Synthesis and NMR study of intramolecular silacyclobutane complexes: 8-aza-5,11-dioxa-4-silaspiro[3,7]undecane and 8-methyl-8-aza-5,11-dioxa-4-silaspiro[3,7]undecane

Vadim A. Pestunovich,^{1,†} Nataliya F. Lazareva,^{1,*} Alexander I. Albanov,¹ Ol'ga B. Kozyreva,^{1,†} Vera V. Volkova,^{2,†}and Leonid E. Gusel'nikov²

¹Irkutsk Institute of Chemistry, Siberian Branch of Russian Academy of Sciences, Favorsky 1, 664033 Irkutsk, Russia E-mail: <u>nataly_lazareva@irioch.irk.ru</u>
²Topchiev Institute of Petrochemical Syntheses of Russian Academy of Sciences, Leninsky 29, 119991 Moscow, Russia E-mail: guselnikov@ips.ac.ru

Dedicated to Professor E. Ya. Lukevics on the occasion of his 70th birthday

Abstract

The intramolecular silacyclobutane complexes with pentaacoordination at silicon, 8-aza-5,11dioxa-4-silaspiro[3,7]undecane and 8-methyl-8-aza-5,11-dioxa-4-silaspiro[3,7]undecane, were synthesized by reacting 1,1-dimethoxy- or 1,1-bis(diethylamino)silacyclobutanes with the corresponding diethanolamines. The existence of (Si \leftarrow N) pentaacoordination at silicon was deduced from the pronounced upfield ²⁹Si and downfield ¹³C NMR shifts as well as from the low temperature ¹³C NMR study of their dynamic behavior in solution that proved complexes to appear as two isomers with coalescence barriers of 11.5 kcal/mol and 12.9 kcal/mol for **1** and **2**, respectively.

Keywords: Silacyclobutane, intramolecular complexes, pentacoordination of silicon

Introduction

Known since 1954,¹ silacyclobutanes, the four-membered cycles containing silicon and three carbon atoms, continue to be a subject of great interest due to the peculiar features of their structure and a variety of chemical properties owing to both the dipolar nature of the endocyclic Si-C bond and the four-membered ring strain.² Thus, in liquid phase the ring opening

[†] Deceased

polymerization and some other reactions can occur.³ Silacyclobutanes readily cyclorevert generating transient silenes, the silicon-carbon doubly bonded compounds containing the sp²-hybridizied silicon.⁴ Also, the silicon atom in silacyclobutanes exhibits an increased ability to change its coordination number from four to five and six.⁵⁻⁸ In particular, the X-ray and NMR data indicate the *peri* interaction between silicon and the dimethylamino group in bis[(8'-(dimethylamino)naphth-1'-yl)-1-silacyclobut-1-yl]ether to be considerably stronger than in bis[(8'-(dimethylamino)naphth-1'-yl)-dimethylsilyl]ether, thus evidencing a greater Lewis acidity of silacyclobutane derivatives.⁵ The gas-phase reactions of 1,1-dimethysilacyclobutane with fluorine and allyl anions give rises to 1-silacyclobutane pentacoordinate silicon anions.⁶

Scheme 1

Treatment of 1,1-dichlorosilacyclobutane with lithium phosphinomethanide leads to a stable intramolecular silacyclobutane complex with hexacoordination at silicon center:⁷

Scheme 2

This is of special interest because hypervalent silacyclobutanes may turn to be precursors for the production of both hypervalent polycarbosilanes and silenes. In fact, a few silenes and silaneimines stabilized with O- and tert-N-donor bases (Si \leftarrow O and Si \leftarrow N coordination) are described.⁸ Also, the silanediyl, silanethione, and dibenzosilafulvene derivatives of (dimethylaminomethyl)arylsilenes containing intramolecular Si \leftarrow N coordination bond are known.^{9,10}

