Quinols as novel therapeutic agents. Part 8.¹ Applications of the Sonogashira route to thioredoxin-inhibitory indolyl-substituted quinols

Andrew J. McCarroll, Michèle B. Burke, Charles A. Laughton, and Malcolm F. G. Stevens*

Centre for Biomolecular Sciences, University of Nottingham, University Park, Nottingham, NG7 2RD, UK

E-mail: malcolm.stevens@nottingham.ac.uk

Abstract

Molecular modelling suggested that polar groups appended to the arylsulfonyl residue in indoles **2**, which are potential anticancer agents, could aid pharmaceutical properties without adversely affecting activity. A variety of substituted indoles were prepared using a one-pot Sonogashira-type method. A related indole, containing three Michael acceptor groups, has also been prepared.

Keywords: Indoles, Sonogashira, 4-hydroxycyclohexa-2,5-dienones

Introduction

Investigations on heterocycles substituted with the 4-hydroxycyclohexa-2,5-dien-1-one ('quinol') fragment (a new pharmacophore in anticancer drug development) has led to the discovery of a number of potential therapeutic agents with novel biological properties. The prototypic benzothiazole-substituted quinol **1**, where the quinol fragment acts as a double Michael acceptor, displayed selective antitumor activities against colon, renal, and breast cancer cell lines² with the small redox-regulatory protein thioredoxin (Trx) being the primary molecular target.³ As expected, this agent also perturbs signalling events modulated by downstream Trx effectors (eg Hif-1⁴ and VEGf⁵) which have a major role in the tumor angiogenesis process triggered by cellular hypoxia. Subsequent investigations identified a more potent series of indolyl-quinols **2** which maintain the selectivity fingerprint against colon, renal and breast cancer cell lines in vitro.⁶ Moreover, certain of the indole series show significant in vivo antitumor activity in mice bearing human mammary MDA-MB-435, colon HCT 116 and renal CAK-1 xenografts.⁶

The original synthesis of indoles 2 was accomplished by lithiation of a substituted 1arylsulfonylindole 3 with n-butyllithium in THF at -78 $^{\circ}$ C followed by addition to 4,4dimethoxycyclohexa-2,5-dien-1-one with subsequent acid hydrolysis of the ketal protecting group.⁶ We have recently described a more versatile route, employing a Sonogashira coupling with sequential cyclisation, from sulfonylated iodoanilines **4** and 4-ethynyl-4-hydroxycyclohexa-2,5-dienone **5** (Scheme 1).¹

Conditions: a: i) n-BuLi, THF; ii) 4,4-Dimethoxycyclohexa-2,5-dienone; iii) AcOH; b: Pd(PPh₃)₄, CuI, N(i-Pr)₂H, H₂O, DMAC.

Scheme 1

One of the limitations of the previously synthesised quinols was their limited water solubility. Preliminary molecular modelling suggested that polar groups appended to the arylsulfonyl residue in the indolyl-quinol series 2 would project outside the binding cavity of the Trx protein and be potentially available for profitable solvent interactions. One objective of the present work was to devise syntheses of variants of 2 with potentially improved pharmaceutical properties, based on the Sonogashira key step. In addition, molecular dynamics based docking studies were performed in order to analyse the non-covalent interactions of the indolyl-quinol (2: R = H, Ar = Ph) for its hypothesised Trx target. Observations of the resulting orientations adopted by the ligand in the human protein active site identified a non-active site cysteine specific to this protein which might be intercepted by an additional Michael acceptor fragment attached to the arylsulfonyl moiety. A route to such a compound has been achieved.

Results and Discussion

Our chosen strategy was to incorporate additional substitutents at the protected aniline stage prior to the Sonogashira step, starting from the previously described precursors 6a and 6b.¹

The methyl esters **6a,b** were efficiently hydrolysed (> 95%) in 10% aqueous KOH to the corresponding propanoic acids **6c,d** and thence re-esterified to the *t*-butyl esters **6e,f** with DMF

di-*t*-butyl acetal.⁷ Coupling of acid **6c** to morpholine or 1-methylpiperazine with dicyclohexylcarbodiimide in a DMAP/DCM medium gave the amides **6g** and **6h** in 65 and 57% yields, respectively. Borane-dimethyl sulfide reduction of **6a** in THF⁸ yielded the propanol **6i** (66%), which was oxidized to the corresponding aldehyde **6j** (80%) with Dess-Martin periodinane. Reductive amination of the aldehyde with morpholine or 1-methylpiperazine yielded the amines **6k** and **6l** in 95 and 72 % yields respectively.⁹

Microwave-promoted Sonogashira cyclization of the sulfonamides **6** with alkyne **5** afforded the indolyl-quinols **7** in yields generally < 50% (Scheme 2), but no indoles **7c,d** were obtained from the corresponding carboxylic acids **6c,d**. (The preparation of the free acids **7c** and **7d** from **7a** and **7b**, respectively is described in the previous paper in the series.)¹

Conditions: a: KOH, H₂O; b: DMF di-t-butyl acetal, toluene; c: DCC, DMAP, morpholine, DCM; d: DCC, DMAP, 1-methylpiperazine, DCM; e: BH₃.DMS, THF; f: Dess-Martin periodinane, DCM; g: morpholine, Na(OAc)₃BH, 1,2-DCE; h: 1-methylpiperazine, Na(OAc)₃BH, 1,2-DCE; i **5**, Pd(PPh₃)₄, CuI, N(i-Pr)₂H, H₂O, DMAC.

Scheme 2

We then sought to prepare the quinol **8**, substituted with the methyl acrylate residue to act as a third Michael acceptor. The retrosynthetic analysis is shown in Scheme 3 wherein the iodo group required for Sonogashira coupling is introduced at the penultimate stage of the sequence and the methylacrylate functionality is appended from a bromo precursor by a Heck reaction.

