% isolated yield. Alternatively, treatment with NaBH4 and catalytic 
amount of Pd/C provided amino alcohol (S)-40, as the only isolable product, in good yield.57 
Both anilino alcohols showed the same ee of the parent epoxide. 
 

NH2

OH

NH2

OH

(S)-39

(S)-40

O

NO2

(R,R)-38

H2/Pd,C

MeOH/AcOEt

>99%

+ (S)-40

86/14

NaBH4/Pd,C

MeOH/AcOEt
64%

O S+ -OTf

(R,R,R,SS)
26

1. EtP2

2. 2-nitro
benzaldehyde
CH2Cl2

 
 
Scheme 12 
 
 Elaboration of amino alcohols allowed the selective alkylation of either amino or hydroxyl 
group, and all the possible alkylated derivatives were obtained, alternatively (scheme 13). 
 N,N-dimethylated anilino alcohols were directly obtained in good yield by LiH/CH3I system 
(route A). These compounds were tested as chiral ligands in the asymmetric alkylation of 
benzaldehyde with Et2Zn, and only the product from regioisomer of type 40 gave some induction 
(40% ee of the corresponding 1-phenylpropanol). Using anhydrous Mg(ClO4)2/(Boc)2O system58 
on N-Boc protected anilino alcohols, the corresponding O-tert-butyl derivatives were obtained, 
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which were subsequently reduced by LiAlH4
59 to afford the N-monomethyl-O-alkylated 

derivatives, precursors of new strong chiral bases (route B). Selective monomethylated anilino 
alcohols were obtained by introduction of Boc group on nitrogen followed by reduction with 
LiAlH4 (route C). Finally, the synthetically challenging O-alkylated anilino alcohols were 
obtained from the N-Boc derivatives by the use of wet60 Mg(ClO4)2/(Boc)2O system, which 
effected tert-butylation of hydroxyl group together with hydrolysis of Boc group (route D). 
 

NH2

OH(H)

LiH/CH3I

H(OH)
N

OH(H)

H(OH)

N,N-dialkylated

A

1. (Boc)2O, Zn(ClO4)26H2O
2. (Boc)2O, Mg(ClO4)2anhydrous
3. LiAlH4

NH

OR(H)

H(OR)

N-monomethyl-O-alkylated

1. (Boc)2O, Zn(ClO4)26H2O
2. LiAlH4

NH

OH(H)

H(OH)

N-monoalkylated

B

C

NH2

OR(H)

H(OR)

O-alkylated

1. (Boc)2O, Zn(ClO4)26H2O
2. (Boc)2O, Mg(ClO4)2, H2O

D

 
 
Scheme 13 

 
2.3 Nucleophilic ring opening by metal halides 
Vicinal halo alcohols have attracted the interest of organic chemists for their usefulness as 
versatile building blocks.61 They are also substrates for a particular class of enzymes, halohydrin 
dehalogenases,62 that are of interest both to organic synthesis63 (e.g., chiral resolution of racemic 
compounds64) and bioremediation of the environment (e.g., removal of pollutants from soil, 
ground-water or waste-water62,65). Although various synthetic procedures have been reported, 
most of them have some limitations, in terms of either harsh reaction conditions or low 
regioselectivity in the opening of unsymmetrical epoxides.66 In more recent years, new and 
milder procedures have been proposed, with the use of silyl halides in the presence of different 
promoters,67 elemental halogen with various catalysts,68 borane halogenides69 and metal halides 
with Lewis70 or Brønsted71 acid systems. The use of ionic liquids has broadened the application 
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of such procedures.72 Among all these methods, very few are suitable for regioselective openings 
of nonsymmetrical 2,3-disubstituted oxiranes and, in such cases, regio- and stereoselective 
openings are usually performed on substrates bearing chelating atoms or groups.73 
 2,3-Diaryloxiranes appeared very challenging for ring opening, due to their low reactivity 
without acid promoters and the possible competitive rearrangements in such conditions.74 
 In search of efficient conditions for the success of nucleophilic opening of the oxirane ring, 
different metal halide systems were attempted to the opening of trans-stilbene oxide 41. In 
particular, the attention was turned to the use of a metal bromide/Amberlyst 15 system75 and to 
the MgBr2 reagent, already successfully employed in the opening of epoxy- and 
aziridinoalcohols and derivatives.76 The results in Table 3 show a general high chemical yield in 
the obtaining of the corresponding bromohydrines, with different levels of diastereoselectivity, 
depending on reagents and reaction conditions.77 Only in the case of MgBr2, the reaction can be 
performed in absence of the acidic resin Amberlyst 15, and the expected anti diastereoisomer 42 
was obtained in good yield. On the other hand, using alternatively, MgBr2, NaBr or KBr with 
Amberlyst 15, high syn/anti ratio was always observed and the syn bromohydrin 43 was obtained 
in good yield. 
 