Herein, we report the synthesis and NMR study of the effect of intramolecular Si \leftarrow N bonding on the structure and stereodynamical behavior of the 8-aza-5,11-dioxa-4-silaspiro[3,7]undecane 1 and 8-methyl-8-aza-5,11-dioxa-4-silaspiro[3,7]undecane 2. These silacyclobutanes contain β , β -aminodiethoxyl ligand that is known to form the transannular Si \leftarrow N bond in 2,8-dioxa-5-aza-1-silacyclooctanes.¹¹ Therefore, we expected

silaspiro[3,7]undecanes 1 and 2 to be the hypervalent silacyclobutanes which could, for example, cyclorevert forming hypervalent silenes. Indeed, our recent *ab initio* calculations at the MP2/6-31G(d)//MP2/6-31G(d) level of theory predicted a strong intramolecular Si \leftarrow N bond (of the length 2.105 Å and energy 19.7 kcal/mol) in 1-methylene-5-methyl-5-aza-2,8-dioxa-1-silacyclooctane, the N-donor stabilization for the Si=C double bond was estimated to be 18.0 kcal/mol.¹²

Results and Discussion

Previously unknown (N-Si)chelate aminodiethoxy derivatives of silacyclobutane, 8-aza-5,11dioxa-4-silaspiro[3,7]undecane **1** and its homolog 8-methyl-8-aza-5,11-dioxa-4silaspiro[3,7]undecane **2**, were synthesized by the reactions of 1,1-dimethoxy- or 1,1bis(diethylamino)silacyclobutanes with diethanolamine and *N*-methyldiethanolamine, respectively:

Scheme 3

The reactions were performed in CHCl₃ or CH₂Cl₂ at very mild conditions (20 °C, 1 hour) followed by the evaporation of the solvent and a volatile product (ethanol or diethylamine) and drying of a colorless solid residue in vacuum.[‡] The products **1** and **2** melted at 20°C and 45°C, respectively. Notice that the rise of the reaction temperature resulted in the formation of a non-volatile residue. Our attempts to involve 1,1-dichlorosilacyclobutane (X = Cl) and O,O-bis-TMS derivatives of diethanolamines in the above reactions failed. At room temperature reactions would not proceed, whereas at 60° C the cleavage of silacyclobutane Si-C bond in the starting compounds and products suppressed the formation of the target **1** and **2**.

NMR data of **1** and **2** in solution are given in the Table. The upfield ²⁹Si NMR shifts (by 36 and 29 ppm, respectively) relative to that of 1,1-diethoxysilacyclobutane (lit.,¹³ δ_{si} -17.1 ppm), the tetracoordinate organosilicon compound with the same surroundings at silicon atom, was associated to the pentacoordination at silicon. A higher ²⁹Si shielding and smaller temperature coefficient (cf. 0.04 ppm/degree for **1** and 0.06 ppm/degree for **2**) indicate the

[‡] However, we failed to obtain a reliable crystal for X-ray study

Si \leftarrow N bonding in 1 to be stronger than in 2. Indeed, the upfield ²⁹Si NMR shifts are common for 2,8-dioxa-6-aza-2-silacyclooctanes R₂Si(OCH₂CH₂)₂NR' in polar solvents¹¹. These change similarly on going from R' = H to R' = Me (cf. for R = Ph, R ' = H, δ_{si} . -44.7 ppm in CDCl₃, δ_{si} . -56.1 ppm in CD₃CN and for R = Ph, R ' = Me δ_{si} . -43.9 ppm in CDCl₃, δ_{si} . - 47.8 ppm in CD₃CN) indicating a decrease of coordination interaction Si \leftarrow N. Presumably, this effect is due to both the steric factors and higher nucleophilicity of nitrogen when the attached hydrogen atom forms intermolecular H-bond with the basic centers of the dissolved substance and solvent.¹⁴

Compound	NMR	(CH ₂) ₃	NCH ₂	OCH ₂	NR	Si
1	$^{1}\mathrm{H}$	1.31	2.86	3.83	2,40	-
	¹³ C	12.55 (C ₃); 27.31(C ₂ and C ₄)	44.94	58.92	-	-
	²⁹ Si	-	-	-	-	-53,4
2	$^{1}\mathrm{H}$	1.44	2.72	3.87	2.35	-
	¹³ C	11.90 (C ₃) 25.68(C ₂ and C ₄)	42.53	58.78	54.56	-
	²⁹ Si		-	-	-	-45.26