Scheme 3

Starting from 2-nitroaniline **12** preparation of the sulphonamide **11** was not trivial. Anilines containing electron-withdrawing groups are known to yield significant amounts of disulfonylated products,¹⁰ and this proved to be the case with 2-nitroaniline, so a two step process to **11**, via the disulfonylated aniline **13** (87%) followed by TBAF mediated monodesulfonylation¹⁰ (57%) was employed (Scheme 4).

Conditions: a: p-BrC₆H₄SO₂Cl, pyr, DMAP, THF; b: TBAF, THF; c: Pd(OAc)₂, IPr.HCl, Cs₂CO₃, CH₂=CHCO₂Me, DMAC; d: Fe, FeCl₃.6H₂O, AcOH, EtOH; e: NaNO₂, H₂SO₄, KI; f: **5**, Pd(PPh₃)₄, CuI, N(i-Pr₂)H, DMAC, H₂O.

Scheme 4

The Heck reaction of **11** with methyl acrylate was performed using a variety of catalysts: the most successful was Nolan's palladium/imidazolium salt which yielded **10** in 52 % yield.¹¹ The nitro group was reduced to the corresponding amine **14** using iron(III) chloride¹² (69 %) and a Sandmeyer reaction furnished the iodide **9**. Application of the Sonogashira reaction between **9** and 4-ethynyl-4-hydroxy-cyclohexa-2,5-dienone **5** yielded the desired indolyl-quinol **8** but in only 10 % yield. In conclusion, the synthesis of a number of novel substituted indoles, which are potential anticancer agents, has been described. Investigations into the biological properties of these compounds are continuing.

Experimental Section

General Procedures. Melting points were recorded on a Stuart Scientific SMP3 apparatus, and are uncorrected. IR spectra were recorded on a Perkin Elmer Spectrum One FT-IR. Mass spectra were recorded on a Micromass LCT spectrometer using electrospray. NMR spectra were recorded on a Bruker Avance 400 instrument at 400.13 MHz (¹H) and 100.62 MHz (¹³C in [²H₆]DMSO) or CDCl₃; coupling constants are in Hz. Merck silica gel 60 (40-60 μ M) was used for column chromatography.

3-{4-[*N***-(2-Iodophenyl)sulfamoyl]phenyl}propanoic acid (6c).** Ester **6a** (2.0 g; 4.5 mmol) was added to 10 % aqueous KOH (40 mL) and the mixture was refluxed for 0.5 h. The cooled solution was acidified with 1M HCl and the precipitate filtered, washed with water, and dried in a vacuum oven, yielding **6c** (1.88 g, 97%), mp 152-153.5 °C; v_{max}/cm^{-1} 3290, 1797, 1596, 1474, 1335; δ_{H} (DMSO-*d*₆) 2.58 (2H, t, *J* = 7.5, CH₂), 2.90 (2H, t, *J* = 7.5, CH₂), 6.95-6.99 (2H, m, ArH), 7.30 (1H, td, *J* = 8.2, 1.4, ArH), 7.43 (2H, d, *J* = 8.4, ArH), 7.62 (2H, t, *J* = 8.4, ArH), 7.84 (1H, dd, *J* = 1.5, 8.2, ArH), 9.71 (1H, s, NH), 12.2 (1H, bs, CO₂H); δ_{H} (DMSO-*d*₆) 30.6, 35.1, 99.2, 127.3, 127.6, 128.9, 129.4, 129.5, 138.7, 138.9, 140.1, 146.8. Found C 41.5, H 3.1, N 3.7. Calc. for C₁₅H₁₄INO₄S C 41.8, H 3.3, N 3.3%.

3-{4-[*N*-(**5-Fluoro-2-iodophenyl)sulfamoyl]phenyl}propanoic acid** (**6d**). Similarly prepared, by hydrolysis of ester **6b**, as a white powder (96%), mp 193-195 °C; v_{max}/cm^{-1} 3300, 1705, 1596, 1480, 1335; $\delta_{\rm H}$ (DMSO-*d*₆) 2.57 (2H, t, *J* = 7.6, CH₂), 2.90 (2H, t, *J* = 7.6, CH₂), 6.85 (1H, dd, *J* = 3.0, 10.2, ArH), 6.91 (1H, m, ArH), 7.44 (2H, d, *J* = 8.3, ArH), 7.65 (2H, d, *J* = 8.3, ArH), 7.84 (1H, dd, *J* = 6.5, 8.6, ArH), 9.90 (1H, s, NH), 12.20 (1H, bs, CO₂H). Found C 39.9, H 2.9, N 3.0. Calc. for C₁₅H₁₃FINO₄S C 40.1, H 2.9, N 3.1%.

t-Butyl 3-{4-[*N*-(2-iodophenyl)sulfamoyl]phenyl}propanoate (6e). To a stirred suspension of carboxylic acid 6c (2.58 g, 6 mmol) in toluene (9 mL) at 60 °C was added dimethylformamide di-*t*-butyl acetal (4.92 g, 24 mmol) dropwise. The mixture was refluxed for 30 mins, allowed to cool to room temperature and washed with water (15 mL), saturated NaHCO₃ solution (2 × 10 mL) and brine (10 mL). The organic layer was dried (MgSO₄), concentrated, and the crude product recrystallised from aqueous ethanol to yield 6e as white crystals (1.22 g, 47%), mp 87.5-88.5 °C; v_{max}/cm^{-1} 3272, 2979, 1721, 1584, 1474, 1340, 1170; δ_{H} (CDCl₃) 1.38 (9H, s, *t*-Bu), 2.53