Table 3. Opening of trans stilbene oxide with metal halides 

41 trans

OH

Br
42, anti

OH

Br

+

43, syn

MBrx
O

 
 

Diaster. Ratioa 

Entrya Bromides React. Cond. 
Conv.a 

(%) 
Yieldb 

(%) 42 43 
1 MgBr2·Et2O Et2O, 0°C, 4h 95 90 80 20 

2 MgBr2·Et2O/Amb. 15 
CH3CN, 0°C, 

2h 
95 90 10 90 

3 NaBr/Amb. 15 
Acetone, 

-30°C, 12h 
90 60 10 90 

4 NaBr/Amb. 15 
CH3CN 

-30°C-0°C, 6h 
95 80 10 90 

5 KBr/Amb. 15 
CH3CN 
r.t. 3h 

95 90 25 75 

aCalculated by 1H NMR analysis of the crude mixture. bIsolated. 
 
 Using the results of this investigation, a new stereodivergent synthesis of optically pure anti 
and syn 2-amino-1,2-diphenylethanols was achieved (scheme 14). After a straightforward 
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obtainment of the two diastereoisomers (1R,2S)-42 and (1R,2R)-43 from the epoxide (R,R)-41, 
they were transformed with sodium azide, via direct SN2-type replacement of the bromine, to the 
corresponding azidoalcohols 44 and 45 in high yield and without traces of racemization. 
Standard catalytic hydrogenation finally afforded enantiopure 46 and 47. 
 

41,(R,R)

OH

Br
MgBr2Et2O

42;(1R,2S), 92%

OH

N3

MgBr2Et2O
Amberlyst 15

OH

Br

43;(1R,2R), 85%

OH

N3

44;(1R,2R), 92%

45;(1R,2S), 99%

NaN3

DMF

OH

NH2

H2/Pd

MeOH

46;(1R,2R), 95%
99% ee

NaN3

DMF

OH

NH2

H2/Pd

MeOH

47;(1R,2S), 95%
99% ee  

 
Scheme 14. Stereodivergent synthesis of 2-amino-1,2-diphenylethanols. 
 
 Subsequent studies on nonsymmetrical substituted 2,3-diaryloxiranes showed the efficiency 
of these procedures in terms of both regio- and stereoselectivity of the ring opening (Table 4). 
The behaviour of trans 2-pyridyl- and 2-fluorophenyl epoxides 33a and 48 in presence of either 
MgBr2 or NaBr/Amberlyst 15 system was studied. In the case of 33a only the regioisomer 49 
was obtained in all reaction conditions (with either MgBr2 or NaBr/Amb. 15), in 
diastereoisomeric ratios ranging from 4/1 to >98/2 in favour of the anti stereoisomer 49I. 2-
fluorophenyl epoxide 48 and MgBr2 provided only the two anti isomers 50I and 51I (of the four 
possible isomers) in the ratio ~ 4:1 in favor of regioisomer 50I. On the other hand, NaBr/Amb. 
15 gave, in quantitative yield, a mixture of all four isomers, with the syn bromohydrin 50II as the 
major compound.78 
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Table 4 

33a; Ar=2-Pyr
48; Ar=2-F-Phe

Ar
Ph

O MX

(Amb. 15)
Ar

Ph
Ar

Ph

OH

Br

OH

Br

+

49I; Ar=2-Pyr
50I; Ar=2-F-Phe

49II; Ar=2-Pyr
50II; Ar=2-F-Phe

Ar
Ph

Br

OH

Ar
Ph

Br

OH

+ +

51I; Ar=2-F-Phe 51II; Ar=2-F-Phe
 

 
Product ratiosa 

Entrya Epox. Bromide React. Cond. 
Conv.a 

(%) 49-50 
I 

49-50 
II 

51 
I 

51 
II 

1 33a MgBr2·2Et2Ob Et2O, 0°C, 1h Quant. >98c - - - 
2 33a MgBr2·1Et2Od Et2O, r.t., 18h 90 92 8 - - 
3 33a NaBr/Amb. 15 Acetone, 