Table 1. NMR spectroscopic data for 1 and 2 in solution (CDCl₃), δ , ppm

At ambient temperature, a silicon pentacoordination of **1** and **2** manifests itself in greater downfield ¹³C shift of the carbon atoms attached to silicon (6.5 and 4.9 ppm, respectively) as compared to that of the model tetracoordinate silicon compound, 1,1-diethoxysilacyclobutane (lit., ¹³ 20.8 ppm). A single resonance was observed for the Si-CH₂ carbons at this temperature. Upon cooling the signals of the Si-CH₂ carbons broaden, coalesce (temperature of coalescence at ca -50 °C for **1** and at ca -20 °C for **2**) and giving rise to two signals (Figure). The occurrence of C and C* signals most likely indicate the rearrangement resulting in a positional exchange between apical and equatorial carbon atoms (see Scheme 4).

Figure 1. Variable-temperature ¹³C NMR of compounds 1 and 2 (Si-CH₂ group)

Scheme 4

The rearrangement can be explained in terms of two early suggested mechanisms. The first involves the Si \leftarrow N bond dissociative-associative process and inversion of the eight-membered heterocycle and the substituent configuration at nitrogen(Scheme 5).

Scheme 5

This mechanism was proposed for an explanation of splitted signals in the NMR spectra of RR'Si(OCH₂CH₂)₂NR".¹¹ Also, the turnstile mechanism¹⁵ of the ligands exchange at silicon atom may be taken into account (Scheme 6).

Scheme 6

The rearrangement barrier, ΔG_c^* , of 11.5 kcal/mol was estimated for silacyclobutane **1**. For silacyclobutane **2** it rised to 12.9 kcal/mol. Taking into consideration that the Si \leftarrow N bond in **1** is stronger than that in **2**, the opposite ratio between ΔG_c^* values is apparently due to an essential contribution of the conformational rigidity of the eight-membered ring to the ΔG_c^* value which increases with N-substitution. The ΔG_c^* value for **2** is higher than those determined for the related N-methylaminoethoxy derivatives of dimethylsilane (9.3 kcal/mol), 1silacyclohexane (10.0 kcal/mol) and 1-silacyclopentane (11.5 kcal/mol) in (CD₃)₂CO solution.¹¹ This is in favor of the Si \leftarrow N coordination bonding in silacyclobutane **2** to be stronger than that in the related medium-sized silacycles and acyclyc dialkylsilyl analogs. The result is in accord with the enhanced F⁻ affinity of silacyclobutanes in the gas-phase reactions^{6c} and could be explained by an essential energetic gain upon silicon pentacoordination due to some release of the four-membered ring strain when carbons adjacent to silicon span one equatorial and one apical position.

The higher solubility of compound **2** made it possible to measure the values of the onebond ${}^{1}J({}^{29}Si-{}^{13}C)$ coupling constant for the apical and equatorial carbons. These values were found to be - 54.2 Hz and - 58.6 Hz, respectively. The coupling constant (${}^{29}Si-{}^{13}C_{\alpha}$) in tetracoordinate 1,1-diethoxysilacyclohexane is the intermediate value ($J_{Si-C} = 55$ Hz). 13 Such change of the coupling constant of silicon atom with subsituents well agree with the change of scharacter of the bond with axial and equatorial substituents in TBP. 16

Experimental Section

¹H, ¹³C, ²⁹Si NMR spectra of 20% solutions (CDCl₃) of compounds **1** and **2** were recorded on a JEOL 90Q spectrometer. 1,1-Dimethoxy- and 1,1-bis(diethylamino)silacyclobutanes were synthesized as described in ref. 13. The value of ΔG was calculated using the equation taken from ref. 17.