(2H, t, J = 7.6, CH₂), 2.93 (2H, t, J = 7.6, CH₂), 6.78 (1H, s, NH), 6.81-6.85 (1H, td, J = 7.7, 1.5, ArH), 7.25-7.29 (3H, m, ArH), 7.33 (1H, td, J = 7.8, 1.3, ArH), 7.63-7.67 (3H, m, ArH); $\delta_{\rm C}$ (CDCl₃) 28.1, 30.9, 36.3, 80.8, 92.4, 122.6, 126.9, 127.6, 129.0, 129.5, 136.7, 137.4, 139.1, 147.0, 171.5. Found C 46.9, H 4.6, N 2.7. Calc. for C₁₉H₂₂INO₄S C 46.8, H 4.6, N 2.9%.

t-Butyl 3-{4-[*N*-(5-fluoro-2-iodophenyl)sulfamoyl]phenyl}propanoate (6f). Similarly prepared by esterification of 6d according to the method (above), mp 87-87.5 °C; v_{max}/cm^{-1} 3269, 1723, 1597, 1482, 1343; $\delta_{\rm H}$ (CDCl₃) 1.37 (9H, s, *t*-Bu), 2.54 (2H, t, *J* = 7.6, CH₂), 2.94 (2H, t, *J* = 7.6, CH₂), 6.60 (1H, m, ArH), 6.90 (1H, s, NH), 7.29 (2H, d, *J* = 8.4, ArH), 7.43 (1H, dd, *J* = 10.3, 2.9, ArH), 7.58 (1H, dd, *J* = 6.0, 8.8), 7.71 (2H, d, 8.4, ArH). Found C 45.1, H 4.2, N 2.8. Calc. for C₁₉H₂₁FINO₄S C 45.2, H 4.2, N 2.8%.

N-(2-Iodophenyl)-4-(3-morpholino-3-oxopropyl)benzenesulfonamide (6g). To a stirred mixture of 6c (2.15 g, 5 mmol), morpholine (0.435 g, 5 mmol) and DMAP (0.05 g) in DCM (18 mL) at 0 °C, was added dicyclohexylcarbodiimide (1.03 g, 5 mmol). The mixture was stirred for 16 h at 25 °C, then cooled in an ice bath and filtered. The solvent was reduced under reduced pressure, and the product crystallised from EtOH/water to give 6g as white plates (1.63 g, 65%), mp 101-102 °C; v_{max} /cm⁻¹ 3245, 1645, 1160; $\delta_{\rm H}$ (d₆-DMSO) 2.66 (2H, t, *J* = 7.6, CH₂), 2.90 (2H, t, *J* = 7.6, CH₂), 3.32 (8H, m, N(CH₂CH₂)₂O), 6.94-7.01 (2H, m, ArH), 7.29 (1H, t, *J* = 7.7, ArH), 7.44 (2H, d, *J* = 8.3, ArH), 7.63 (2H, d, *J* = 8.3, ArH), 7.83 (1H, dd, *J* = 1.2, 7.8, ArH), 9.73 (1H, s, NH). $\delta_{\rm H}$ (d₆-DMSO) 30.9, 33.6, 42.0, 45.8, 66.6, 99.1, 127.2, 127.3, 128.8, 129.4, 129.7, 138.8, 140.1, 147.3, 170.3. $\delta_{\rm C}$ (CDCl₃) 31.0, 34.1, 42.0, 45.8, 66.5, 66.9, 92.2, 122.4, 126.9, 127.7, 129.2, 129.6, 136.7, 137.4, 139.2, 147.4, 170.0. Found C 45.8, H 4.2, N 5.7. Calc. for C₁₉H₂₁IN₂O₄S C 45.6, H 4.2, N 5.6%.

N-(2-Iodophenyl)-4-[3-(4-methylpiperazin-1-yl)-3-oxopropyl]benzene-sulfonamide (6h). Similarly prepared from 6c and 1-methylpiperazine as described (above) as a white powder (1.46 g, 57%), mp 131.5-135.5 °C; v_{max} /cm⁻¹ 3126, 1634, 1471, 1448, 1340, 1163; δ_{H} (CDCl₃) 2.28 (3H, s, CH₃), 2.30 (2H, t, J = 5.2), 2.34 (2H, t, J = 5.2, CH₂), 2.59 (2H, t, J = 7.7, CH₂), 3.01 (2H, t, J = 7.7, CH₂), 3.39 (2H, t, J = 5.1, CH₂), 3.62 (2H, t, J = 5.1, CH₂), 6.81-6.85 (2H, m, NH, ArH), 7.26-7.33 (3H, m, ArH), 7.64-7.68 (4H, m, ArH); δ_{C} (CDCl₃) 31.1, 34.2, 41.7, 45.3, 46.0, 54.7, 55.0, 92.4, 122.5, 126.9, 127.7, 129.2, 129.6, 136.7, 137.4, 139.1, 147.6, 169.7. Found C 47.2, H 4.8, N 8.0. Calc. for C₂₀H₂₄IN₃O₃S C 46.8, H 4.7, N 8.2%.