r.t., 48h 
87 80 20 - - 

4 48 MgBr2·2Et2Ob Et2O, r.t., 18h 98 84 - 16 - 
5 48 MgBr2·1Et2Od Et2O, 0°C, 3h 83 82 - 18 - 
6 48 NaBr/Amb. 15 Acetone, 

r.t., 12h 
Quant. 13 62 10 15 

aDetermined by 1H NMR spectroscopy of the crude productof the reaction. b3M solution in Et2O, 
freshly prepared from Mg and 1,2-dibromoethane in diethyl ether79 cIsolated yield. dCommercial. 
 
 The difference found in regioselectivity of the reactions with MgBr2 has been explained by 
the assistance of neighbouring group, which is weaker in the case of fluorine (epoxide 48) 
although the bite angle80 is more favourable in the case of epoxide 48 (six-membered ring) than 
in epoxide 33a (five-membered ring) in presence of small cations such as magnesium (Figure 9). 
The complexing ability of nitrogen is strong enough to overcome the effect of the bite angle and 
direct the approach of the reagent, resulting in a complete regioselectivity in the case of epoxide 
33a. 
 

N

O

H

R

H

Mg
Mg

F O

H

R
H

 
 
Figure 9. 5- and 6-membered chelates 
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 The lower diastereoselectivity obtained with NaBr/Amb. 15 protocol (with unexpected 50II 
as the major product in the case of epoxide 48), suggested a different mechanism for the epoxide 
ring opening, through the formation of an acyclic intermediate. 
 All these results prompted us to study, more deeply, both the influence of reaction conditions 
on the stereoselectivity in the opening of the model (E)-stilbene oxide and on the regioselectivity 
in the opening of nonsymmetrical substituted 2,3-diaryloxiranes.81 Thus, a systematic study has 
been conducted, analyzing the influence of different parameters (substrate/bromide ratio, 
substrate/Amberlyst 15 ratio, temperature, reagents concentration) on the stereoselectivity in the 
opening of (E)-stilbene oxide 41 with the LiBr/Amberlyst 15 system (Table 5). 
 
Table 5. LiBr/Amb 15 promoted ring opening of trans-stilbene oxide in different reaction 
conditions 

O
LiBr/Amb 15

CH3CN

OH

Br

OH

Br

+

41; (E)-stilbene oxide 42; anti 43; syn  
 

Entry 
LiBr/ 
substr. 

Amb/substr. 
mg/mmol 

T Time Conv.(%)a Yield(%)b Syn/antia 

1 2/1 440 r.t. 1h. 100 95 88/12 
2 2/1 220 r.t. 6h 81 80 83/17 
3 4/1 440 r.t. 50min 100 95 75/25 
4 4/1 220 -15°C 6h 80 80 47/53 

5 4/1 220 -25°C 18h 70 70 50/50 
6 4/1 440 -30°C 2h30min 100 95 30/70 
7 4/1 0 r.t. 4h. no reaction 

aCalculated by 1H NMR analysis of the crude mixture. bIsolated. 
 
 Among the different parameters, the reaction temperature seems dramatically effect the 
stereoselectivity of the ring opening. At room temperature, the bromohydrins were obtained in 
high yield, with a syn/anti ratio ranging between 75/25 and 88/12 (entries 1-3). With lower 
reaction temperature, the amount of anti-bromohydrin 42 increased, until becoming the major 
reaction product below -25°C. Basing on these results, the formation of an acyclic cationic-type 
intermediate, which competes with a classical SN2 opening has been postulated. The syn 
bromohydrin 43 resulted more favorable at room temperature. By lowering the temperature the 
formation of the acyclic intermediate becomes less probable and an SN2 opening with inversion 
of configuration becomes competitive with the decreasing of the syn/anti ratio. 
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 The study of the behaviour of nonsymmetrical para-substituted 2,3-diaryloxiranes with 
LiBr/Amberlyst 15 system also allowed to rationalize of the substituent effects on the 
regioselectivity of the ring opening.81 Different p-substituted (E)-2,3-diaryloxiranes were 
prepared in good yield by the reaction of benzyliden sulfurylide with the appropriate aldehyde 
and then allowed to react with LiBr/Amberlyst 15 at room temperature (Table 6). 
 