Preparation of 8-aza-5,11-dioxa-4-silaspiro[3,7]undecane (1)

a. Diethanolamine 0.52 g (5 mmol) in 10 ml of CHCl₃ was added dropwise to a solution of 0.66 g (5 mmol) of 1,1-dimethoxysilacyclobutane in 15 ml of dry CHCl₃ at 5 0 C. After warming up to room temperature and evaporating the solvent and formed methanol in vacuum, a cream-colored solid residue was filtrated and washed with pentane. After the evaporation of pentane, a colorless solid of **1** (0.45 g; 51%), melting point 45°C (decomp.), remained. Elemental analysis (Found: C, 48.98; H, 9.04; N, 8.35; Si 15.5. Calc. for C₇H₁₅NO₂Si: C, 48.52; H, 8.72; N, 8.08; Si 16.21%).

b. Diethanolamine 0.52 g (5 mmol) in 10 ml of CHCl₃ was added dropwise to a solution of 1.07 g (5 mmol) of 1,1-bis(diethylamino)silacyclobutane in 20 ml of dry CHCl₃ at 5^{0} C. After slow warming up to room temperature and evaporation of the formed diethylamine and a part (3/4) of the solvent in vacuum, a solid residue was filtrated and washed with pentane. After evaporation of the pentane, a colorless solid of 1 (0.61 g; 71%), melting point 45°C (decomp.), remained. Elemental analysis (Found: C, 48.93; H, 9.01; N, 8.51; Si 15.21. Calc. for C₇H₁₅NO₂Si: C, 48.52; H, 8.72; N, 8.08; Si 16.21%).

Preparation of 8-methyl-8-aza-5,11-dioxa-4-silaspiro[3,7]undecane (2)

a. *N*-Methyldiethanolamine 0.59 g (5 mmol) in 5 ml of CHCl₃ was added dropwise to a solution of 0.66 g (5 mmol) of 1,1-dimethoxysilacyclobutane in 5 ml of dry CHCl₃ and was stirred for 1 h at room temperature. The solvent and methanol were evaporated and viscous residue was dried in vacuum. The product was purified then by low temperature sublimation in vacuum (20°C, 10⁻³ mm Hg) to yield 0.38 g (40 %) of **2**, melting point 20 °C. Elemental analysis (Found: C, 49.67; H, 8.75; N, 7.95; Si 15.87. Calc. for C₈H₁₇NO₂Si: C, 51.30; H, 9.15; N, 7.48; Si 14.99%).

b. *N*-Methyldiethanolamine 0.59 g (5 mmol) in 10 ml of CHCl₃ was added dropwise to a solution of 1.07 g (5 mmol) of 1,1-bis(diethylamino)silacyclobutane in 20 ml of dry CHCl₃ at 5^{0} C. After slow warming up to room temperature and evaporation of diethylamine and a part (4/5) of the solvent in vacuum, an oily product was decanted and washed with pentane. After evaporation of the pentane, a colorless solid of **2** (0.65 g; 68 %), melting point 20°C, remained. Elemental analysis (Found: C, 49.87; H, 8.93; N, 7.37; Si 15.62. Calc. for C₈H₁₇NO₂Si: C, 51.30; H, 9.15; N, 7.48; Si 14.99%).

Acknowledgements

The financial support from the International Association for the Promotion of Cooperation with Scientists from the New Independent States of the Former Soviet Union (Grant INTAS 03-51-4164) is gratefully acknowledged.