4-(3-Hydroxypropyl)-*N*-(**2-iodophenyl)**benzenesulfonamide (6i). To a round- bottomed flask with attached distillation apparatus was added **6a** (4.45 g, 10 mmol), borane-dimethyl sulfide complex (1 mL) and tetrahydrofuran (1 mL). The mixture was refluxed for 3 h, with dimethyl sulfide (bp 38 °C) being removed by distillation. Water (10 mL) was added, followed by K₂CO₃ (1.5 g). The mixture was repeatedly extracted with Et₂O, which was dried (MgSO₄), concentrated, to give the crude product. Recrystallisation from aqueous ethanol gave **6i** (2.75 g, 66%) as white plates, mp 93.5-94.5 °C; v_{max}/cm^{-1} 3244, 1336, 1160; $\delta_{\rm H}$ (CDCl₃) 1.32 (1H, s, OH), 1.89 (2H, m, CH₂CH₂OH), 2.77 (2H, t, *J* = 7.7, ArCH₂), 3.64-3.69 (2H, m, CH₂OH), 6.80 (1H, s, NH), 6.86 (1H, td, *J* = 7.5, 1.4, ArH), 7.26-7.36 (3H, m, ArH), 7.66-7.69 (4H, m, ArH),

 δ_{C} (CDCl₃) 31.9, 33.6, 61.8, 92.5, 122.8, 127.0, 127.6, 129.1, 129.6, 136.4, 137.5, 139.1, 148.1. Found C 42.9, H 3.8, N 3.2. Calc. for C₁₅H₁₆INO₃S C 43.2, H 3.9, N 3.4%.

N-(2-Iodophenyl)-4-(3-oxopropyl)benzenesulfonamide (6j). To a solution of 6i (2.08 g, 5 mmol) in DCM (50 mL) was added Dess-Martin periodinane (2.76 g, 6.50 mmol) and the mixture was stirred for 2 h at 25 °C, then washed (aqueous Na₂S₂O₃ followed by NaHCO₃), dried (MgSO₄) and concentrated. After purification by column chromatography (hexane/ethyl acetate: 3/1) the oxopropylbenzenesulfonamide 6j was obtained as a white powder (1.66 g, 80%), mp 102.5-105.5 °C; v_{max} /cm⁻¹ 3251, 1712, 1333, 1160; $\delta_{\rm H}$ (CDCl₃) 2.79 (2H, t *J* = 7.4, ArCH₂), 2.98 (2H, t, *J* = 7.4, CH₂CHO), 6.77 (1H, s, NH), 6.84 (1H, td, *J* = 7.5, 1.4, ArH), 7.24-7.34 (3H, m, ArH), 7.64-7.67 (4H, m, ArH); $\delta_{\rm C}$ (CDCl₃) 27.8, 44.6, 92.5, 122.8, 127.0, 127.8, 127.9, 129.1, 129.6, 136.8, 137.4, 139.1, 146.1. Found C 43.4, H 3.4, N 3.2. Calc. for C₁₅H₁₄INO₃S C 43.4, H 3.4, N 3.4%.

N-(2-Iodophenyl)-4-(3-morpholinopropyl)benzenesulfonamide (6k). To a stirred solution of 6j (1.04 g, 2.5 mmol) and morpholine (0.218 g, 2.5 mmol) in 1,2-dichloroethane (10 mL) under an atmosphere of nitrogen, was added sodium (triacetoxy)borohydride (0.75 g, 3.5 mmol). The mixture was stirred at room temperature for 4 h, then quenched with saturated aqueous NaHCO₃ (15 mL). The mixture was extracted with EtOAc, which was dried (MgSO₄) and concentrated, yielding 6k (1.15 g, 95%), mp 111.5-113 °C; v_{max} /cm⁻¹ 2953, 1330, 1154; δ_{H} (CDCl₃) 1.79 (2H, m, CH₂CH₂CH₂), 2.30 (2H, t, *J* = 7.5, CH₂), 2.40 (4H, m, 2 × CH₂), 2.68 (2H, t, *J* = 7.5, CH₂), 3.70 (4H, t, *J* = 4.6, 2 × OCH₂), 6.84 (1H, td, *J* = 7.7, 1.5, ArH), 7.23 (2H, d, *J* = 8.4, ArH), 7.30-7.34 (1H, m, ArH), 7.62-7.68 (4H, m, ArH); δ_{C} (CDCl₃) 27.6, 33.4, 53.6, 57.8, 66.9, 92.6, 122.9, 127.0, 127.5, 129.1, 129.6, 136.3, 137.5, 139.1, 148.3. HRMS Found 487.0547 (M + H⁺); calc. for C₁₉H₂₄INO₃S 487.0552.

N-(2-Iodophenyl)-4-(3-(4-methylpiperazin-1-yl)propyl)benzenesulfon-amide (6l). Similarly prepared (above) from 6j and 1-methylpiperazine followed by crystallisation from aqueous ethanol (72%), mp 97-99.5 °C; v_{max} /cm⁻¹ 3548, 1458; δ_{H} (CDCl₃) 1.78 (2H, quin, J = 7.6, CH₂CH₂CH₂), 2.22-2.45 (5H, m, NCH₃, CH₂), 2.45-2.64 (8H, bs, N(CH₂CH₂)₂N), 2.66 (2H, t, J = 7.6, CH₂), 6.84 (1H, td, J = 7.6, 1.5, ArH), 7.22 (2H, d, J = 8.4, ArH), 7.31 (1H, td, J = 7.8, 1.4, ArH), 7.57-7.67 (4H, m, ArH); δ_{C} (CDCl₃) 28.1, 33.5, 46.0, 53.1, 55.1, 57.4, 92.7, 123.0, 127.0, 127.5, 129.1, 129.5, 136.3, 137.5, 139.1, 148.4. HRMS Found 500.0866 (M + H⁺); calc. for C₂₀H₂₇IN₃O₂S 500.0869.