Table 6. LiBr/Amb 15 promoted ring opening of nonsymmetrical 2,3-substituted oxiranes, at 
room temperature (except entry 4) 

Ar
R

O LiBr/Amb 15
Ar

R
Ar

R

OH

Br

OH

Br

+ Ar
R

Br

OH

Ar
R

Br

OH

+ +

33-52 53I 53II 54I 54II  
 

β-opening α-opening 

Entrya Epoxide R Ar Time 
53Ib 53IIb 54Ib 54IIb 

1 52 Ph p-NO2Ph 1h 69 31 - - 
2 33e Ph p-CF3Ph 45min 57 38 5 - 
3 33f Ph p-FPh 40min 22c 18c 22c 38c 

4 33c Ph p-OCH3Ph 2h(-30°C) - - 95 (d.r. 3/2)d 

5 33g CH3 Ph 1h - - 81c 19c 

aAll the reactions were performed at r.t., with LiBr/substrate = 4/1, Amb 15/substrate = 440 
mg/mmol. The conversions were higher than 99% and were determined by 1H NMR 
spectroscopy of the crude product. bDetermined by 1H NMR spectroscopy of the crude product. 
cDetermined by GC/MS analysis of the crude together with GC/MS and 1H NMR analysis of the 
alkaline ring closure of the bromohydrins mixture. dThe bromohydrins were characterized as 
acetates. 
 
 The results showed a dramatic effect of substituents electronic properties on the 
regioselectivity. In the oxiranes with one phenyl ring bearing a strong EWG (NO2, CF3: entries 1 
and 2), only the regioisomer 53 was detected in the reaction mixture, with the exclusive attack of 
the nucleophile is on the β-carbon with respect to the substituted phenyl ring. In the presence of a 
strong ERG (OCH3) on the phenyl ring, the regioisomer 54 (α-opening) was the only observed 
reaction product. In the case of trans-β-methyl stirene epoxide (entry 5), the reaction was 
completely regioselective toward 54, via an attack of the bromide on the most electrophilic 
benzyl carbon. 
 The hypothesis of the formation of an acyclic cationic-type intermediate as the key step of 
the reaction was confirmed by theoretical calculation, run on the protonated epoxides 55 and 56 
(Figure 10), which were considered as model structures for the reactive intermediate. 
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O+
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H3CO

H
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Figure 10 
 

 In fact these structures invariably converge to acyclic cationic structures, if submitted to 
semiempirical calculation at the PM3 level. Once carried out a conformational search on the two 
couples of opened cationic structures by this level of calculation, each conformer was then 
submitted to ab initio calculation at the DFT/B3LYP/6-31G* level. Comparing the predicted free 
energies of the two opened p-NO2 cationic structures 52a(H+)A and 52a(H+)B, which would give 
products 53 and 54 respectively, a difference in stability of 4.1 kcal/mol in favor of structure 
52a(H+)A was calculated, which accounts for the complete regioselectivity of the reaction 
(Figure 11). The same comparison between the free energies of p-OCH3 cationic structures 
33c(H+)A and 33c(H+)B (Figure 12) provided a difference in stability of 7.6 kcal/mol in favor of 
33c(H+)B, in accordance with the opposite regioselectivity observed for epoxide 33c. 

 
52a(H+)A more stable 52a(H+)B less stable 

 
 
Figure 11. Minimized structures for 52a(H+)A and 52a(H+)B 

 
33c(H+)A less stable 33c(H+)B more stable 

Figure 12. Minimized structures for 33c(H+)A and 33c(H+)B 
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 Useful intermediates of new polydentate ligands were prepared starting from enantiopure 
ortho substituted 2,3-diaryloxiranes 38 and 33h (Scheme 15). Both the starting epoxides were 
prepared in good yield using the Solladiè-Cavallo epoxidation methodology.81 Both epoxides 
afforded the corresponding syn-bromohydrins 57 and 58, respectively, in excellent to 
quantitative yield, via a regio- and stereoselective opening with retention of configuration at the 
reactive carbon. Substitution of bromine with azide and final reduction gave the tridentate amino 
alcohols with no loss of optical purity. 
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Scheme 15 
 