References

- 1. Sommer, L. H.; Baum, G. A., J. Am. Chem. Soc. 1954, 76, 5002.
- (a) Shen, Q.; Apen, P. G.; Hilderbrandt, R. L. J. Mol. Str. 1991, 246, 229. (b) Novikov, V. P.; Tarasenko, S. A.; Samdal, S.; Shen, Q.; Vilkov, L. V. J. Mol. Str. 1999, 477, 71. (c) Dakkouri, M.; Grosser, M. J. Mol. Str. 2001, 559, 7. (d) Jain, R; Brunskill, A. P. J.; Sheridan J. B.; Lalancette, R. A. J. J. Organomet. Chem. 2005, 690, 2272. (e) Novikov V. P.; Tarasenko S. A.; Samdal S.; Vilkov L. V. J. Mol. Str. 1998, 445, 207.
- (a) Nametkin, N. S.; Vdovin, V. M. *Izv. Akad. Nauk USSR Ser. Khim.* 1974, 1153 and references therein. (b) Ushakov, N. V.; Finkelstein, E. Sh.; Babich, E. D. *Polym. Sci. Ser. A* 1995, *37*, 320 and references therein. (c) Babich, E. D., In Salamone, J. C. Ed., *The Polymeric Materials Encyclopedia*, Vol. 10, CRC Press: Boca Raton, Fl, 1996, *10*, 7621 and references therein. (d) Matsumoto, K.; Oshima, K.; Utimoto, K. *J. Synth. Org. Chem. Japan* 1996, *54*, 289. (e) Maas G.; Bender S. *J. Chem. Soc. Chem. Commun.* 2000, 437.
- 4. (a) Gusel'nikov, L. E.; Nametkin, N. S. In *Advances in Organosilicon Chemistry;* Voronkov, M. G., Ed.; Mir Publishers: Moscow, 1985; p 69 and references therein. (b) Gusel'nikov, L. E. *Coord. Chem. Rev.* 2003, *244*, 149 and references therein.
- 5. Spiniello, M.; White, J. M. Organometallics 2000, 19, 1350.
- (a) Damrauer, R.; Crowell, A. J.; Craig, C. F. J. Am. Chem. Soc. 2003, 125, 10759. (b) Skancke, P. N. J. Phys. Chem. 1994, 98, 3154. (c) Damrauer, R.; Hankin, J. J. Organometal.. Chem. 1996, 521, 93.
- 7. Karsch, H. H.; Richter, R.; Witt, E. J. Organometal.. Chem. 1996, 521, 185.
- (a) Wiberg, N.; Joo, K.-S.; Polborn, K. Chem. Ber. 1993, 126, 67. (b) Wiberg, N.; Koepf, H. J. Organometal. Chem. 1986, 315, 9. (c) Wiberg, H.; Scurz, K. Chem. Ber. 1988, 121, 681.
 (d) Wiberg, N.; Schurz, K. J. Organometal. Chem. 1988, 341, 145. (e) Wiberg, N. In Organosilicon Chemistry II. From Molecules to Materials; Auner, N.; Weis, J., Eds.; VCH: Weinheim, 1996; p 367.
- 9. Zemlyanskii, N.; Borisova, I. V.; Shestakova, A. K.; Ustynyuk, Yu. A.; Chernyshev, E. A. *Izv. Akad. Nauk, Ser. Khim.* **1998**, 491.
- 10. (a) Chuit, C.; Corriu, R. J. P.; Reye, C. J.; Young, C. Chem. Rev. **1993**, *93*, 1371. (b) Lanneau, G. F. Main Group Chem. News **1993**, *1*, 16.
- 11. Birgele, I. S.; Kemme, A. A.; Kupche, E. L.; Mazheika, I. B.; Shatz, V. D., *Kremnijorganicheskie proizvodnye aminospirtov*, Lukevics, E., Ed.; Zinatne: Riga, 1988.
- 12. Avakyan, V. G.; Gusel'nikov, L. E.; Pestunovich, V. A.; Bagaturyants, A. A.; Auner, N., *Organometallics* **1999**, *18*, 4692.
- 13. Krapivin, A. M.; Mägi, M.; Svergun, V. I.; Zaharjan, R. Z.; Babich, E. D.; Ushakov, N. V. J. Organometal. Chem. 1980, 190, 9.
- Pestunovich, V. A.; Shterenberg, B. Z.; Tandura, S. N.; Baryshok, V. P.; Brodskaya, E. I.; Komalenkova, N. G.; Voronkov, M. G. *Doklady AN USSR* 1982, *264*, 632
- 15. Ugi, D. Angew. Chem. 1970, 82, 741.

- (a) Kupce, E.; Liepins, E.; Lukevics, E. J.Organometal. Chem, 1983, 248, 131. (b) Harris, R. K.; Jones, I.; Ng, S. Org. Magn. Reson. 1978, 7, 521. (c) Pestunovich, V. A.; Tandura, S. N.; Voronkov, M. G.; Baryshok, V. P.; Zelchan, G. I.; Glukhikh, V. I.; Engelgard, G.; Witanowski M. Spectrosc. Lett. 1978, 11, 339.
- 17. Gordon, A. J.; Ford, R. A. The Chemist's Companion A Handbook of Practical Data, Techniques and References, John Wiley&Sons, 1972.