Preparation of Indolyl-quinols

To a 10 mL microwave vial containing a magnetic stirrer bar was added 4-ethynyl-4hydroxycyclohexa-2,5-dienone **5** (0.39 g, 2.9 mmol), activated 2-iodoaniline **6** (2.5 mmol), DMAC (2.5 mL), diisopropylamine (0.5 mL) and water (0.1 mL). Nitrogen gas was gently bubbled through for 10 min, then tetrakis(triphenylphosphine)palladium (160 mg, 0.15 mmol) and copper iodide (48 mg, 0.25 mmol) were added. The vial was sealed, shaken, and heated at 100 °C (100 W) for 10 min under microwave conditions. The cooled mixture was diluted with DCM/water (200 mL: 1/1). The aqueous layer was extracted with DCM, and the combined organic layers dried and concentrated. The residue was passed through a pad of silica (hexane/ethyl acetate: 1/1), and purified further by column chromatography and/or recrystallisation with aqueous ethanol.

t-Butyl 3-{4-[2-(4-hydroxy-1-oxocyclohexa-2,5-dienyl)-1*H*-indol-1-ylsulfonyl]phenyl} propanoate (7e). From 6e and 5 (39%), mp 141.5-142.5 °C; v_{max}/cm^{-1} 3437, 1720, 1668, 1627, 1374; δ_{H} (CDCl₃) 1.33 (9H, s, *t*-Bu), 2.50 (2H, t, *J* = 7.5, CH₂), 2.90 (2H, t, *J* = 7.5 CH₂), 5.53 (1H, s, OH), 6.34 (2H, d, *J* = 10.3, 2 × C(OH)C*H*), 6.80 (1H, d, *J* = 0.6, ArH), 7.20-7.32 (4H, m, ArH), 7.43 (1H, dd, *J* = 0.6, 7.2, ArH), 7.58 (2H, d, *J* = 10.3, 2 × CHC=O), 7.79 (2H, d, *J* = 8.5, ArH), 8.00 (1H, dd, *J* = 0.6, 8.5, ArH). Found C, 65.7, H, 5.4, N, 2.7. Calc. for C₂₇H₂₇NO₆S: C, 65.7, H, 5.5, N, 2.8%.

t-Butyl 3-{4-[6-fluoro-2-(4-hydroxy-1-oxocyclohexa-2,5-dienyl)-1*H*-indol-1-ylsulfonyl]phenyl} propanoate (7f). From 6f and 5 (44%), mp 138-139 °C; $\delta_{\rm H}$ (CDCl₃) 1.31 (9H, s, *t*-Bu), 2.50 (2H, t, *J* = 7.5, CH₂), 2.90 (2H, t, *J* = 7.5 CH₂), 5.36 (1H, s, OH), 6.32 (2H, d, *J* = 10.3, 2 × C(OH)C*H*), 6.73 (1H, d, *J* = 0.6, ArH), 6.96 (1H, td, *J* = 8.8, 2.3, ArH), 7.28 (2H, d, *J* = 8.5, ArH), 7.35 (1H, dd, *J* = 8.6, 5.4), 7.53 (2H, d, *J* = 10.3, 2 × CHC=O), 7.73 (1H, dd, *J* = 10.2, 2.3), 7.79 (2H, d, *J* = 8.6, ArH). Found C, 63.3, H, 5.1, N, 2.7. Calc. for C₂₇H₂₆FNO₆S: C, 63.4, H, 5.1, N, 2.7%.

4-Hydroxy-4-{1-[4-(3-morpholino-3-oxopropyl)phenylsulfonyl]-1*H***-indol-2-yl}cyclohexa-2,5-dien-1-one (7g).** From **6g** and **5** (40%), mp 173-174 °C; v_{max}/cm^{-1} 3483, 1672, 1644, 1447, 1353, 1167; δ_{H} (CDCl₃) 2.54 (2H, t, *J* = 7.5, ArCH₂), 2.97 (2H, t, *J* = 7.5, CH₂CO), 3.29 (2H, t, *J* = 4.6, CH₂), 3.49 (2H, t, *J* = 4.6, CH₂), 3.56-3.59 (4H, m, 2 × CH₂), 5.47 (1H, s, OH), 6.34 (2H, d, *J* = 10.3, 2 × C(OH)CH), 6.78 (1H, d, *J* = 0.6, ArH), 7.20-7.33 (4H, m, ArH), 7.45 (1H, d, *J* = 7.7, ArH), 7.55 (2H, d, *J* = 10.3, 2 × CHC=O), 7.78 (2H, d, *J* = 8.5, ArH), 8.00 (1H, dd, *J* = 0.6, 8.6, ArH); δ_{C} (CDCl₃) 30.9, 33.6, 42.0, 45.8, 66.4, 66.8, 67.6, 113.5, 115.2, 121.7, 124.6, 126.2, 126.9, 127.7, 128.3, 129.5, 135.3, 138.2, 140.8, 147.5, 148.7, 169.7, 184.9. Found C 63.8, H 5.1, N 5.5. Calc. for C₂₇H₂₆N₂O₆S C 64.0, H 5.2, N 5.5%.