2.4 Ring opening by oxygen nucleophiles 
 
Ring opening reaction of epoxides by oxygen nucleophiles represents a traditional method for 
the preparation of 1,2-diol derivatives.82 Hydrolysis of epoxides is usually catalyzed by acids and 
bases. Among the acid catalysts perchloric acid is preferred, since side reaction are minimized. 
Dimethyl sulfoxide appears a superior solvent for the alkaline hydrolysis of epoxides. In general, 
the reaction remains difficult, mainly because alcohols, and particularly phenols, behave as poor 
nucleophilic reagents in substitution process. Strong acidic or basic conditions or metal-catalyzed 
reactions usually occur in anti-stereoselective fashion83 and catalytic asymmetric versions have 
also been developed.84 Vinyl and aryl epoxides are only moderately reactive under classical 
displacement conditions and they need the presence of transition metal catalysts.85 A mild 
rhodium-catalyzed reaction of vinyl epoxides with alcohols has been described occurring with 
excellent anti -stereo- and 1,2-regioselectivity.86 Complementarily, a simple method for the syn-
nucleophilic displacement of aryl and vinyl epoxides with substituted phenols, using aryl borates 
as activating nucleophiles, has been recently reported.87 Electronegatively-substituted iron 
porphyrin complex has been shown to efficiently catalyze the ring-opening reaction of various 
epoxides by methanol and water under mild and neutral conditions to give stereospecifically the 
corresponding mono-ethers 1,2-diols and with moderate regioselectivity.88 Substrate-dependent 
stereoselective ring opening of enantiopure epoxides has been described with the use of nitric 
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oxide (and traces of O2). Thus, (R,R) trans  stilbene oxide has been transformed in high yield in 
the corresponding syn hydroxy nitrate.89 
 The 2,2-dimethyl-1,3-dioxolane (acetonide) group is a widely used protecting group for 
vicinal diols. The direct conversion of epoxides to the corresponding acetonides has been 
described with the use of different Lewis acid catalysts. Various degree of success in terms of 
yield and selectivity has been shown by anhydrous SnCl2,90 tin(IV) tetraphenylporphyrin 
perchlorate,91 bismuth(III) salts,92 titanium complexes,93 [(C5Me5)-Ir(NaMe3)],94 RuCl3,95 
CH3ReO3,96 Cu(OTf)2,97 Er(OTf)3,98 BF3·Et2O,99 LiBF4,100 and heteropolyacids.101 
 The transformation of epoxides into the corresponding acetonides by these reagents usually 
occurs through a SN2 mechanism, with inversion of configuration at the oxiranyl carbon 
approached by acetone. Thus, trans-symmetrical 2,3-substituted oxiranes lead invariably to 
meso-acetonides, loosing any possible chiral information of the substrate. 
 The direct conversion of epoxides into 2,2-dimethyl-1,3-dioxolanes (acetonides) by acetone 
in the presence of the acid resin Amberlyst 15 has overcome this limitation.102 In the case of 
trans-2,3-disubstituted oxiranes such as trans-stilbene oxide 41 and trans-β-methylstirene oxide 
33h, a high stereoselectivity towards trans-acetonides, with a neat retention of configuration at 
the oxiranyl carbon atom, has been reported102 (Scheme 16). 
 

41 trans; R=Ph
33e trans; R=CH3

O O

H
RHAmb 15

R
O

acetone, r.t.

59 trans; R=Ph, 60%
60 trans; R=CH3, 62% 

 
Scheme 16 
 
 The study on trans-stilbene oxide has shown, as previously noted in the reaction with lithium 
bromide, a strong effect of temperature on the reaction stereoselectivity, with the highest 
trans/cis ratio of 3/2 obtained at room temperature. Upon lowering the temperature, the 
formation of the cis isomer, by a classical SN2 ring opening with inversion of configuration, 
increases, and cis isomer becomes the major reaction product below -10°C. 
 The procedure has been successfully extended to optically pure and non symmetrically 
substituted epoxides, such as 33h, 38 and 41, which has afforded the corresponding enantiopure 
trans acetonides 61-63 in good yield (Scheme 17). 
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Scheme 17 
 
 Elaboration of acetonide 61 has allowed the preparation of the aminodiol 65, which can be 
used as tridentate ligand in asymmetric synthesis (Scheme 18). 
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Scheme 18 
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