4-Hydroxy-4-{1-[4-(3-(4-methylpiperazin-1-yl)-3-oxopropyl)phenyl-sulfonyl]-1*H***-indol-2yl}cyclohexa-2,5-dien-1-one (7h). From 6h and 5 (15%), mp 175-175.5 °C; v_{max}/cm⁻¹ 1670, 1636, 1444, 1370, 1173; \delta_{\rm H} (CDCl₃) 2.28 (3H, s, CH₃), 2.29 (2H, t,** *J* **= 5.2), 2.34 (2H, t,** *J* **= 5.2, CH₂), 2.55 (2H, t,** *J* **= 7.6, CH₂), 2.96 (2H, t,** *J* **= 7.6, CH₂), 3.35 (2H, t,** *J* **= 5.1, CH₂), 3.59 (2H, t,** *J* **= 5.1, CH₂), 5.52 (1H, s, OH), 6.34 (2H, d,** *J* **= 10.3, 2 × C(OH)C***H***), 6.78 (1H, d,** *J* **= 0.6, ArH), 7.20-7.33 (4H, m, ArH), 7.45 (1H, d,** *J* **= 7.8, ArH), 7.55 (2H, d,** *J* **= 10.3, 2 × CHC=O), 7.78 (2H, d,** *J* **= 8.5, ArH), 7.99 (1H, dd,** *J* **= 0.6, 8.5, ArH); \delta_{\rm C} (CDCl₃) 30.9, 33.9, 41.6, 45.2, 46.0, 54.6, 55.0, 67.5, 113.4, 115.2, 121.7, 124.5, 126.2, 126.9, 127.7, 128.3, 129.5, 135.2, 138.2, 140.7, 147.5, 148.9, 169.5, 184.9. Found C 64.4, H 5.6, N 7.9. Calc. for C₂₈H₂₉N₃O₅S C 64.7, H 5.6, N 8.1%.**

4-Hydroxy-4-{1-[4-(3-hydroxypropyl)phenylsulfonyl]-1*H***-indol-2-yl}cyclohexa-2,5-dien-1one (7i). From 6i and 5 (11%), mp 183-185.5 °C; v_{max}/cm^{-1} 3478, 1670, 1625, 1344, 1166; \delta_{H} (CDCl₃) 1.32 (1H, bs, CH₂O***H***), 1.80-1.87 (2H, m, C***H***₂CH₂OH), 2.73 (2H, t,** *J* **= 7.8, ArCH₂), 3.61-3.65 (2H, m, C***H***₂OH), 5.55 (1H, s, OH), 6.34 (2H, d,** *J* **= 10.3, 2 ×C(OH)C***H***), 6.78 (1H, d,** *J* **= 0.6, ArH), 7.22-7.34 (4H, m, ArH), 7.44 (1H, dd,** *J* **= 0.5, 7.3), 7.59 (2H, d,** *J* **= 10.3, 2 ×** CHC=O), 7.79 (2H, d, J = 8.5, ArH), 8.01 (1H, dd, J = 0.7, 8.5, ArH); $\delta_{\rm C}$ (CDCl₃) 32.0, 33.3, 61.7, 67.5, 113.5, 115.2, 121.7, 124.6, 126.2, 126.8, 127.6, 128.3, 129.4, 134.9, 138.2, 140.7, 147.6, 149.4, 185.0.

4-Hydroxy-4-{1-[4-(3-morpholinopropyl)phenylsulfonyl]-1*H***-indol-2-yl}-cyclohexa-2,5-dien-1**one (7k). From 6k and 5 (40%), mp 150-151 °C (dec.); $\delta_{\rm H}$ (CDCl₃) 1.69-1.77 (2H, m, CH₂CH₂CH₂), 2.26 (2H, t, *J* = 7.4, CH₂), 2.35 (4H, m, 2 × CH₂), 2.63 (2H, t, *J* = 7.6, CH₂), 3.66 (4H, t, *J* = 4.6, 2 × OCH₂), 5.54 (1H, s, OH), 6.32 (2H, d, *J* = 10.3, 2 × C(OH)CH), 6.78 (1H, d, *J* = 0.6, ArH), 7.19-7.32 (4H, m, ArH), 7.42 (1H, d, *J* = 7.3, ArH), 7.57 (2H, d, *J* = 10.3, 2 × CHC=O), 7.76 (2H, d, *J* = 8.5, ArH), 7.98 (1H, dd, *J* = 0.6, 8.5, ArH).

4-Hydroxy-4-{1-[4-(3-(4-methylpiperazin-1-yl)propyl)phenylsulfonyl]-1*H***-indol-2-yl}cyclohexa-2,5-dien-1-one (7l).** Prepared from **6l** and **5** according to General Method B, but with a different work up. The crude mixture was poured into DCM/water and extracted as before, but the product was purified by column chromatography using CHCl₃/MeOH (19/1) as eluant. The resulting brown oil was allowed to stand in a small amount of CHCl₃, then filtered. The filtrate was concentrated to an oil which was dissolved in EtOAc and product **7l** was precipitated as a fawn powder with hexane (18%), mp 65 °C (dec.); $\delta_{\rm H}$ (CDCl₃) 1.69-1.75 (2H, m, CH₂CH₂CH₂N), 2.25-2.55 (13H, m), 2.61 (2H, t, *J* = 7.7, CH₂), 5.56 (1H, s, OH), 6.32 (2H, d, *J* = 10.3, 2 × C(OH)CH), 6.78 (1H, d, *J* = 0.6, ArH), 7.19-7.32 (4H, m, ArH), 7.42 (1H, d, *J* = 7.8, ArH), 7.57 (2H, d, *J* = 10.3, 2 × CHC=O), 7.76 (2H, d, *J* = 8.5, ArH), 7.98 (1H, dd, *J* 0.6, 8.5, ArH). HRMS Found 506.2037 (M + H⁺); calc. for C₂₈H₃₂N₃O₄S 506.2114.

4-Bromo-*N***-(4-bromophenylsulfonyl)***-N***-(2-nitrophenyl)benzenesulfon-amide (13)** A mixture of 2-nitroaniline (24.54 g; 0.178 moles), 4-bromobenzenesulfonyl chloride (100.92 g; 0.395 moles) and dimethylaminopyridine (0.2 g) were stirred in pyridine (100 mL) and THF (100 mL) overnight. The mixture was concentrated, and recrystallised from ethanol, to give pure product as a pale yellow powder (88.7 g; 87 %), mp 242-243 °C. v_{max} /cm⁻¹ 1573, 1528, 1472, 1386, 1337. δ_H (400 MHz; CDCl₃; Me₄Si) 7.13 (1H, dd, *J* 1.5, 7.8, ArH), 7.62 (1H, td, *J* 7.7, 1.8, ArH), 7.64-7.68 (1H, m, ArH), 7.70 (2H, d, *J* 8.8, ArH), 7.82 (2H, d, *J* 8.8, ArH), 8.06 (1H, dd, *J* 1.7, 7.8, ArH). δ_C 126.1, 127.1, 130.2, 130.8, 131.6, 132.3, 133.3, 134.6, 137.1, 148.1. Found C 37.2, H 2.1, N 5.2. Calc. for C₁₈H₁₂Br₂N₂O₆S₂ C 37.5, H 2.1, N 4.9%.

4-Bromo-*N*-(**2-nitrophenyl)benzenesulfonamide** (**11**). 4-Bromo-*N*-(4-bromophenyl sulfonyl)-*N*-(2-nitrophenyl)benzenesulfonamide (2.56 g; 5 mmol) was stirred in tetrabutylammonium fluoride (1M solution in THF; 5.5 mL; 5.5 mmol) for 2 hours. The mixture was diluted with water (25 mL) and extracted with ethyl acetate. The organic layer was dried (MgSO₄) and concentrated, and the residue purified by column chromatography (hexane/ethyl acetate 10/1) to give **9** (1.02 g; 57 %) as bright yellow crystals, mp 128.5-130 °C. v_{max}/cm^{-1} 3263, 3093, 1609, 1575, 1525, 1487, 1392, 1355. $\delta_{\rm H}$ (400 MHz; CDCl₃; Me₄Si) 7.22 (1H, td, *J* 7.9, 1.1, ArH), 7.61-7.63 (1H, m, ArH), 7.63 (2H, d, *J* 8.7, ArH), 7.74 (2H, d, *J* 8.7, ArH), 7.85 (1H, dd, *J* 1.0, 8.4, ArH), 8.16 (1H, dd, *J* 1.4, 8.4, ArH), 9.91 (1H, s, NH). $\delta_{\rm C}$ 121.0, 124.3, 126.4, 128.7, 129.0, 132.8, 133.5, 136.0, 137.2, 137.7. Found C 40.1, H 2.5, N 7.8. Calc. for C₁₂H₉BrN₂O₄S C 40.4, H 2.5, N 7.8%. (*E*)-Methyl 3-{4-[*N*-(2-nitrophenyl)sulfamoyl]phenyl}acrylate (10). To tetrabutyl ammonium bromide (10 mg) in dimethylacetamide (20 mL) was added palladium(II) acetate (45 mg), IPr.HCl¹³ (136 mg) and Cs₂CO₃ (6.52 g) and nitrogen gas was bubbled through the stirred mixture for 15 minutes. **11** (3.57 g; 10 mmol) was added, followed by methyl acrylate (1.43 mL; 1.37 g; 38 mmol), and the flask sealed with a septum, (pierced with a needle to release pressure), and heated at 140 °C for 1 hour. A further 0.5 mL methyl acrylate was added, and heating continued for a further hour. After this time, the mixture was cooled, added to water, and extracted with DCM. The organic layer was dried (MgSO₄) and concentrated, and purified by column chromatography (hexane/ethyl acetate 10/1) to give **10** (1.87 g; 52 %) as a pale yellow powder. Mp 134.5-135.5 °C. v_{max}/cm^{-1} 3278, 1712, 1350, 1328. $\delta_{\rm H}$ (400 MHz; CDCl₃; Me4Si) 3.82 (3H, s, CH₃), 6.49 (1H, d, *J* 16.0, CH=C*H*CO), 7.19 (1H, m, ArH), 7.58-7.66 (4H, m), 7.84-7.87 (3H, m), 8.12 (1H, dd, *J* 1.5, 8.4, ArH), 9.90 (1H, s, NH). Found C 52.2, H 3.8, N 7.9. Calc. for C₁₆H₁₄N₂O₆S C 53.0, H 3.4, N 7.7.

(*E*)-Methyl 3-{4-[*N*-(2-aminophenyl)sulfamoyl]phenyl}acrylate (14). To a refluxing solution of 10 (1.84 g; 5.08 mmol) in ethanol (8 mL) and glacial acetic acid (1 ml) was added iron powder (2.06 g) portionwise followed by FeCl₃.6H₂O (0.24 g). Refluxing was continued for 3 hours, then the reaction mixture was cooled and filtered. Water was added, and the mixture repeatedly extracted with ether. The ether layers were combined and concentrated to give a yellow oil. Addition of a small amount of ethanol led to the precipitation of a yellow solid after a short time, which was filtered to give title compound as a yellow crystals (1.16 g; 69 %). mp 163-164.5 °C v_{max}/cm⁻¹ 3498, 3392, 3141, 1692, 1637, 1610, 1499, 1326. $\delta_{\rm H}$ (400 MHz; CDCl₃; Me₄Si) 3.83 (3H, s, Me), 4.10 (2H, bs, NH₂), 6.00 (1H, s, NH), 6.44-6.55 (2H, m, ArH), 6.53 (1H, d, *J* = 16.1, CH=CHCO), 6.76 (1H, d, *J* = 8.0, ArH), 7.07 (1H, t, *J* = 7.0, ArH), 7.60 (2H, d, *J* = 6.4, ArH), 7.69 (1H, d, *J* = 16.1, CH=CHCO), 7.76 (2H, d, *J* = 8.4, ArH). $\delta_{\rm C}$ 52.0, 117.3, 118.7, 120.5, 121.3, 128.2, 128.4, 128.6, 129.4, 138.9, 139.9, 142.5, 144.7, 166.7. Found C 57.4, H 4.8, N 8.3. Calc. for C₁₆H₁₆N₂O₄S C 57.8, H 4.9, N 8.4%.

(*E*)-Methyl 3-{4-[*N*-(2-iodophenyl)sulfamoyl]phenyl}acrylate (9). To a stirred suspension of 14 (1.66 g; 5 mmol) in ice (2.5 g), water (2.5 mL) and H₂SO₄ (0.325 mL) at 0 °C was added a solution of NaNO₂ (0.36 g) in water (0.5 mL). The mixture was stirred for 20 mins at 0 °C, after which time further H₂SO₄ was added (0.5 mL). The mixture was poured into a solution of KI (1 g) in H₂O (1 mL), and a catalytic amount of Cu powder was added. The mixture was warmed to 50 °C, then cooled. The solid was filtered, and purified by column chromatography to give 9 as a white powder (0.724 g; 33 %) mp 146-151 °C. v_{max}/cm^{-1} 1728, 1640, 1589, 1396, 1318. $\delta_{\rm H}$ (400 MHz; CDCl₃; Me₄Si) 3.81 (3H, s, CH₃), 6.50 (1H, d, *J* = 16.0, CH=C*H*CO), 7.50 (1H, dt, *J* = 1.0, 8.2), 7.61-7.71 (4H, m, ArH), 8.08-8.14 (4H, m, C*H*=CHCO, ArH). $\delta_{\rm C}$ 52.1, 112.0, 120.8, 122.6, 126.1, 128.6, 128.9, 130.5, 131.6, 137.7, 141.0, 141.7, 145.5, 166.3.

(*E*)-Methyl 3-{4-[2-(1-hydroxy-4-oxocyclohexa-2,5-dienyl)-*1H*-indol-1-ylsulfonyl]phenyl}acrylate (8). Prepared from 9 and 5 according to the standard method described above. (10%) mp 204.5-205.5 °C. v_{max}/cm^{-1} 3942, 1720, 1672, 1629. δ_{H} (400 MHz; CDCl₃; Me₄Si) 3.80 (3H, s, CH₃), 5.37 (1H, s, OH), 6.33 (2H, d, *J* = 10.3, C(OH)C*H*), 6.45 (1H, d, *J* = 16.0, CH=C*H*CO), 6.81 (1H, d, *J* = 0.5, ArH), 7.23 (1H, m, ArH), 7.32 (1H, td, *J* 7.3, 1.3, ArH), 7.43 (1H, d, *J* 7.8, ArH), 7.52-7.60 (5H, m), 7.88 (2H, d, J = 8.4, ArH), 8.00 (1H, dd, *J* 0.6, 8.5, ArH). $\delta_{\rm C}$ 52.1, 67.5, 114.1, 115.2, 121.9, 122.1, 124.9, 126.4, 127.3, 127.8, 128.3, 128.6, 138.1, 138.2, 140.1, 140.7, 141.8, 147.3, 166.4, 184.1. Found C 63.7, H 4.3, N 3.3. Calc. for C₂₄H₁₉NO₆S C 64.1, H 4.3, N 3.1.

References

- 1. Part 7. McCarroll, A. J.; Bradshaw, T. D.; Westwell, A. D.; Matthews, C. S.; Stevens, M. F. G. *J. Med. Chem.* **2007**, in press.
- Wells, G.; Berry, J. M.; Bradshaw, T. D.; Burger, A. M.; Seaton, A.; Wang, B.; Westwell, A. D.; Stevens, M. F. G. J. Med. Chem. 2003, 46, 532.
- Bradshaw, T. D.; Matthews, C. S.; Cookson, J.; Chew, E-H.; Shah, M.; Bailey, K.; Monks, A.; Harris, E.; Westwell, A. D.; Wells, G.; Laughton, C. A.; Stevens, M. F. G. *Cancer Res.* 2005, 65, 3911.
- 4. Jones, D. T.; Pugh, C. W.; Wigfield, S.; Stevens, M. F. G.; Harris, A. L. Clin. Cancer Res. 2006, 12, 5384.
- 5. Mukherjee, A.; Westwell, A. D.; Bradshaw, T. D.; Stevens, M. F. G.; Carmichael, J.; Martin, S. G. *Br. J. Cancer* **2005**, *92*, 350.
- Berry, J. M.; Bradshaw, T. D.; Fichtner, I.; Ren, R. B.; Schwalbe, C. H.; Wells, G.; Chew, E. H.; Stevens, M. F. G.; Westwell, A. D. J. Med. Chem. 2005, 48, 639.
- 7. Widmer, U. Synthesis 1983, 135.
- 8. Brown, H. C.; Choi, Y. M.; Narasimhan, S. J. Org. Chem. 1982, 47, 3153.
- 9. AbdelMagid, A. F.; Carson, K. G.; Harris, B. D.; Maryanoff, C. A.; Shah, R. D. J. Org. Chem. **1996**, *61*, 3849.
- 10. Yashura, A.; Kameda, M.; Sakamoto, T. Chem. Pharm. Bull. 1999, 47, 809.
- 11. Yang, C.; Nolan, S. P. Synlett 2001, 1539.
- 12. Gabriele, B.; Salerno, G.; Veltri, L.; Costa, M.; Massera, C. Eur. J. Org. Chem. 2001, 4607.
- Arduengo, A. J.; Krafczyk, R.; Schmutzler, R.; Craig, H. A.; Goerlich, J. R.; Marshall, W.J.; Unverzagt, M. *Tetrahedron* 1999, 55, 14523.